Journal Home > Volume 17 , Issue 5

The notorious dendrite and infinite volume change seriously restrict the advancement of lithium metal anodes (LMAs), during the long-term process of stripping/plating. Herein, the nanosheets of metal fluoride (CoF2) and metal nitride (CoN) with magnificent lithiophilicity on the nickel (Ni) foam are designed as the “regulator” to uniform the Li plating and build stronger solid electrolyte interface (SEI) layer for dendrite free LMAs. The Ni foam offers abundant space to receive deposited Li metal. The CoN nanosheets can guarantee the fast transfer of electrons, which provides a stable interface of Li+ reduction. Moreover, the nanosheet structure with lithiophilicity would accelerate the move of Li+ and decrease the nucleation barrier, due to the high lattice-matching of Li and CoN. Meanwhile, the CoF2 could increase the content of F (LiF) in the SEI layer, which enhances the strength and avoids the destruction of SEI layer. With the cooperation of CoN and CoF2, the composited anode (Li/NF@CNCF) exhibits ultra-long cycle performance (more than 1200 h) and fantastic structure stability at 1 mA·cm−2 with 1 mAh·cm−2. Based on the LiFePO4 and Li/NF@CNCF, the full cells deliver excellent specifical capacity and steady coulombic efficiency. The strategy contributes an effective approach to alleviate the issues of lithium metal anodes in the field of LMAs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

An effective strategy for dendrite free Li metal anodes: Nickel foam decorated with high lattice-matching CoN and CoF2 nanosheets for dense deposition

Show Author's information Wenlong Liu1Jianzong Man2Xiaodong Sun1Ning Zhang1Yehong Du3Kun Liu1Zhongsheng Wen1Song Li1Juncai Sun1( )
Institute of Materials and Technology, Dalian Maritime University, Dalian 116026, China
Shandong Provinvial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical enginnering, Liaocheng University, Liaocheng 252000, China
Department of Public Security Management, Liaoning Police College, Dalian 116036, China

Abstract

The notorious dendrite and infinite volume change seriously restrict the advancement of lithium metal anodes (LMAs), during the long-term process of stripping/plating. Herein, the nanosheets of metal fluoride (CoF2) and metal nitride (CoN) with magnificent lithiophilicity on the nickel (Ni) foam are designed as the “regulator” to uniform the Li plating and build stronger solid electrolyte interface (SEI) layer for dendrite free LMAs. The Ni foam offers abundant space to receive deposited Li metal. The CoN nanosheets can guarantee the fast transfer of electrons, which provides a stable interface of Li+ reduction. Moreover, the nanosheet structure with lithiophilicity would accelerate the move of Li+ and decrease the nucleation barrier, due to the high lattice-matching of Li and CoN. Meanwhile, the CoF2 could increase the content of F (LiF) in the SEI layer, which enhances the strength and avoids the destruction of SEI layer. With the cooperation of CoN and CoF2, the composited anode (Li/NF@CNCF) exhibits ultra-long cycle performance (more than 1200 h) and fantastic structure stability at 1 mA·cm−2 with 1 mAh·cm−2. Based on the LiFePO4 and Li/NF@CNCF, the full cells deliver excellent specifical capacity and steady coulombic efficiency. The strategy contributes an effective approach to alleviate the issues of lithium metal anodes in the field of LMAs.

Keywords: nanosheet, lithium metal anodes, CoN and CoF2, lattice-matching, lithiophilicity

References(39)

[1]

Zhou, T.; Shen, J. D.; Wang, Z. S.; Liu, J.; Hu, R. Z.; Ouyang, L. Z.; Feng, Y. Z.; Liu, H.; Yu, Y.; Zhu, M. Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable Li metal anode. Adv. Funct. Mater. 2020, 30, 1909159.

[2]

Zhang, H. Y.; Ju, S. L.; Xia, G. L.; Sun, D. L.; Yu, X. B. Dendrite-free Li-metal anode enabled by dendritic structure. Adv. Funct. Mater. 2021, 31, 2009712.

[3]

Li, S. Q.; Zhang, L.; Liu, T. T.; Zhang, Y. W.; Guo, C. F.; Wang, Y.; Du, F. H. A dendrite-free lithium-metal anode enabled by designed ultrathin MgF2 nanosheets encapsulated inside nitrogen-doped graphene-like hollow nanospheres. Adv. Mater. 2022, 34, 2201801.

[4]

Liu, B.; Zhang, Y.; Wang, Z. L.; Ai, C. Z.; Liu, S. F.; Liu, P.; Zhong, Y.; Lin, S. W.; Deng, S. J.; Liu, Q. et al. Coupling a sponge metal fibers skeleton with in situ surface engineering to achieve advanced electrodes for flexible lithium-sulfur batteries. Adv. Mater. 2020, 32, 2003657.

[5]

Huang, L.; Guan, T. X.; Su, H.; Zhong, Y.; Cao, F.; Zhang, Y. Q.; Xia, X. H.; Wang, X. L.; Bao, N. Z.; Tu, J. P. Synergistic interfacial bonding in reduced graphene oxide fiber cathodes containing Polypyrrole@sulfur Nanospheres for flexible energy storage. Angew. Chem., Int. Ed. 2022, 61, e202212151.

[6]

Salvatierra, R. V.; López-Silva, G. A.; Jalilov, A. S.; Yoon, J.; Wu, G.; Tsai, A. L.; Tour, J. M. Suppressing Li metal dendrites through a solid Li-Ion backup layer. Adv. Mater. 2018, 30, 1803869.

[7]

Huang, L.; Shen, S. H.; Zhong, Y.; Zhang, Y. Q.; Zhang, L. J.; Wang, X. L.; Xia, X. H.; Tong, X. L.; Zhou, J. C.; Tu, J. P. Multifunctional hyphae carbon powering lithium-sulfur batteries. Adv. Mater. 2022, 34, 2107415.

[8]

Jang, J.; Shin, J. S.; Ko, S.; Park, H.; Song, W. J.; Park, C. B.; Kang, J. Self-assembled protective layer by symmetric ionic liquid for long-cycling lithium-metal batteries. Adv. Energy Mater. 2022, 12, 2103955.

[9]

Cui, X. Y.; Cheng, J. C.; Li, C.; Sun, Z. Q.; Li, K. X.; Wang, Y. J.; Fan, X. X.; Tang, S.; Lin, X. D.; Yuan, R. M. et al. A tip-inhibitor interphase embedded with soluble polysulfides for high-voltage Li metal batteries. Energy Environ. Mater. 2023, 6, e12393.

[10]

Jiang, Y.; Jiang, J. L.; Wang, Z. X.; Han, M. R.; Liu, X. Y.; Yi, J.; Zhao, B.; Sun, X. L.; Zhang, J. J. Li4.4Sn encapsulated in hollow graphene spheres for stable Li metal anodes without dendrite formation for long cycle-life of lithium batteries. Nano Energy 2020, 70, 104504.

[11]

Liu, Y.; Qiao, Y.; Zhang, Y.; Yang, Z.; Gao, T. T.; Kirsch, D.; Liu, B. Y.; Song, J. W.; Yang, B.; Hu, L. B. 3D printed separator for the thermal management of high-performance Li metal anodes. Energy Storage Mater. 2018, 12, 197–203

[12]

Cao, W. Z.; Lu, J. Z.; Zhou, K.; Sun, G. C.; Zheng, J. Y.; Geng, Z.; Li, H. Organic–inorganic composite SEI for a stable Li metal anode by in- situ polymerization. Nano Energy 2022, 95, 106983.

[13]

Ren, F. H.; Li, Z. D.; Zhu, Y.; Huguet, P.; Deabate, S.; Wang, D. Y.; Peng, Z. Artificial nucleation sites with stable SEI for Li metal anodes by aggressive Al pulverization. Nano Energy 2020, 73, 104746.

[14]

Wang, Q.; Yang, J.; Huang, X. Y.; Zhai, Z. H.; Tang, J. X.; You, J. H.; Shi, C. G.; Li, W. Z.; Dai, P.; Zheng, W. C. et al. Rigid and flexible SEI layer formed over a cross-linked polymer for enhanced ultrathin Li metal anode performance. Adv. Energy Mater. 2022, 12, 2103972.

[15]

Yang, Y. X.; Zhang, C. H.; Zhao, G. F.; An, Q.; Mei, Z. Y.; Sun, Y. J.; Xu, Q. J.; Wang, X. F.; Guo, H. Regulating the electron structure of covalent organic frameworks by strong electron-withdrawing nitro to construct specific Li+ oriented channel. Adv. Energy Mater. 2023, 13, 2300725.

[16]

Lu, Q. Q.; Jie, Y. L.; Meng, X. Q.; Omar, A.; Mikhailova, D.; Cao, R. G.; Jiao, S. H.; Lu, Y.; Xu, Y. L. Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook. Carbon Energy 2021, 3, 957–975.

[17]

Wang, Q.; Yang, C. K.; Yang, J. J.; Wu, K.; Qi, L. Y.; Tang, H.; Zhang, Z. Y.; Liu, W.; Zhou, H. H. Stable Li metal anode with protected interface for high-performance Li metal batteries. Energy Storage Mater. 2018, 15, 249–256.

[18]

Wang, C. H.; Zhao, Y.; Sun, Q.; Li, X.; Liu, Y. L.; Liang, J. W.; Li, X. N.; Lin, X. T.; Li, R. Y.; Adair, K. R. et al. Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition. Nano Energy 2018, 53, 168–174.

[19]

Yang, Y. X.; Zhang, C. H.; Mei, Z. Y.; Sun, Y. J.; An, Q.; Jing, Q.; Zhao, G. F.; Guo, H. Interfacial engineering of perfluoroalkyl functionalized covalent organic framework achieved ultra-long cycled and dendrite-free lithium anodes. Nano Res. 2023, 16, 9289–9298.

[20]

Su, J.; Pasta, M.; Ning, Z. Y.; Gao, X. W.; Bruce, P. G.; Grovenor, C. R. M. Interfacial modification between argyrodite-type solid-state electrolytes and Li metal anodes using LiPON interlayers. Energy Environ. Sci. 2022, 15, 3805–3814.

[21]

Qiu, F. L.; Ren, S. Y.; Zhang, X. P.; He, P.; Zhou, H. S. A high efficiency electrolyte enables robust inorganic–organic solid electrolyte interfaces for fast Li metal anode. Sci. Bull. 2021, 66, 897–903.

[22]

Liu, D. Q.; Wang, Y. L.; Tong, T.; Luo, G.; Shen, J.; Cai, X. K. Mesoporous copper-based metal glass as current collector for Li metal anode. Chem. Eng. J. 2023, 451, 138910.

[23]

Liu, Y. H.; Li, Y. F.; Du, Z. Z.; He, C.; Bi, J. X.; Li, S. Y.; Guan, W. Q.; Du, H. F.; Ai, W. Integrated gradient Cu current collector enables bottom-up Li growth for Li metal anodes: Role of interfacial structure. Adv. Sci. 2023, 10, 2301288.

[24]

Xu, R.; Zhou, Y. Y.; Tang, X. X.; Wang, F. Z.; Dong, Q.; Wang, T.; Tong, C.; Li, C. P.; Wei, Z. D. Nanoarray architecture of ultra-lithiophilic metal nitrides for stable lithium metal anodes. Small 2023, 19, 2205709.

[25]

Wang, J. L.; Zhang, Z.; Ying, H. J.; Han, G. R.; Han, W. Q. In-situ formation of LiF-rich composite interlayer for dendrite-free all-solid-state lithium batteries. Chem. Eng. J. 2021, 411, 128534.

[26]

Liu, Q.; Wang, R. L.; Liu, Z. F.; Wang, X. S.; Han, G. P.; Liu, H. B.; Li, B. H. A 3D lithiophilic ZIF-8@RGO free-standing scaffold with dendrite-free behavior enabling high-performance Li metal batteries. J. Mater. Chem. A 2023, 11, 12910–12917.

[27]

Liu, S.; Zhang, X. Y.; Li, R. S.; Gao, L. B.; Luo, J. Y. Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating. Energy Storage Mater. 2018, 14, 143–148.

[28]

Man, J. Z.; Liu, K.; Du, Y. H.; Wang, X. Y.; Li, S.; Wen, Z. S.; Ji, S. J.; Sun, J. C. A stable liquid-solid interface of a lithium metal anode enabled by micro-region meshing. Nanoscale 2022, 14, 1195–1201.

[29]

Tang, D. L.; Yuan, L. X.; Liao, Y. Q.; Jin, W. X.; Chen, J.; Cheng, Z. X.; Li, X.; He, B.; Li, Z.; Huang, Y. H. Improving the cycling stability of lithium metal anodes using Cu3N-modified Cu foil as a current collector. Sci. China Mater. 2022, 65, 2385–2392.

[30]

Yang, Q. F.; Cui, M. N.; Hu, J. L.; Chu, F. L.; Zheng, Y. J.; Liu, J. J.; Li, C. L. Ultrathin defective C–N coating to enable nanostructured Li plating for Li metal batteries. ACS Nano 2020, 14, 1866–1878.

[31]

Wu, F.; Yuan, Y. X.; Cheng, X. B.; Bai, Y.; Li, Y.; Wu, C.; Zhang, Q. Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes. Energy Storage Mater. 2018, 15, 148–170.

[32]

Gong, Y. J.; Heo, J. W.; Lee, H.; Kim, H.; Cho, J.; Pyo, S.; Yun, H. E. J.; Kim, H.; Park, S. Y.; Yoo, J. et al. Nonwoven rGO fiber-aramid separator for high-speed charging and discharging of Li metal anode. Adv. Energy Mater. 2020, 10, 2001479.

[33]

Wang, T. S.; Liu, X. B.; Zhao, X. D.; He, P. G.; Nan, C. W.; Fan, L. Z. Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries. Adv. Funct. Mater. 2020, 30, 2000786.

[34]

Jin, X. P.; Huang, G. X.; Zhao, X. M.; Chen, G. L.; Guan, M. J.; Li, Y. S. An in situ LiF-enriched solid electrolyte interphase from CoF2-decorated N-doped carbon for dendrite-free Li metal anodes. Energy Adv. 2023, 2, 725–732.

[35]

Yan, X. L.; Lin, L.; Chen, Q. L.; Xie, Q. S.; Qu, B. H.; Wang, L. S.; Peng, D. L. Multifunctional roles of carbon-based hosts for Li-metal anodes: A review. Carbon Energy 2021, 3, 303–329.

[36]

Zhao, Y. H.; Xu, R.; Zhou, Y. Y.; Wang, F. Z.; Tong, C.; Shao, M. H.; Wang, M.; Li, C. P.; Wei, Z. D. Lattice-matching Ni-based scaffold with a spongy cover for uniform electric field against lithium dendrites. Chem. Commun. 2021, 57, 9442–9445.

[37]

Song, R. F.; Yao, J. M.; Xu, R. N.; Li, Z. X.; Yan, X. L.; Yu, C.; Huang, Z. G.; Zhang, L. Metastable decomposition realizing dendrite-free solid-state Li metal batteries. Adv. Energy Mater. 2023, 13, 2203631.

[38]

Yuan, H. D.; Nai, J. W.; Tian, H.; Ju, Z. J.; Zhang, W. K.; Liu, Y. J.; Tao, X. Y.; Lou, X. W. An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Sci. Adv. 2020, 6, eaaz3112.

[39]

Wang, T. Y.; Zhang, X. L.; Yuan, N.; Sun, C. W. Molecular design of a metal-organic framework material rich in fluorine as an interface layer for high-performance solid-state Li metal batteries. Chem. Eng. J. 2023, 451, 138819.

File
12274_2023_6298_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 September 2023
Revised: 24 October 2023
Accepted: 30 October 2023
Published: 21 November 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (No. 3132023503). The authors thank Shiyanjia Lab (www.shiyanjia.com) for the XPS test.

Return