Journal Home > Volume 17 , Issue 5

Photocatalytic carbon dioxide (CO2) to carbon monoxide (CO) offers a promising way for both alleviating the greenhouse effect and meeting the industrial demand. Herein, we constructed a Co single-atom catalyst with intentional low-coordination environment design on porous ZnO (denoted as Co1/ZnO). Impressively, Co1/ZnO exhibited a remarkable activity with a CO yield rate of 22.25 mmol·g−1·h−1 and a selectivity of 80.2% for CO2 photoreduction reactions under visible light. The incorporation of single Co atoms provided an additional photo-generated electron transfer channel, which suppressed the carrier recombination of photocatalysts. Moreover, the unsaturated Co active sites were capable to adsorb CO2 molecule spontaneously, thus facilitating the activation of CO2 molecule during CO2 reduction course.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Low-coordination environment design of single Co atoms for efficient CO2 photoreduction

Show Author's information Zhentao Ma1,§Qingyu Wang1,2,§Limin Liu1,§Rong-Ao Zhang1Qichen Liu1Peigen Liu1Lihui Wu1Chengyuan Liu1Yu Bai3Yida Zhang1,2( )Haibin Pan1( )Xusheng Zheng1( )
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
College of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China

§ Zhentao Ma, Qingyu Wang, and Limin Liu contributed equally to this work.

Abstract

Photocatalytic carbon dioxide (CO2) to carbon monoxide (CO) offers a promising way for both alleviating the greenhouse effect and meeting the industrial demand. Herein, we constructed a Co single-atom catalyst with intentional low-coordination environment design on porous ZnO (denoted as Co1/ZnO). Impressively, Co1/ZnO exhibited a remarkable activity with a CO yield rate of 22.25 mmol·g−1·h−1 and a selectivity of 80.2% for CO2 photoreduction reactions under visible light. The incorporation of single Co atoms provided an additional photo-generated electron transfer channel, which suppressed the carrier recombination of photocatalysts. Moreover, the unsaturated Co active sites were capable to adsorb CO2 molecule spontaneously, thus facilitating the activation of CO2 molecule during CO2 reduction course.

Keywords: photocatalytic CO2 reduction, electron transfer, CO2 adsorption, single atoms, low-coordination

References(55)

[1]

Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

[2]

Sun, Z. Y.; Talreja, N.; Tao, H. C.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. F. Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges. Angew. Chem., Int. Ed. 2018, 57, 7610–7627.

[3]

Yang, P. J.; Zhuzhang, H. Y.; Wang, R. R.; Lin, W.; Wang, X. C. Carbon vacancies in a melon polymeric matrix promote photocatalytic carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 1134–1137.

[4]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[5]
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res., in press, DOI: 10.1007/s12274-023-6037-8.
DOI
[6]

Shen, J.; Wang, D. S. How to select heterogeneous CO2 reduction electrocatalyst. Nano Res. Energy 2024, 3, e9120096.

[7]

Xiang, Y. Z.; Kruse, N. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins. Nat. Commun. 2016, 7, 13058.

[8]

Ai, H. J.; Zhao, F. Q.; Geng, H. Q.; Wu, X. F. Palladium-catalyzed thiocarbonylation of alkenes toward linear thioesters. ACS Catal. 2021, 11, 3614–3619.

[9]

Peng, J. B.; Geng, H. Q.; Wu, X. F. The chemistry of CO: Carbonylation. Chem 2019, 5, 526–552.

[10]

Jahangiri, H.; Bennett, J.; Mahjoubi, P.; Wilson, K.; Gu, S. A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol. 2014, 4, 2210–2229.

[11]

Yang, H. L.; Zhang, D. D.; Luo, Y.; Yang, W. X.; Zhan, X. Q.; Yang, W. Y.; Hou, H. L. Highly efficient and selective visible-light driven photoreduction of CO2 to CO by metal–organic frameworks-derived Ni-Co-O porous microrods. Small 2022, 18, 2202939.

[12]

Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615–7621.

[13]

Huang, Y. H.; Wang, K.; Guo, T.; Li, J.; Wu, X. Y.; Zhang, G. K. Construction of 2D/2D Bi2Se3/g-C3N4 nanocomposite with high interfacial charge separation and photo-heat conversion efficiency for selective photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2020, 277, 119232.

[14]

Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

[15]
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res., in press, DOI: 10.1007/s12274-023-5700-4.
DOI
[16]

Li, M. H.; Zhang, C. C.; Tang, Y.; Chen, Q. L.; Li, W.; Han, Z.; Chen, S. Y.; Lv, C. C.; Yan, Y. J.; Zhang, Y. et al. Environment molecules boost the chemoselective hydrogenation of nitroarenes on cobalt single-atom catalysts. ACS Catal. 2022, 12, 11960–11973.

[17]

Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem. 2021, 133, 23806–23810.

[18]

Song, Z. X.; Zhang, L.; Doyle-Davis, K.; Fu, X. Z.; Luo, J. L.; Sun, X. L. Recent advances in MOF-derived single atom catalysts for electrochemical applications. Adv. Energy Mater. 2020, 10, 2001561.

[19]

Wang, L. G.; Liu, H.; Zhuang, J. H.; Wang, D. S. Small-scale big science: From Nano- to atomically dispersed catalytic materials. Small Sci. 2022, 2, 2200036.

[20]

Tan, H. Y.; Wang, J. L.; Lin, S. C.; Kuo, T. R.; Chen, H. M. Dynamic coordination structure evolutions of atomically dispersed metal catalysts for electrocatalytic reactions. Adv. Mater. Interfaces 2023, 10, 2202050.

[21]

Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

[22]

Shan, J. Q.; Ye, C.; Jiang, Y. L.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Metal–metal interactions in correlated single-atom catalysts. Sci. Adv. 2022, 8, eabo0762.

[23]
Li, R. Z.; Zhao, J.; Liu, B. Z.; Wang, D. S. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv. Mater., in press, DOI: 10.1002/adma.202308653.
DOI
[24]

Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.

[25]

Ding, R.; Chen, Y. W.; Li, X. K.; Rui, Z. Y.; Hua, K.; Wu, Y. K.; Duan, X.; Wang, X. B.; Li, J.; Liu, J. G. Atomically dispersed, low-coordinate Co–N sites on carbon nanotubes as inexpensive and efficient electrocatalysts for hydrogen evolution. Small 2022, 18, 2105335.

[26]

Jiang, M. P.; Huang, K. K.; Liu, J. H.; Wang, D.; Wang, Y.; Wang, X.; Li, Z. D.; Wang, X. Y.; Geng, Z. B.; Hou, X. Y. et al. Magnetic-field-regulated TiO2 {100} facets: A strategy for C–C coupling in CO2 photocatalytic conversion. Chem 2020, 6, 2335–2346.

[27]

Zheng, W. Z.; Yang, J.; Chen, H. Q.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z. J. et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 1907658.

[28]

Zheng, K.; Wu, Y.; Zhu, J. C.; Wu, M. Y.; Jiao, X. C.; Li, L.; Wang, S. M.; Fan, M. H.; Hu, J.; Yan, W. S. et al. Room-temperature photooxidation of CH4 to CH3OH with nearly 100% selectivity over hetero-ZnO/Fe2O3 porous nanosheets. J. Am. Chem. Soc. 2022, 144, 12357–12366.

[29]

Hu, C. L.; Zhang, L.; Zhao, Z. J.; Luo, J.; Shi, J.; Huang, Z. Q.; Gong, J. L. Edge sites with unsaturated coordination on core–shell Mn3O4@Mn x Co3− x O4 nanostructures for electrocatalytic Water Oxidation. Adv. Mater. 2017, 29, 1701820.

[30]

Li, Y. H.; Kidkhunthod, P.; Zhou, Y. T.; Wang, X.; Lee, J. M. Dense heterointerfaces and unsaturated coordination synergistically accelerate electrocatalysis in Pt/Pt5P2 porous nanocages. Adv. Funct. Mater. 2022, 32, 2205985.

[31]

Han, B.; Ou, X. W.; Deng, Z. Q.; Song, Y.; Tian, C.; Deng, H.; Xu, Y. J.; Lin, Z. Nickel metal-organic framework monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angew. Chem., Int. Ed. 2018, 57, 16811–16815.

[32]

Wang, S. B.; Guan, B. Y.; Lou, X. W. Rationally designed hierarchical N-doped carbon@NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction. Energy Environ. Sci. 2018, 11, 306–310.

[33]

Zhong, H.; Sa, R. J.; Lv, H. W.; Yang, S. L.; Yuan, D. Q.; Wang, X. C.; Wang, R. H. Covalent organic framework hosting metalloporphyrin-based carbon dots for visible-light-driven selective CO2 reduction. Adv. Funct. Mater. 2020, 30, 2002654.

[34]

Gao, C.; Meng, Q. Q.; Zhao, K.; Yin, H. J.; Wang, D. W.; Guo, J.; Zhao, S. L.; Chang, L.; He, M.; Li, Q. X. et al. Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv. Mater. 2016, 28, 6485–6490.

[35]

Geng, Z. G.; Kong, X. D.; Chen, W. W.; Su, H. Y.; Liu, Y.; Cai, F.; Wang, G. X.; Zeng, J. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew. Chem., Int. Ed. 2018, 57, 6054–6059.

[36]

Wang, Y. F.; Zheng, Z.; Wang, J. Q.; Liu, X. Y.; Ren, J. Z.; An, C. B.; Zhang, S. Q.; Hou, J. H. New method for preparing ZnO layer for efficient and stable organic solar cells. Adv. Mater. 2023, 35, 2208305.

[37]

Zhang, L. W.; Long, R.; Zhang, Y. M.; Duan, D. L.; Xiong, Y. J.; Zhang, Y. J.; Bi, Y. P. Direct observation of dynamic bond evolution in single-atom Pt/C3N4 catalysts. Angew. Chem. 2020, 132, 6283–6288.

[38]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[39]

Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[40]

Hirsch, O.; Kvashnina, K. O.; Luo, L.; Süess, M. J.; Glatzel, P.; Koziej, D. High-energy resolution X-ray absorption and emission spectroscopy reveals insight into unique selectivity of La-based nanoparticles for CO2. Proc. Natl. Acad. Sci. USA 2015, 112, 15803–15808.

[41]

Yu, S. W.; Tobin, J. G.; Crowhurst, J. C.; Sharma, S.; Dewhurst, J. K.; Olalde-Velasco, P.; Yang, W. L.; Siekhaus, W. J. f–f origin of the insulating state in uranium dioxide: X-ray absorption experiments and first-principles calculations. Phys. Rev. B 2011, 83, 165102.

[42]

Zhang, Y. D.; Hou, T. T.; Xu, Q.; Wang, Q. Y.; Bai, Y.; Yang, S. K.; Rao, D. W.; Wu, L. H.; Pan, H. B.; Chen, J. F. et al. Dual-metal sites boosting polarization of nitrogen molecules for efficient nitrogen photofixation. Adv. Sci. 2021, 8, 2100302.

[43]

Liras, M.; Barawi, M.; de la Pena O'Shea, V. A. Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: From environmental to energy applications. Chem. Soc. Rev. 2019, 48, 5454–5487.

[44]

Zhao, D. M.; Dong, C. L.; Wang, B.; Chen, C.; Huang, Y. C.; Diao, Z. D.; Li, S. Z.; Guo, L. J.; Shen, S. H. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1903545.

[45]

Li, S.; Liu, Y. X.; Feng, K.; Li, C. Y.; Xu, J. B.; Lu, C.; Lin, H. P.; Feng, Y.; Ma, D.; Zhong, J. High valence state sites as favorable reductive centers for high-current-density water splitting. Angew. Chem., Int. Ed. 2023, 62, e202308670.

[46]

Zhang, Y. D.; Wang, Q. Y.; Yang, S. K.; Wang, H. W.; Rao, D. W.; Chen, T.; Wang, G. M.; Lu, J. L.; Zhu, J. F.; Wei, S. Q. et al. Tuning the interaction between ruthenium single atoms and the second coordination sphere for efficient nitrogen photofixation. Adv. Funct. Mater. 2022, 32, 2112452.

[47]

Wang, Q. Y.; Xiao, Y.; Yang, S. K.; Zhang, Y. D.; Wu, L. H.; Pan, H. B.; Rao, D. W.; Chen, T.; Sun, Z. H.; Wang, G. M. et al. Monitoring electron flow in nickel single-atom catalysts during nitrogen photofixation. Nano Lett. 2022, 22, 10216–10223.

[48]
Wang, Q. Y.; Zhang, Y. D.; Lin, M. X.; Wang, H. W.; Bai, Y.; Liu, C. Y.; Lu, J. L.; Luo, Q. Q.; Wang, G. M.; Jiang, H. L. et al. Photoinduced metastable asymmetric Cu single atoms for photoreduction of CO2 to ethylene. Adv. Energy Mater., in press, DOI: 10.1002/aenm.202302692.
DOI
[49]

Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Sanz, J. F. et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 2014, 345, 546–550.

[50]

Deng, X. Y.; Verdaguer, A.; Herranz, T.; Weis, C.; Bluhm, H.; Salmeron, M. Surface chemistry of Cu in the presence of CO2 and H2O. Langmuir 2008, 24, 9474–9478.

[51]

Jiao, X. C.; Li, X. D.; Jin, X. Y.; Sun, Y. F.; Xu, J. Q.; Liang, L.; Ju, H. X.; Zhu, J. F.; Pan, Y.; Yan, W. S. et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 18044–18051.

[52]

Liu, P. G.; Huang, Z. X.; Gao, X. P.; Hong, X.; Zhu, J. F.; Wang, G. M.; Wu, Y. E.; Zeng, J.; Zheng, X. S. Synergy between palladium single atoms and nanoparticles via hydrogen spillover for enhancing CO2 photoreduction to CH4. Adv. Mater. 2022, 34, 2200057.

[53]

Li, X. Y.; Ding, Q.; Liu, J.; Dong, L. H.; Qin, X. Z.; Zhou, L. Q.; Zhao, Z. X.; Ji, H. B.; Zhang, S.; Chai, K. G. One-step ethylene purification from ternary mixtures by an ultramicroporous material with synergistic binding centers. Mater. Horiz. 2023, 10, 4463–4469.

[54]

Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.

[55]

Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Co δ + interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

File
12274_2023_6294_MOESM1_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 October 2023
Revised: 26 October 2023
Accepted: 27 October 2023
Published: 17 November 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 1222508 and U1932213), the Fundamental Research Funds for the Central Universities (No. WK2060000016), the USTC Research Funds of the Double First-Class Initiative (No. YD2310002005), and the Youth Innovation Promotion Association CAS (No. 2020454). The authors thank the beamline BL11B in SSRF, BL10B, BL04B, and BL01B in NSRL for synchrotron radiation measurements.

Return