Journal Home > Volume 17 , Issue 5

Photothermal therapy (PTT) may lead to healthy tissue damage, tumor metastasis, and recurrence, which makes mild photothermal therapy (mild PTT) stand out. However, overcoming heat resistance, insufficient therapeutic effect, and poor photothermal conversion efficiency has become new challenge. Herein, we report a dynamic supramolecular nanocarrier formed from amide-sericin and aldehyde-polyhydroxy glucan (denoted as SDA), the loose cavity of which can be filled by using the pharmaceutical combination of lonidamine (LND) and NIR-II photothermal agent of IR-1061, producing SDLI with a tighter inner hole, smaller and uniform particle size and excellent stability due to multiple pulling forces. Moreover, the intricate internal network structure prevents the hydrophobic IR-1061 from forming aggregates in the small cavity, and the photothermal conversion efficiency (PCE) can reach 48.9%. At the acidic tumor microenvironment of pH 6.5, the controlled release of LND can solve the problem of heat resistance of NIR-II mild PTT and significantly improve the therapeutic effect of NIR-II mild PTT. Meanwhile, SDLI also shows a reasonable tumor inhibition rate, so the synergistic strategy of inhibiting tumor energy metabolism and NIR-II mild PTT to magnify mitochondrial oxidative stress, continuous cell stress state-induced immunogenic cell death to promote the induction of tumor apoptosis is proposed to achieve more effective cancer treatment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-shrinking supramolecular nanoparticles syndicate energy suppression and NIR-II mild photothermal amplification of mitochondrial oxidative stress for breast cancer therapy

Show Author's information Hongmei Liu1Jiming Xu1Mengjie Ye1Hengbo Zhang1Linlin Han1Jingting Wang1Peng Xue1,3Yuejun Kang1,3Zhigang Xu1,2,3( )
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China
Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
Yibin Academy of Southwest University, Yibin 644000, China

Abstract

Photothermal therapy (PTT) may lead to healthy tissue damage, tumor metastasis, and recurrence, which makes mild photothermal therapy (mild PTT) stand out. However, overcoming heat resistance, insufficient therapeutic effect, and poor photothermal conversion efficiency has become new challenge. Herein, we report a dynamic supramolecular nanocarrier formed from amide-sericin and aldehyde-polyhydroxy glucan (denoted as SDA), the loose cavity of which can be filled by using the pharmaceutical combination of lonidamine (LND) and NIR-II photothermal agent of IR-1061, producing SDLI with a tighter inner hole, smaller and uniform particle size and excellent stability due to multiple pulling forces. Moreover, the intricate internal network structure prevents the hydrophobic IR-1061 from forming aggregates in the small cavity, and the photothermal conversion efficiency (PCE) can reach 48.9%. At the acidic tumor microenvironment of pH 6.5, the controlled release of LND can solve the problem of heat resistance of NIR-II mild PTT and significantly improve the therapeutic effect of NIR-II mild PTT. Meanwhile, SDLI also shows a reasonable tumor inhibition rate, so the synergistic strategy of inhibiting tumor energy metabolism and NIR-II mild PTT to magnify mitochondrial oxidative stress, continuous cell stress state-induced immunogenic cell death to promote the induction of tumor apoptosis is proposed to achieve more effective cancer treatment.

Keywords: self-shrinkage, dynamic supramolecular nanoparticles, tumor energy metabolism, NIR-II mild photothermal therapy, mitochondrial oxidative stress

References(67)

[1]

Liu, S.; Pan, X. T.; Liu, H. Y. Two-dimensional nanomaterials for photothermal therapy. Angew. Chem., Int. Ed. 2020, 59, 5890–5900.

[2]

Xiong, Y. X.; Wang, W.; Deng, Q. Y.; Zhang, Z. J.; Wang, Q.; Yong, Z. T.; Sun, C. Y.; Yang, X. Y.; Li, Z. L. Mild photothermal therapy boosts nanomedicine antitumor efficacy by disrupting DNA damage repair pathways and modulating tumor mechanics. Nano Today 2023, 49, 101767.

[3]

Chang, M. Y.; Hou, Z. Y.; Wang, M.; Li, C. X.; Lin, J. Recent advances in hyperthermia therapy-based synergistic immunotherapy. Adv. Mater. 2021, 33, 2004788.

[4]

Yu, Q.; Zhou, J.; Song, J.; Zhou, H.; Kang, B.; Chen, H. Y.; Xu, J. J. A cascade nanoreactor of metal-protein-polyphenol capsule for oxygen-mediated synergistic tumor starvation and chemodynamic therapy. Small 2023, 19, 2206592.

[5]

Zhu, Y. J.; Li, Q. G.; Wang, C. J.; Hao, Y.; Yang, N. L.; Chen, M. J.; Ji, J. S.; Feng, L. Z.; Liu, Z. Rational design of biomaterials to potentiate cancer thermal therapy. Chem. Rev. 2023, 123, 7326–7378.

[6]

He, S. Q.; Song, J.; Qu, J. L.; Cheng, Z. Crucial breakthrough of second near-infrared biological window fluorophores: Design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev. 2018, 47, 4258–4278.

[7]

Jiang, Y. Y.; Huang, J. G.; Xu, C.; Pu, K. Y. Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer. Nat. Commun. 2021, 12, 742.

[8]

Jiang, Y. Y.; Zhao, X. H.; Huang, J. G.; Li, J. C.; Upputuri, P. K.; Sun, H.; Han, X.; Pramanik, M.; Miao, Y. S.; Duan, H. W. et al. Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat. Commun. 2020, 11, 1857.

[9]

Xu, C.; Pu, K. Y. Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 2021, 50, 1111–1137.

[10]

Yang, K.; Zhao, S. J.; Li, B. L.; Wang, B. H.; Lan, M. H.; Song, X. Z. Low temperature photothermal therapy: Advances and perspectives. Coord. Chem. Rev. 2022, 454, 214330.

[11]

Huang, L. P.; Li, Y. A.; Du, Y. A.; Zhang, Y. Y.; Wang, X. X.; Ding, Y.; Yang, X. L.; Meng, F. L.; Tu, J. S.; Luo, L. et al. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy. Nat. Commun. 2019, 10, 4871.

[12]

Yang, Z.; Gao, D.; Zhao, J.; Yang, G. J.; Guo, M.; Wang, Y.; Ren, X. C.; Kim, J. S.; Jin, L.; Tian, Z. M. et al. Thermal immuno-nanomedicine in cancer. Nat. Rev. Clin. Oncol. 2023, 20, 116–134.

[13]

Li, Z. T.; Wang, Y. X.; Ding, Y. Y.; Repp, L.; Kwon, G. S.; Hu, Q. Y. Cell-based delivery systems: Emerging carriers for immunotherapy. Adv. Funct. Mater. 2021, 31, 2100088.

[14]

Chen, W. H.; Luo, G. F.; Lei, Q.; Hong, S.; Qiu, W. X.; Liu, L. H.; Cheng, S. X.; Zhang, X. Z. Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy. ACS Nano 2017, 11, 1419–1431.

[15]

Zeng, W. N.; Yu, Q. P.; Wang, D.; Liu, J. L.; Yang, Q. J.; Zhou, Z. K.; Zeng, Y. P. Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma. J. Nanobiotechnol. 2021, 19, 79.

[16]

Qi, C.; Liu, J.; Jin, Y.; Xu, L. M.; Wang, G. B.; Wang, Z.; Wang, L. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials 2018, 163, 89–104.

[17]

Chang, M. Y.; Hou, Z. Y.; Wang, M.; Wen, D.; Li, C. X.; Liu, Y. H.; Zhao, Y. L.; Lin, J. Cu single atom nanozyme based high-efficiency mild photothermal therapy through cellular metabolic regulation. Angew. Chem., Int. Ed. 2022, 61, e202209245.

[18]

Guo, X. L.; Yang, N. D.; Ji, W. H.; Zhang, H.; Dong, X.; Zhou, Z. Q.; Li, L.; Shen, H. M.; Yao, S. Q.; Huang, W. Mito-Bomb: Targeting mitochondria for cancer therapy. Adv. Mater. 2021, 33, 2007778.

[19]

Guo, R. R.; Peng, H. B.; Tian, Y.; Shen, S.; Yang, W. L. Mitochondria-targeting magnetic composite nanoparticles for enhanced phototherapy of cancer. Small 2016, 12, 4541–4552.

[20]

Yang, G. B.; Xu, L. G.; Xu, J.; Zhang, R.; Song, G. S.; Chao, Y.; Feng, L. Z.; Han, F. X.; Dong, Z. L.; Li, B. et al. Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer. Nano Lett. 2018, 18, 2475–2484.

[21]

Zhang, X.; Du, J. F.; Guo, Z.; Yu, J.; Gao, Q.; Yin, W. Y.; Zhu, S.; Gu, Z. J.; Zhao, Y. L. Efficient near infrared light triggered nitric oxide release nanocomposites for sensitizing mild photothermal therapy. Adv. Sci. (Weinh.) 2019, 6, 1801122.

[22]

Cheng, G.; Zhang, Q.; Pan, J.; Lee, Y.; Ouari, O.; Hardy, M.; Zielonka, M.; Myers, C. R.; Zielonka, J.; Weh, K. et al. Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis. Nat. Commun. 2019, 10, 2205.

[23]

Cohen-Erez, I.; Issacson, C.; Lavi, Y.; Shaco-Levy, R.; Milam, J.; Laster, B.; Gheber, L. A.; Rapaport, H. Antitumor effect of lonidamine-polypeptide-peptide nanoparticles in breast cancer models. ACS Appl. Mater. Interfaces 2019, 11, 32670–32678.

[24]

Chen, J. Y.; Ren, F. Z.; Cao, W. F.; Wu, Z. J.; Ju, G. Q.; Xiao, C. W.; Wu, W. J.; Gao, S.; Xu, C. L.; Gao, Y. Photothermal therapy enhance the anti-mitochondrial metabolism effect of lonidamine to renal cell carcinoma in homologous-targeted nanosystem. Nanomedicine 2021, 34, 102370.

[25]

Nath, K.; Guo, L. L.; Nancolas, B.; Nelson, D. S.; Shestov, A. A.; Lee, S. C.; Roman, J.; Zhou, R.; Leeper, D. B.; Halestrap, A. P. et al. Mechanism of antineoplastic activity of lonidamine. Biochim. Biophys. Acta 2016, 1866, 151–162.

[26]

Wan, J.; Zhang, X. H.; Li, Z. H.; Mo, F. H.; Tang, D. S.; Xiao, H. H.; Wang, J. C.; Rong, G. H.; Liu, T. Oxidative stress amplifiers as immunogenic cell death nanoinducers disrupting mitochondrial redox homeostasis for cancer immunotherapy. Adv. Healthc. Mater. 2023, 12, 2202710.

[27]

Ding, Y. Y.; Wang, Y. X.; Hu, Q. Y. Recent advances in overcoming barriers to cell-based delivery systems for cancer immunotherapy. Exploration 2022, 2, 20210106.

[28]

Zhu, Q. W.; Saeed, M.; Song, R. D.; Sun, T.; Jiang, C.; Yu, H. J. Dynamic covalent chemistry-regulated stimuli-activatable drug delivery systems for improved cancer therapy. Chin. Chem. Lett. 2020, 31, 1051–1059.

[29]

Han, J. P.; Sheng, T.; Zhang, Y. Q.; Cheng, H.; Gao, J. Q.; Yu, J. C.; Gu, Z. Bioresponsive immunotherapeutic materials. Adv. Mater., in press, DOI: 10.1002/adma.202209778.

[30]

Juengpanich, S.; Li, S. J.; Yang, T. R.; Xie, T. A.; Chen, J. D.; Shan, Y. K.; Lee, J.; Lu, Z. Y.; Chen, T. E.; Zhang, B. et al. Pre-activated nanoparticles with persistent luminescence for deep tumor photodynamic therapy in gallbladder cancer. Nat. Commun. 2023, 14, 5699.

[31]

Li, Q. X.; Liu, X.; Yan, C. M.; Zhao, B. L.; Zhao, Y. X.; Yang, L.; Shi, M. Y.; Yu, H.; Li, X. F.; Luo, K. P. Polysaccharide-based stimulus-responsive nanomedicines for combination cancer immunotherapy. Small 2023, 19, 2206211.

[32]

Su, L.; Feng, Y. L.; Wei, K. C.; Xu, X. Y.; Liu, R. Y.; Chen, G. S. Carbohydrate-based macromolecular biomaterials. Chem. Rev. 2021, 121, 10950–11029.

[33]

Yang, K. K.; Yang, Z. Q.; Yu, G. C.; Nie, Z. H.; Wang, R. B.; Chen, X. Y. Polyprodrug nanomedicines: An emerging paradigm for cancer therapy. Adv. Mater. 2022, 34, 2107434.

[34]

Zhao, L. Y.; Liu, Y. M.; Chang, R.; Xing, R. R.; Yan, X. H. Supramolecular photothermal nanomaterials as an emerging paradigm toward precision cancer therapy. Adv. Funct. Mater. 2019, 29, 1806877.

[35]

Webber, M. J.; Langer, R. Drug delivery by supramolecular design. Chem. Soc. Rev. 2017, 46, 6600–6620.

[36]

Su, J. Y.; Li, W. H.; Li, Y. M. New opportunities for immunomodulation of the tumour microenvironment using chemical tools. Chem. Soc. Rev. 2022, 51, 7944–7970.

[37]

Xie, H. J.; Yang, W.; Chen, J. H.; Zhang, J. X.; Lu, X. C.; Zhao, X. B.; Huang, K.; Li, H. L.; Chang, P. P.; Wang, Z. et al. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve. Adv. Healthc. Mater. 2015, 4, 2195–2205.

[38]

Kim, Y.; Hyun, J. Y.; Shin, I. Multivalent glycans for biological and biomedical applications. Chem. Soc. Rev. 2021, 50, 10567–10593.

[39]

Zhang, X.; Xu, X. H.; Li, Y. C.; Hu, C.; Zhang, Z. J.; Gu, Z. W. Virion-like membrane-breaking nanoparticles with tumor-activated cell-and-tissue dual-penetration conquer impermeable cancer. Adv. Mater. 2018, 30, 1707240.

[40]

Jiang, Y. Y.; Upputuri, P. K.; Xie, C.; Zeng, Z. L.; Sharma, A.; Zhen, X.; Li, J. C.; Huang, J. G.; Pramanik, M.; Pu, K. Y. Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv. Mater. 2019, 31, 1808166.

[41]

Zhou, J. J.; Jiang, Y. Y.; Hou, S.; Upputuri, P. K.; Wu, D.; Li, J. C.; Wang, P.; Zhen, X.; Pramanik, M.; Pu, K. Y. et al. Compact plasmonic blackbody for cancer theranosis in the near-infrared II window. ACS Nano 2018, 12, 2643–2651.

[42]

Ma, X. B.; Yang, S. C.; Zhang, T.; Wang, S.; Yang, Q. C.; Xiao, Y.; Shi, X. X.; Xue, P.; Kang, Y. J.; Liu, G. et al. Bioresponsive immune-booster-based prodrug nanogel for cancer immunotherapy. Acta Pharm. Sin. B 2022, 12, 451–466.

[43]

Zhao, P. C.; Xia, X. F.; Xu, X. Y.; Leung, K. K. C.; Rai, A.; Deng, Y. R.; Yang, B. G.; Lai, H. S.; Peng, X.; Shi, P. et al. Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy. Nat. Commun. 2021, 12, 7162.

[44]

Yin, N.; Zhang, Z. M.; Ge, Y. Z.; Zhao, Y. Z.; Gu, Z. C.; Yang, Y.; Mao, L.; Wei, Z. Y.; Liu, J. J.; Shi, J. J. et al. Polydopamine-based nanomedicines for efficient antiviral and secondary injury protection therapy. Sci. Adv. 2023, 9, eadf4098.

[45]

Zhong, Z. T.; Jia, L. Room temperature preparation of water-soluble polydopamine-polyethyleneimine copolymer dots for selective detection of copper ions. Talanta 2019, 197, 584–591.

[46]

Yu, H. L.; Wang, Y. S.; Chen, Y.; Ji, M. Rational design of a NIR-II fluorescent nanosystem with maximized fluorescence performance and applications. Mater. Adv. 2021, 2, 6058–6067.

[47]

Jia, W. F.; Wang, Y. S.; Liu, R.; Yu, X. R.; Gao, H. L. Shape transformable strategies for drug delivery. Adv. Funct. Mater. 2021, 31, 2009765.

[48]

Xie, R.; Wang, Y. F.; Tong, F.; Yang, W. Q.; Lei, T.; Du, Y. F.; Wang, X. R.; Yang, Z. X.; Gong, T.; Shevtsov, M. et al. Hsp70-targeting and size-tunable nanoparticles combine with PD-1 checkpoint blockade to treat glioma. Small 2023, 19, 2300570.

[49]

Yu, W. Q.; Liu, R.; Zhou, Y.; Gao, H. L. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent. Sci. 2020, 6, 100–116.

[50]

Zheng, M.; Liu, Y. Y.; Wang, Y. B.; Zhang, D. Y.; Zou, Y.; Ruan, W. M.; Yin, J. L.; Tao, W.; Park, J. B.; Shi, B. Y. ROS-responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy. Adv. Mater. 2019, 31, 1903277.

[51]

Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674.

[52]

Cai, W.; Fan, G. H.; Zhou, H.; Chen, L.; Ge, J. X.; Huang, B. X.; Zhou, D. D.; Zeng, J. F.; Miao, Q. Q.; Hu, C. H. Self-assembled hybrid nanocomposites for multimodal imaging-guided photothermal therapy of lymph node metastasis. ACS Appl. Mater. Interfaces 2020, 12, 49407–49415.

[53]

Qi, X. L.; Huang, Y. J.; You, S. Y.; Xiang, Y. J.; Cai, E. Y.; Mao, R. T.; Pan, W. H.; Tong, X. Q.; Dong, W.; Ye, F. F. et al. Engineering robust Ag-decorated polydopamine nano-photothermal platforms to combat bacterial infection and prompt wound healing. Adv. Sci. (Weinh.) 2022, 9, 2106015.

[54]

Sun, Z. H.; Deng, G. J.; Peng, X. H.; Xu, X. L.; Liu, L. L.; Peng, J. F.; Ma, Y. F.; Zhang, P. F.; Wen, A.; Wang, Y. F. et al. Intelligent photothermal dendritic cells restart the cancer immunity cycle through enhanced immunogenic cell death. Biomaterials 2021, 279, 121228.

[55]

Xu, J. M.; Qiu, W.; Liang, M. Y.; Ye, M. J.; Hu, J. F.; Ma, X. B.; Shi, X. X.; Xue, P.; Kang, Y. J.; Xiao, B. et al. Dual-stimulus phototherapeutic nanogel for triggering pyroptosis to promote cancer immunotherapy. J. Control. Release 2023, 358, 219–231.

[56]

Wu, W. W.; Yang, Y.; Liang, Z. Y.; Song, X. L.; Huang, Y. D.; Qiu, L.; Qiu, X. Z.; Yu, S. M.; Xue, W. Near infrared II laser controlled free radical releasing nanogenerator for synergistic nitric oxide and alkyl radical therapy of breast cancer. Nanoscale 2021, 13, 11169–11187.

[57]

Chen, Q. S.; Chen, J. Q.; He, M.; Bai, Y. Y.; Yan, H. X.; Zeng, N.; Liu, F. Y.; Wen, S.; Song, L.; Sheng, Z. H. et al. Novel small molecular dye-loaded lipid nanoparticles with efficient near-infrared-II absorption for photoacoustic imaging and photothermal therapy of hepatocellular carcinoma. Biomater. Sci. 2019, 7, 3165–3177.

[58]

Liu, X.; Yang, Y. Y.; Ling, M. J.; Sun, R.; Zhu, M. Y.; Chen, J. J.; Yu, M.; Peng, Z. W.; Yu, Z. Q.; Liu, X. Q. Near-infrared II light-triggered robust carbon radical generation for combined photothermal and thermodynamic therapy of hypoxic tumors. Adv. Funct. Mater. 2021, 31, 2101709.

[59]

Mandal, B. B.; Priya, A. S.; Kundu, S. C. Novel silk sericin/gelatin 3-D scaffolds and 2-D films: Fabrication and characterization for potential tissue engineering applications. Acta Biomater. 2009, 5, 3007–3020.

[60]

Liu, J.; Deng, Y.; Fu, D. A.; Yuan, Y.; Li, Q. L.; Shi, L.; Wang, G. B.; Wang, Z.; Wang, L. Sericin microparticles enveloped with metal-organic networks as a pulmonary targeting delivery system for intra-tracheally treating metastatic lung cancer. Bioact. Mater. 2021, 6, 273–284.

[61]

Zhang, W. J.; Hu, X. L.; Shen, Q.; Xing, D. Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy. Nat. Commun. 2019, 10, 1704.

[62]

Chen, C.; Ni, X.; Jia, S. R.; Liang, Y.; Wu, X. L.; Kong, D. L.; Ding, D. Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater. 2019, 31, 1904914.

[63]

Jiang, H.; Fu, H.; Guo, Y. D.; Hu, P.; Shi, J. L. Evoking tumor associated macrophages by mitochondria-targeted magnetothermal immunogenic cell death for cancer immunotherapy. Biomaterials 2022, 289, 121799.

[64]

Jin, J. K.; Yuan, P. C.; Yu, W.; Lin, J.; Xu, A. K.; Xu, X. D.; Lou, J. A.; Yu, T.; Qian, C.; Liu, B. et al. Mitochondria-targeting polymer micelle of dichloroacetate induced pyroptosis to enhance osteosarcoma immunotherapy. ACS Nano 2022, 16, 10327–10340.

[65]

Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193.

[66]

Huo, D.; Zhu, J. F.; Chen, G. J.; Chen, Q.; Zhang, C.; Luo, X. Y.; Jiang, W.; Jiang, X. Q.; Gu, Z.; Hu, Y. Eradication of unresectable liver metastasis through induction of tumour specific energy depletion. Nat. Commun. 2019, 10, 3051.

[67]

Nam, J.; Son, S.; Ochyl, L. J.; Kuai, R.; Schwendeman, A.; Moon, J. J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 2018, 9, 1074.

File
12274_2023_6296_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 August 2023
Revised: 24 October 2023
Accepted: 30 October 2023
Published: 02 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (No. 22375168), Chongqing Talents of Exceptional Young Talents Project, China (Nos. CQYC202005029 and cstc2021ycjh-bgzxm0061), Shuangcheng cooperative agreement research grant of Yibin, China (No. XNDX2022020013) and the Innovation Platform for Academicians of Hainan Province.

Return