Journal Home > Volume 16 , Issue 12

Vaccines that are reliable and efficacious are essential in the fight against the COVID-19 pandemic. In this study, we designed a dual-adjuvant system with two pathogen-associated molecular patterns (PAMPs), MnOx and CpG. This system can improve the retention of antigens at the injection site, facilitate pro-inflammatory cytokines secretion, further recruit and activate dendritic cells (DCs). As a result, antigens can be delivered to lymph nodes specifically, and adaptive immunity was strengthened. The immunized group showed an enhanced and broadened humoral and cellular immune response in systemic immunity and lung protection when combined with a tandem repeat-linked dimeric antigen version of the SARS-CoV-2 receptor binding domain (RBDdimer). Remarkably, even with a significant reduction in antigen dosage (three times lower) and a decrease in injection frequencies, our nanovaccine was able to produce the highest neutralizing antibody titers against various mutants. These titers were four-fold higher for the wild-type strain and two-fold higher for both the Beta and Omicron variants in comparison with those elicited by the Alum adjuvant group. In conclusion, our dual-adjuvant formulation presents a promising protein subunit-based candidate vaccine against SARS-CoV-2.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

STING and TLR9 agonists synergistically enhance the immunogenicity of SARS-CoV-2 subunit vaccine

Show Author's information Yang Li1,2,§Ziwei Chen1,2,§Xinyi Lu1,2Jiufeng Sun4Mengyu Guo1Huige Zhou1Ru Bai1Yuliang Zhao1,2,3,5Chunying Chen1,2,5( )Yaling Wang1,2( )
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100049, China

§ Yang Li and Ziwei Chen contributed equally to this work.

Abstract

Vaccines that are reliable and efficacious are essential in the fight against the COVID-19 pandemic. In this study, we designed a dual-adjuvant system with two pathogen-associated molecular patterns (PAMPs), MnOx and CpG. This system can improve the retention of antigens at the injection site, facilitate pro-inflammatory cytokines secretion, further recruit and activate dendritic cells (DCs). As a result, antigens can be delivered to lymph nodes specifically, and adaptive immunity was strengthened. The immunized group showed an enhanced and broadened humoral and cellular immune response in systemic immunity and lung protection when combined with a tandem repeat-linked dimeric antigen version of the SARS-CoV-2 receptor binding domain (RBDdimer). Remarkably, even with a significant reduction in antigen dosage (three times lower) and a decrease in injection frequencies, our nanovaccine was able to produce the highest neutralizing antibody titers against various mutants. These titers were four-fold higher for the wild-type strain and two-fold higher for both the Beta and Omicron variants in comparison with those elicited by the Alum adjuvant group. In conclusion, our dual-adjuvant formulation presents a promising protein subunit-based candidate vaccine against SARS-CoV-2.

Keywords: synergistic immune activation, dual-adjuvant system, antigen dosage reducing, variants neutralizing

References(63)

[1]

Yang, J. Y.; Wang, W.; Chen, Z. M.; Lu, S. Y.; Yang, F. L.; Bi, Z. F.; Bao, L. L.; Mo, F.; Li, X.; Huang, Y. et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature 2020, 586, 572–577.

[2]

Pavot, V.; Berry, C.; Kishko, M.; Anosova, N. G.; Huang, D.; Tibbitts, T.; Raillard, A.; Gautheron, S.; Gutzeit, C.; Koutsoukos, M. et al. Protein-based SARS-CoV-2 spike vaccine booster increases cross-neutralization against SARS-CoV-2 variants of concern in non-human primates. Nat. Commun. 2022, 13, 1699.

[3]

Vabret, N.; Britton, G. J.; Gruber, C.; Hegde, S.; Kim, J.; Kuksin, M.; Levantovsky, R.; Malle, L.; Moreira, A.; Park, M. D. et al. Immunology of COVID-19: Current state of the science. Immunity 2020, 52, 910–941.

[4]

Kato, H.; Miyakawa, K.; Ohtake, N.; Yamaoka, Y.; Yajima, S.; Yamazaki, E.; Shimada, T.; Goto, A.; Nakajima, H.; Ryo, A. Vaccine-induced humoral response against SARS-CoV-2 dramatically declined but cellular immunity possibly remained at 6 months post BNT162b2 vaccination. Vaccine 2022, 40, 2652–2655.

[5]
Komori, M.; Nogimori, T.; Morey, A. L.; Sekida, T.; Ishimoto, K.; Hassett, M. R.; Masuta, Y.; Ode, H.; Tamura, T.; Suzuki, R. et al. saRNA vaccine expressing membrane-anchored RBD elicits broad and durable immunity against SARS-CoV-2 variants of concern. Nat. Commun. 2023 , 14, 2810.
DOI
[6]

Caniels, T. G.; Bontjer, I.; van der Straten, K.; Poniman, M.; Burger, J. A.; Appelman, B.; Lavell, A. H. A.; Oomen, M.; Godeke, G. J.; Valle, C. et al. Emerging SARS-CoV-2 variants of concern evade humoral immune responses from infection and vaccination. Sci. Adv. 2023, 7, eabj5365.

[7]

Cox, R. J.; Brokstad, K. A. Not just antibodies: B cells and T cells mediate immunity to COVID-19. Nat. Rev. Immunol. 2020, 20, 581–582.

[8]

Liu, J. Y.; Chandrashekar, A.; Sellers, D.; Barrett, J.; Jacob-Dolan, C.; Lifton, M.; McMahan, K.; Sciacca, M.; VanWyk, H.; Wu, C. et al. Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 Omicron. Nature 2022, 603, 493–496.

[9]

Sun, Z. J.; Wu, T. X.; Xie, H. F.; Li, Y. H.; Zhang, J. L.; Su, X. C.; Qi, H. L. The role of cellular immunity in the protective efficacy of the SARS-CoV-2 vaccines. Vaccines 2022, 10, 1103.

[10]

Sauer, K.; Harris, T. An effective COVID-19 vaccine needs to engage T cells. Front. Immunol. 2020, 11, 581807.

[11]

Geers, D.; Shamier, M. C.; Bogers, S.; Den Hartog, G.; Gommers, L.; Nieuwkoop, N. N.; Schmitz, K. S.; Rijsbergen, L. C.; Van Osch, J. A. T.; Dijkhuizen, E. et al. SARS-CoV-2 variants of concern partially escape humoral but not T cell responses in COVID-19 convalescent donors and vaccine recipients. Sci. Immunol. 2021, 6, eabj1750.

[12]

McCafferty, S.; Haque, A. K. M. A.; Vandierendonck, A.; Weidensee, B.; Plovyt, M.; Stuchliková, M.; François, N.; Valembois, S.; Heyndrickx, L.; Michiels, J. et al. A dual-antigen self-amplifying RNA SARS-CoV-2 vaccine induces potent humoral and cellular immune responses and protects against SARS-CoV-2 variants through T cell-mediated immunity. Mol. Ther. 2022, 30, 2968–2983.

[13]

Li, C. K. F.; Wu, H.; Yan, H. P.; Ma, S. W.; Wang, L. L.; Zhang, M. X.; Tang, X. P.; Temperton, N. J.; Weiss, R. A.; Brenchley, J. M. et al. T cell responses to whole SARS coronavirus in humans. J. Immunol. 2008, 181, 5490–5500.

[14]

Marrack, P.; McKee, A. S.; Munks, M. W. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 2009, 9, 287–293.

[15]

Liu, Z. M.; Yang, M. H.; Yu, K.; Lian, Z. X.; Deng, S. L. Toll-like receptor (TLRs) agonists and antagonists for COVID-19 treatments. Front. Pharmacol. 2022, 13, 989664.

[16]

Rodell, C. B.; Arlauckas, S. P.; Cuccarese, M. F.; Garris, C. S.; Li, R.; Ahmed, M. S.; Kohler, R. H.; Pittet, M. J.; Weissleder, R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2018, 2, 578–588.

[17]

Vidya, M. K.; Kumar, V. G.; Sejian, V.; Bagath, M.; Krishnan, G.; Bhatta, R. Toll-like receptors: Significance, ligands, signaling pathways, and functions in mammals. Int. Rev. Immunol. 2018, 37, 20–36.

[18]

Wei, J. J.; Wu, D.; Zhao, S. S.; Shao, Y.; Xia, Y. F.; Ni, D. W.; Qiu, X. Y.; Zhang, J. P.; Chen, J.; Meng, F. H. et al. Immunotherapy of malignant glioma by noninvasive administration of TLR9 agonist CpG nano-immunoadjuvant. Adv. Sci. 2022, 9, 2103689.

[19]

Arunachalam, P. S.; Walls, A. C.; Golden, N.; Atyeo, C.; Fischinger, S.; Li, C. F.; Aye, P.; Navarro, M. J.; Lai, L. L.; Edara, V. V. et al. Adjuvanting a subunit COVID-19 vaccine to induce protective immunity. Nature 2021, 594, 253–258.

[20]

Eng, N. F.; Bhardwaj, N.; Mulligan, R.; Diaz-Mitoma, F. The potential of 1018 ISS adjuvant in hepatitis B vaccines. Hum. Vacc. Immunother. 2013, 9, 1661–1672.

[21]

Verthelyi, D.; Ishii, K. J.; Gursel, M.; Takeshita, F.; Klinman, D. M. Human peripheral blood cells differentially recognize and respond to two distinct CpG motifs. J. Immunol. 2001, 166, 2372–2377.

[22]

Arimori, Y.; Nakamura, R.; Yamada, H.; Shibata, K.; Maeda, N.; Kase, T.; Yoshikai, Y. Type I interferon limits influenza virus-induced acute lung injury by regulation of excessive inflammation in mice. Antivir. Res. 2013, 99, 230–237.

[23]

Uddin, B.; Liang, Y. J.; Shao, S. J.; Palani, S.; McKelvey, M.; Weaver, S. C.; Sun, K. Type I IFN signaling protects mice from lethal SARS-CoV-2 neuroinvasion. ImmunoHorizons 2022, 6, 716–721.

[24]

Hadjadj, J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.; Péré, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020, 369, 718–724.

[25]

Banerjee, A.; El-Sayes, N.; Budylowski, P.; Jacob, R. A.; Richard, D.; Maan, H.; Aguiar, J. A.; Demian, W. L.; Baid, K.; D'Agostino, M. R. et al. Experimental and natural evidence of SARS-CoV-2-infection-induced activation of type I interferon responses. iScience 2021, 24, 102477.

[26]

Trouillet-Assant, S.; Viel, S.; Gaymard, A.; Pons, S.; Richard, J. C.; Perret, M.; Villard, M.; Brengel-Pesce, K.; Lina, B.; Mezidi, M. et al. Type I IFN immunoprofiling in COVID-19 patients. J. Allergy Clin. Immunol. 2020, 146, 206–208.e2.

[27]

Israelow, B.; Song, E.; Mao, T. Y.; Lu, P. W.; Meir, A.; Liu, F. M.; Alfajaro, M. M.; Wei, J.; Dong, H. P.; Homer, R. J. et al. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. J. Exp. Med. 2020, 217, e20201241.

[28]

Gutjahr, A.; Tiraby, G.; Perouzel, E.; Verrier, B.; Paul, S. Triggering intracellular receptors for vaccine adjuvantation. Trends Immunol. 2016, 37, 573–587.

[29]

Hou, Y. Y.; Wang, Y.; Tang, Y.; Zhou, Z. X.; Tan, L.; Gong, T.; Zhang, L.; Sun, X. Co-delivery of antigen and dual adjuvants by aluminum hydroxide nanoparticles for enhanced immune responses. J. Control. Release 2020, 326, 120–130.

[30]

Shu, C.; Li, X.; Li, P. W. The mechanism of double-stranded DNA sensing through the cGAS-STING pathway. Cytokine Growth Factor Rev. 2014, 25, 641–648.

[31]

Abe, T.; Barber Glen, N. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J. Virol. 2014, 88, 5328–5341.

[32]

Ishikawa, H.; Ma, Z.; Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009, 461, 788–792.

[33]

Cheng, Z. L.; Dai, T.; He, X. L.; Zhang, Z. K.; Xie, F.; Wang, S.; Zhang, L.; Zhou, F. F. The interactions between cGAS-STING pathway and pathogens. Sig. Transduct. Target. Ther. 2020, 5, 91.

[34]

Chen, X.; Gao, S. S.; Wang, X.; Guo, M. Y.; Cui, Y. Y.; Chen, Z. W.; Liu, Y.; Wang, Y. L. Advances in the biological mechanism and application of manganese-based nanoformulations for enhanced immunotherapy. Nano Today 2022, 46, 101583.

[35]

Zhang, R.; Wang, C. G.; Guan, Y. K.; Wei, X. M.; Sha, M. Y.; Yi, M. R.; Jing, M.; Lv, M. Z.; Guo, W.; Xu, J. et al. Manganese salts function as potent adjuvants. Cell. Mol. Immunol. 2021, 18, 1222–1234.

[36]

Wang, Y. L.; Xie, Y. P.; Luo, J.; Guo, M. Y.; Hu, X. H.; Chen, X.; Chen, Z. W.; Lu, X. Y.; Mao, L. C.; Zhang, K. et al. Engineering a self-navigated MnARK nanovaccine for inducing potent protective immunity against novel coronavirus. Nano Today 2021, 38, 101139.

[37]

Yildiz, S.; Alpdundar, E.; Gungor, B.; Kahraman, T.; Bayyurt, B.; Gursel, I.; Gursel, M. Enhanced immunostimulatory activity of cyclic dinucleotides on mouse cells when complexed with a cell-penetrating peptide or combined with CpG. Eur. J. Immunol. 2015, 45, 1170–1179.

[38]

Kocabas, B. B.; Almacioglu, K.; Bulut, E. A.; Gucluler, G.; Tincer, G.; Bayik, D.; Gursel, M.; Gursel, I. Dual-adjuvant effect of pH-sensitive liposomes loaded with STING and TLR9 agonists regress tumor development by enhancing Th1 immune response. J Control. Release 2020, 328, 587–595.

[39]

Fan, H. H.; Zhao, Z. L.; Yan, G. B.; Zhang, X. B.; Yang, C.; Meng, H. M.; Chen, Z.; Liu, H.; Tan, W. H. A smart DNAzyme-MnO2 nanosystem for efficient gene silencing. Angew. Chem., Int. Ed. 2015, 54, 4801–4805.

[40]

Zhang, G. F.; Cong, Y. L.; Liu, F. L.; Sun, J. F.; Zhang, J. T.; Cao, G. L.; Zhou, L. Q.; Yang, W. J.; Song, Q. L.; Wang, F. J. et al. A nanomaterial targeting the spike protein captures SARS-CoV-2 variants and promotes viral elimination. Nat. Nanotechnol. 2022, 17, 993–1003.

[41]

Mo, L. T.; Li, J.; Liu, Q. L.; Qiu, L. P.; Tan, W. H. Nucleic acid-functionalized transition metal nanosheets for biosensing applications. Biosens. Bioelectron. 2017, 89, 201–211.

[42]

Dai, L. P.; Zheng, T. Y.; Xu, K.; Han, Y. X.; Xu, L. L.; Huang, E. Q.; An, Y. L.; Cheng, Y. J.; Li, S. H.; Liu, M. et al. A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS. Cell 2020, 182, 722–733.e11.

[43]

Cao, M. J.; Cai, R.; Zhao, L. N.; Guo, M. Y.; Wang, L. M.; Wang, Y. C.; Zhang, L. L.; Wang, X. F.; Yao, H. D.; Xie, C. Y. et al. Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nat. Nanotechnol. 2021, 16, 708–716.

[44]

Zhang, J.; Wu, Q.; Liu, Z. Y.; Wang, Q. J.; Wu, J. J.; Hu, Y. B.; Bai, T. T.; Xie, T.; Huang, M. C.; Wu, T. T. et al. Spike-specific circulating T follicular helper cell and cross-neutralizing antibody responses in COVID-19-convalescent individuals. Nat. Microbiol. 2021, 6, 51–58.

[45]

Yu, H.; Guo, H. X.; Zu, H.; Ding, H.; Lin, S. B.; Wang, Y. Y.; Zhang, L. W.; Wang, Y. Therapeutic dendritic cell vaccines engineered with antigen-biomineralized Bi2S3 nanoparticles for personalized tumor radioimmunotherapy. Aggregate 2022, 3, e194.

[46]

Kim, Y. M.; Shin, E. C. Type I and III interferon responses in SARS-CoV-2 infection. Exp. Mol. Med. 2021, 53, 750–760.

[47]

Chen, M. C.; Huang, S. F.; Lai, K. Y.; Ling, M. H. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials 2013, 34, 3077–3086.

[48]

Walvekar, P.; Kumar, P.; Choonara, Y. E. Long-acting vaccine delivery systems. Adv. Drug Deliv. Rev. 2023, 198, 114897.

[49]

Dong, X.; Liang, J.; Yang, A. F.; Qian, Z. Y.; Kong, D. L.; Lv, F. A visible codelivery nanovaccine of antigen and adjuvant with self-carrier for cancer immunotherapy. ACS Appl. Mater. Interfaces 2019, 11, 4876–4888.

[50]

Roth, G. A.; Picece, V. C. T. M.; Ou, B. S.; Luo, W.; Pulendran, B.; Appel, E. A. Designing spatial and temporal control of vaccine responses. Nat. Rev. Mater. 2022, 7, 174–195.

[51]

Hampton, H. R.; Chtanova, T. Lymphatic migration of immune cells. Front. Immunol. 2019, 10, 1168.

[52]

Du, Y. Q.; Xia, Y. F.; Zou, Y. J.; Hu, Y. N.; Fu, J. Q.; Wu, J.; Gao, X. D.; Ma, G. H. Exploiting the lymph-node-amplifying effect for potent systemic and gastrointestinal immune responses via polymer/lipid nanoparticles. ACS Nano 2019, 13, 13809–13817.

[53]

Teijeira, A.; Russo, E.; Halin, C. Taking the lymphatic route: Dendritic cell migration to draining lymph nodes. Semin. Immunopathol. 2014, 36, 261–274.

[54]

Korniotis, S.; Gras, C.; Letscher, H.; Montandon, R.; Mégret, J.; Siegert, S.; Ezine, S.; Fallon, P. G.; Luther, S. A.; Fillatreau, S. et al. Treatment of ongoing autoimmune encephalomyelitis with activated B-cell progenitors maturing into regulatory B cells. Nat. Commun. 2016, 7, 12134.

[55]
Bravo, L.; Smolenov, I.; Han, H. H.; Li, P.; Hosain, R.; Rockhold, F.; Clemens, S. A. C.; Roa, C. Jr.; Borja-Tabora, C.; Quinsaat, A. et al. Efficacy of the adjuvanted subunit protein COVID-19 vaccine, SCB-2019: A phase 2 and 3 multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2022 , 399, 461–472.
DOI
[56]
Garcia-Beltran, W. F.; Lam, E. C.; St. Denis, K.; Nitido, A. D.; Garcia, Z. H.; Hauser, B. M.; Feldman, J.; Pavlovic, M. N.; Gregory, D. J.; Poznansky, M. C. et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 2021 , 184, 2372–2383.e9.
DOI
[57]

Primorac, D.; Brlek, P.; Matišić, V.; Molnar, V.; Vrdoljak, K.; Zadro, R.; Parčina, M. Cellular immunity-the key to long-term protection in individuals recovered from SARS-CoV-2 and after vaccination. Vaccines 2022, 10, 442.

[58]

Toor, S. M.; Saleh, R.; Sasidharan Nair, V.; Taha, R. Z.; Elkord, E. T-cell responses and therapies against SARS-CoV-2 infection. Immunology 2021, 162, 30–43.

[59]

Jung, S. Y.; Kang, K. W.; Lee, E. Y.; Seo, D. W.; Kim, H. L.; Kim, H.; Kwon, T.; Park, H. L.; Kim, H.; Lee, S. M. et al. Heterologous prime-boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus. Vaccine 2018, 36, 3468–3476.

[60]

Reed, S. G.; Orr, M. T.; Fox, C. B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013, 19, 1597–1608.

[61]

Yang, S. L.; Li, Y.; Dai, L. P.; Wang, J. F.; He, P.; Li, C. G.; Fang, X.; Wang, C. F.; Zhao, X.; Huang, E. Q. et al. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: Two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect. Dis. 2021, 21, 1107–1119.

[62]

Levie, K.; Gjorup, I.; Skinhøj, P.; Stoffel, M. A 2-dose regimen of a recombinant hepatitis B vaccine with the immune stimulant AS04 compared with the standard 3-dose regimen of Engerix-B in healthy young adults. Scand. J. Infect. Dis. 2002, 34, 610–614.

[63]

Zhang, M. Y.; Jin, H. L.; Li, Y. Y.; Jiao, C. C.; Huang, P.; Bai, Y. J.; Gong, Z. Y.; Zhang, H. L.; Liu, S. J.; Wang, H. L. Genetically engineered bacterial-like particles induced specific cellular and humoral immunity as effective tick-borne encephalitis virus vaccine. Aggregate 2023, 4, e305.

File
12274_2023_6295_MOESM1_ESM.pdf (9.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 August 2023
Revised: 25 October 2023
Accepted: 30 October 2023
Published: 02 December 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (Nos. 2022YFA1603701 and 2021YFA1200900), Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), the National Natural Science Foundation of China (Nos. 82341044 and 22027810), and CAMS Innovation Fund for Medical Sciences (No. CIFMS 2019-I2M-5-018).

Return