Journal Home > Volume 17 , Issue 5

Metal-halide perovskite solar cells have garnered significant research attention in the last decade due to their exceptional photovoltaic performance and potential for commercialization. Despite achieving remarkable power conversion efficiency of up to 26.1%, a substantial discrepancy persists when compared to the theoretical Shockley–Queisser (SQ) limit. One of the most serious challenges facing perovskite solar cells is the energy loss incurred during photovoltaic conversion, which affects the SQ limits and stability of the device. More significant than the energy loss occurring in the bulk phase of the perovskite is the energy loss occurring at the surface-interface. Here, we provide a systematic overview of the physical and chemical properties of the surface-interface. Firstly, we delve into the underlying mechanism causing the energy deficit and structural degradation at the surface-interface, aiming to enhance the understanding of carrier transport processes and structural chemical reactivity. Furthermore, we systematically summarized the primary modulating pathways, including surface reconstruction, dimensional construction, and electric-field regulation. Finally, we propose directions for future research to advance the efficiency of perovskite solar cells towards the radiative limit and their widespread commercial application.


menu
Abstract
Full text
Outline
About this article

Unveiling the surface-interface properties of perovskite crystals and pivotal regulation strategies

Show Author's information Qin Li1,§Ziyu Wang1,§Junjie Ma1( )Mengqi Han1Peng Gao1Meng Cai1Yiqiang Zhang1( )Yanlin Song1,2( )Shou Peng3,4
Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
China National Building Material Group Co., Ltd., Beijing 100036, China
State Key Laboratory of Advanced Technology for Float Glass, Beijing 100036, China

§ Qin Li and Ziyu Wang contributed equally to this work.

Abstract

Metal-halide perovskite solar cells have garnered significant research attention in the last decade due to their exceptional photovoltaic performance and potential for commercialization. Despite achieving remarkable power conversion efficiency of up to 26.1%, a substantial discrepancy persists when compared to the theoretical Shockley–Queisser (SQ) limit. One of the most serious challenges facing perovskite solar cells is the energy loss incurred during photovoltaic conversion, which affects the SQ limits and stability of the device. More significant than the energy loss occurring in the bulk phase of the perovskite is the energy loss occurring at the surface-interface. Here, we provide a systematic overview of the physical and chemical properties of the surface-interface. Firstly, we delve into the underlying mechanism causing the energy deficit and structural degradation at the surface-interface, aiming to enhance the understanding of carrier transport processes and structural chemical reactivity. Furthermore, we systematically summarized the primary modulating pathways, including surface reconstruction, dimensional construction, and electric-field regulation. Finally, we propose directions for future research to advance the efficiency of perovskite solar cells towards the radiative limit and their widespread commercial application.

Keywords: perovskite solar cells, surface-interface treatment, defect modification, dimensional design, energy regulation, heterojunction and homojunction

References(215)

[1]

Zuo, C. T.; Bolink, H. J.; Han, H. W.; Huang, J. S.; Cahen, D.; Ding, L. M. Advances in perovskite solar cells. Adv. Sci. 2016, 3, 1500324.

[2]

Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron–hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.

[3]

Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Gräetzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347.

[4]

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

[5]

Zhong, Y.; Liu, G. L.; Su, Y.; Sheng, W. P.; Gong, L. Y.; Zhang, J. Q.; Tan, L. C.; Chen, Y. W. Diammonium molecular configuration-induced regulation of crystal orientation and carrier dynamics for highly efficient and stable 2D/3D perovskite solar cells. Angew. Chem., Int. Ed. 2022, 61, e202114588.

[6]

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

[7]

Bai, S.; Da, P. M.; Li, C.; Wang, Z. P.; Yuan, Z. C.; Fu, F.; Kawecki, M.; Liu, X. J.; Sakai, N.; Wang, J. T. W. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571, 245–250.

[8]
Prasanna, J. L.; Goel, E.; Kumar, A.; Kumar, A. Computational study of perovskite/perovskite lead-free tandem solar cell devices. In Proceedings of 2022 IEEE International Symposium on Smart Electronic Systems, Warangal, India, 2022, pp 257–262.
[9]
chart., N. e. [Online]. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf, (accessed Jun 2023).
[10]

Xie, H. B.; Lira-Cantu, M. Multi-component engineering to enable long-term operational stability of perovskite solar cells. J. Phys. Energy 2020, 2, 024008.

[11]

Long, C. Y.; Huang, K. Q.; Chang, J. H.; Zuo, C. T.; Gao, Y. J.; Luo, X.; Liu, B.; Xie, H. P.; Chen, Z. H.; He, J. et al. Creating a dual-functional 2D perovskite layer at the interface to enhance the performance of flexible perovskite solar cells. Small 2021, 17, 2102368.

[12]

Yao, K.; Wang, X. F.; Li, F.; Zhou, L. Mixed perovskite based on methyl-ammonium and polymeric-ammonium for stable and reproducible solar cells. Chem. Commun. 2015, 51, 15430–15433.

[13]

Abdelmageed, G.; Jewell, L.; Hellier, K.; Seymour, L.; Luo, B. B.; Bridges, F.; Zhang, J. Z.; Carter, S. Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells. Appl. Phys. Lett. 2016, 109, 233905.

[14]

Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

[15]

Shao, Y. C.; Fang, Y. J.; Li, T.; Wang, Q.; Dong, Q. F.; Deng, Y. H.; Yuan, Y. B.; Wei, H. T.; Wang, M. Y.; Gruverman, A. et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy Environ. Sci. 2016, 9, 1752–1759.

[16]

Tan, S.; Yavuz, I.; Weber, M. H.; Huang, T. Y.; Chen, C. H.; Wang, R.; Wang, H. C.; Ko, J. H.; Nuryyeva, S.; Xue, J. J. et al. Shallow iodine defects accelerate the degradation of α-phase formamidinium perovskite. Joule 2020, 4, 2426–2442.

[17]

Rui, Y. C.; Jin, Z. M.; Fan, X. Y.; Li, W. T.; Li, B.; Li, T. P.; Wang, Y. Q.; Wang, L.; Liang, J. Defect passivation and electrical conductivity enhancement in perovskite solar cells using functionalized graphene quantum dots. Mater. Futures 2022, 1, 045101.

[18]

Roghabadi, F. A.; Alidaei, M.; Mousavi, S. M.; Ashjari, T.; Tehrani, A. S.; Ahmadi, V.; Sadrameli, S. M. Stability progress of perovskite solar cells dependent on the crystalline structure: From 3D ABX3 to 2D Ruddlesden–Popper perovskite absorbers. J. Mater. Chem. A 2019, 7, 5898–5933.

[19]

Zhou, Y. Y.; Zhao, Y. X. Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 2019, 12, 1495–1511.

[20]

Lin, Y.; Bai, Y.; Fang, Y. J.; Chen, Z. L.; Yang, S.; Zheng, X. P.; Tang, S.; Liu, Y.; Zhao, J. J.; Huang, J. S. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J. Phys. Chem. Lett. 2018, 9, 654–658.

[21]

Tao, L.; Qiu, J.; Sun, B.; Wang, X. J.; Ran, X. Q.; Song, L.; Shi, W.; Zhong, Q.; Li, P.; Zhang, H. et al. Stability of mixed-halide wide bandgap perovskite solar cells: Strategies and progress. J. Energy Chem. 2021, 61, 395–415.

[22]

Chen, F.; Shi, Z. L.; Chen, J. P.; Cui, Q. N.; Jian, A. Q.; Zhu, Y. Z.; Xu, Q. Y.; Lou, Z. D.; Xu, C. X. Dynamics of interfacial carriers and negative photoconductance in CH3NH3PbBr3-ZnO heterostructure. Appl. Phys. Lett. 2021, 118, 171901.

[23]

Ou, Q. D.; Zhang, Y. P.; Wang, Z. Y.; Yuwono, J. A.; Wang, R. B.; Dai, Z. G.; Li, W.; Zheng, C. X.; Xu, Z. Q.; Qi, X. et al. Strong depletion in hybrid perovskite p-n junctions induced by local electronic doping. Adv. Mater. 2018, 30, 1705792.

[24]

Jena, A. K.; Ikegami, M.; Miyasaka, T. Severe morphological deformation of spiro-OMeTAD in (CH3NH3) PbI3 solar cells at high temperature. ACS Energy Lett. 2017, 2, 1760–1761.

[25]

Zhao, Y. C.; Zhou, W. K.; Zhou, X.; Liu, K. H.; Yu, D. P.; Zhao, Q. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light: Sci. Appl. 2017, 6, e16243.

[26]

Wang, Q.; Chen, B.; Liu, Y.; Deng, Y. H.; Bai, Y.; Dong, Q. F.; Huang, J. S. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ. Sci. 2017, 10, 516–522.

[27]

Yang, F. J.; MacQueen, R. W.; Menzel, D.; Musiienko, A.; Al-Ashouri, A.; Thiesbrummel, J.; Shah, S.; Prashanthan, K.; Abou-Ras, D.; Korte, L. et al. Rubidium iodide reduces recombination losses in methylammonium-free tin-lead perovskite solar cells. Adv. Energy Mater. 2023, 13, 2204339.

[28]

Stolterfoht, M.; Wolff, C. M.; Márquez, J. A.; Zhang, S. S.; Hages, C. J.; Rothhardt, D.; Albrecht, S.; Burn, P. L.; Meredith, P.; Unold, T. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 2018, 3, 847–854.

[29]

Wu, H. J.; Cheng, Y. J.; Ma, J. J.; Zhang, J. H.; Zhang, Y. Q.; Song, Y. L.; Peng, S. Pivotal routes for maximizing semitransparent perovskite solar cell performance: Photon propagation management and carrier kinetics regulation. Adv. Mater. 2023, 35, 2206574.

[30]

Chen, Z.; Chen, X.; Jia, Z. Y.; Zhou, G. Q.; Xu, J. Q.; Wu, Y. X.; Xia, X. X.; Li, X. F.; Zhang, X. N.; Deng, C. et al. Triplet exciton formation for non-radiative voltage loss in high-efficiency nonfullerene organic solar cells. Joule 2021, 5, 1832–1844.

[31]

Luo, D. Y.; Su, R.; Zhang, W.; Gong, Q. H.; Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 2020, 5, 44–60.

[32]

Huang, J. S.; Yuan, Y. B.; Shao, Y. C.; Yan, Y. F. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2017, 2, 17042.

[33]

An, Y. D.; Wang, C. L.; Cao, G. Y.; Li, X. F. Heterojunction perovskite solar cells: Opto- electro-thermal physics, modeling, and experiment. ACS Nano 2020, 14, 5017–5026.

[34]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[35]

Ran, C. X.; Xu, J. T.; Gao, W. Y.; Huang, C. M.; Dou, S. X. Defects in metal triiodide perovskite materials towards high-performance solar cells: Origin, impact, characterization, and engineering. Chem. Soc. Rev. 2018, 47, 4581–4610.

[36]

Ball, J. M.; Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 2016, 1, 16149.

[37]

Ono, L. K.; Liu, S. Z.; Qi, Y. B. Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem., Int. Ed. 2020, 59, 6676–6698.

[38]

Xie, H. B.; Wang, Z. W.; Chen, Z. H.; Pereyra, C.; Pols, M.; Galkowski, K.; Anaya, M.; Fu, S.; Jia, X. Y.; Tang, P. Y. et al. Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells. Joule 2021, 5, 1246–1266.

[39]

Yang, L. K.; Xiong, Q.; Li, Y. B.; Gao, P.; Xu, B.; Lin, H.; Li, X.; Miyasaka, T. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. J. Mater. Chem. A 2021, 9, 1574–1582.

[40]

Xu, X.; Wu, Z. Y.; Zhao, Z. B.; Lu, Z. L.; Gao, Y. J.; Huang, X.; Huang, J. W.; Zhang, Z. Y.; Cai, Y. T.; Qu, Y. T. et al. First-principles study of detrimental iodine vacancy in lead halide perovskite under strain and electron injection. Appl. Phys. Lett. 2022, 121, 092106.

[41]

Tong, C. J.; Li, L. Q.; Liu, L. M.; Prezhdo, O. V. Synergy between ion migration and charge carrier recombination in metal-halide perovskites. J. Am. Chem. Soc. 2020, 142, 3060–3068.

[42]

Fu, L.; Li, H.; Wang, L.; Yin, R. Y.; Li, B.; Yin, L. W. Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ. Sci. 2020, 13, 4017–4056.

[43]

Aydin, E.; De Bastiani, M.; De Wolf, S. Defect and contact passivation for perovskite solar cells. Adv. Mater. 2019, 31, 1900428.

[44]

Zhan, Y.; Yang, F.; Chen, W. J.; Chen, H. Y.; Shen, Y. X.; Li, Y. W.; Li, Y. F. Elastic lattice and excess charge carrier manipulation in 1D-3D perovskite solar cells for exceptionally long-term operational stability. Adv. Mater. 2021, 33, 2105170.

[45]

Yang, D. W.; Ming, W. M.; Shi, H. L.; Zhang, L. J.; Du, M. H. Fast diffusion of native defects and impurities in perovskite solar cell material CH3NH3PbI3. Chem. Mater. 2016, 28, 4349–4357.

[46]

Li, W. W.; Zhao, K. Y.; Zhou, H.; Yu, W. L.; Zhu, J. J.; Hu, Z. G.; Chu, J. H. Precursor solution temperature dependence of the optical constants, band gap and Urbach tail in organic-inorganic hybrid halide perovskite films. J. Phys. D: Appl. Phys. 2019, 52, 045103.

[47]

Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 2016, 1, 15001.

[48]

Urbach, F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 1953, 92, 1324–1326.

[49]
Troviano, M.; Taretto, K. Urbach energy in CIGS extracted from quantum efficiency analysis of high performance CIGS solar cells. In Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009, pp 2933–2937.
[50]

Subedi, B.; Li, C. W.; Chen, C.; Liu, D. C.; Junda, M. M.; Song, Z. N.; Yan, Y. F.; Podraza, N. J. Urbach energy and open-circuit voltage deficit for mixed anion-cation perovskite solar cells. ACS Appl. Mater. Interfaces 2022, 14, 7796–7804.

[51]

Chantana, J.; Kawano, Y.; Nishimura, T.; Mavlonov, A.; Minemoto, T. Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells. Sol. Energy Mater. Sol. Cells 2020, 210, 110502.

[52]

Subedi, B.; Li, C. W.; Junda, M. M.; Song, Z. N.; Yan, Y. F.; Podraza, N. J. Effects of intrinsic and atmospherically induced defects in narrow bandgap (FASnI3) x (MAPbI3)1− x perovskite films and solar cells. J. Chem. Phys. 2020, 152, 064705.

[53]

Purohit, S.; Yadav, K. L.; Satapathi, S. Metal halide perovskite heterojunction for photocatalytic hydrogen generation: Progress and future opportunities. Adv. Mater. Interfaces. 2022, 9, 2200058.

[54]

Wang, T. Y.; Deng, W. Q.; Cao, J. P.; Yan, F. Recent progress on heterojunction engineering in perovskite solar cells. Adv. Energy Mater. 2023, 13, 2201436.

[55]

Yuan, Y. B.; Huang, J. S. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 2016, 49, 286–293.

[56]

Choi, J. I. J.; Khan, M. E.; Hawash, Z.; Kim, K. J.; Lee, H.; Ono, L. K.; Qi, Y. B.; Kim, Y. H.; Park, J. Y. Atomic-scale view of stability and degradation of single-crystal MAPbBr3 surfaces. J. Mater. Chem. A 2019, 7, 20760–20766.

[57]

Shi, Z. M.; Cao, Z.; Sun, X. J.; Jia, Y. P.; Li, D. B.; Cavallo, L.; Schwingenschlögl, U. Uncovering the mechanism behind the improved stability of 2D organic–inorganic hybrid perovskites. Small 2019, 15, 1900462.

[58]

Niu, G. D.; Guo, X. D.; Wang, L. D. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3, 8970–8980.

[59]

Zhu, H.; Ma, J. J.; Li, P. W.; Zang, S. Q.; Zhang, Y. Q.; Song, Y. L. Low-dimensional Sn-based perovskites: Evolution and future prospects of solar cells. Chem 2022, 8, 2939–2960.

[60]

Li, X. T.; Hoffman, J. M.; Kanatzidis, M. G. The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 2021, 121, 2230–2291.

[61]

Sun, S. Q.; Lu, M.; Gao, X. P.; Shi, Z. F.; Bai, X.; Yu, W. W.; Zhang, Y. 0D perovskites: Unique properties, synthesis, and their applications. Adv. Sci. 2021, 8, 2102689

[62]

Qin, C. J.; Matsushima, T.; Potscavage, W. J. Jr.; Sandanayaka, A. S. D.; Leyden, M. R.; Bencheikh, F.; Goushi, K.; Mathevet, F.; Heinrich, B.; Yumoto, G. et al. Triplet management for efficient perovskite light-emitting diodes. Nat. Photonics 2020, 14, 70–75.

[63]

Zheng, H. Y.; Liu, G. Z.; Zhu, L. Z.; Ye, J. J.; Zhang, X. H.; Alsaedi, A.; Hayat, T.; Pan, X.; Dai, S. Y. The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Adv. Energy Mater. 2018, 8, 1800051.

[64]

Xiao, X.; Dai, J.; Fang, Y. J.; Zhao, J. J.; Zheng, X. P.; Tang, S.; Rudd, P. N.; Zeng, X. C.; Huang, J. S. Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 2018, 3, 684–688.

[65]

Jeong, J.; Kim, M.; Seo, J.; Lu, H. Z.; Ahlawat, P.; Mishra, A.; Yang, Y. G.; Hope, M. A.; Eickemeyer, F. T.; Kim, M. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021, 592, 381–385.

[66]

Wang, X. T.; Wang, Y.; Chen, Y. T.; Liu, X. M.; Zhao, Y. X. Efficient and stable CsPbI3 inorganic perovskite photovoltaics enabled by crystal secondary growth. Adv. Mater. 2021, 33, 2103688.

[67]

Du, Y. C.; Tian, Q. W.; Chang, X. M.; Fang, J. J.; Gu, X. J.; He, X. L.; Ren, X. D.; Zhao, K.; Liu, S. Z. Ionic liquid treatment for highest-efficiency ambient printed stable all-inorganic CsPbI3 perovskite solar cells. Adv. Mater. 2022, 34, 2106750.

[68]

Li, H.; Chang, B. H.; Wang, L.; Wang, Z. X.; Pan, L.; Wu, Y. T.; Liu, Z.; Yin, L. W. Surface reconstruction for tin-based perovskite solar cells. ACS Energy Lett. 2022, 7, 3889–3899.

[69]

Yin, W. J.; Shi, T. T.; Yan, Y. F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 2014, 104, 063903.

[70]

Whalley, L. D.; van Gerwen, P.; Frost, J. M.; Kim, S.; Hood, S. N.; Walsh, A. Giant Huang–Rhys factor for electron capture by the iodine intersitial in perovskite solar cells. J. Am. Chem. Soc. 2021, 143, 9123–9128.

[71]

Oner, S. M.; Sezen, E.; Yordanli, M. S.; Karakoc, E.; Deger, C.; Yavuz, I. Surface defect formation and passivation in formamidinium lead triiodide (FAPbI3) perovskite solar cell absorbers. J. Phys. Chem. Lett. 2022, 13, 324–330.

[72]

Kim, H.; Lee, J. W.; Han, G. R.; Kim, Y. J.; Kim, S. H.; Kim, S. K.; Kwak, S. K.; Oh, J. H. Highly efficient hole transport layer-free low bandgap mixed Pb-Sn perovskite solar cells enabled by a binary additive system. Adv. Funct. Mater. 2022, 32, 2110069.

[73]

Zhang, F.; Sun, X. R.; Xie, H. N.; Cai, X. D.; Zheng, B. L.; Yu, H.; Liu, E. Z.; Hao, X. J.; Zhang, M. Unraveling the mechanism of ion-migration suppression by interstitial doping for operationally stable CsPbI2Br perovskite solar cells. Chem. Mater. 2022, 34, 1010–1019.

[74]

Liu, Z. D.; Duan, C. H.; Liu, F.; Chan, C. C. S.; Zhu, H. P.; Yuan, L. G.; Li, J.; Li, M. J.; Zhou, B.; Wong, K. S. et al. Perovskite bifunctional diode with high photovoltaic and electroluminescent performance by holistic defect passivation. Small 2022, 18, 2105196.

[75]

Yang, X. Y.; Ni, Y.; Zhang, Y. Z.; Wang, Y. J.; Yang, W. Q.; Luo, D. Y.; Tu, Y. G.; Gong, Q. H.; Yu, H. F.; Zhu, R. Multiple-defect management for efficient perovskite photovoltaics. ACS Energy Lett. 2021, 6, 2404–2412.

[76]

Cho, S. H.; Byeon, J.; Jeong, K.; Hwang, J.; Lee, H.; Jang, J. H.; Lee, J.; Kim, T.; Kim, K.; Choi, M. et al. Investigation of defect-tolerant perovskite solar cells with long-term stability via controlling the self-doping effect. Adv. Energy Mater. 2021, 11, 2100555.

[77]

Liu, G. Z.; Zheng, H. Y.; Ye, J. J.; Xu, S. D.; Zhang, L. Y.; Xu, H. F.; Liang, Z.; Chen, X. J.; Pan, X. Mixed-phase low-dimensional perovskite-assisted interfacial lead directional management for stable perovskite solar cells with efficiency over 24%. ACS Energy Lett. 2021, 6, 4395–4404.

[78]

Zhu, X. J.; Du, M. Y.; Feng, J. S.; Wang, H.; Xu, Z.; Wang, L. K.; Zuo, S. N.; Wang, C. Y.; Wang, Z. Y.; Zhang, C. et al. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew. Chem., Int. Ed. 2021, 60, 4238–4244.

[79]

Yao, Z.; Xu, Z.; Zhao, W. G.; Zhang, J. R.; Bian, H.; Fang, Y. K.; Yang, Y.; Liu, S. Z. Enhanced efficiency of inorganic CsPbI3− x Br x perovskite solar cell via self-regulation of antisite defects. Adv. Energy Mater. 2021, 11, 2100403.

[80]

Zhou, Z. M.; Wang, Z. W.; Zhou, Y. Y.; Pang, S. P.; Wang, D.; Xu, H. X.; Liu, Z. H.; Padture, N. P.; Cui, G. L. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chem. 2015, 127, 9841–9845.

[81]

Dunlap-Shohl, W. A.; Zhou, Y. Y.; Padture, N. P.; Mitzi, D. B. Synthetic approaches for halide perovskite thin films. Chem. Rev. 2019, 119, 3193–3295.

[82]

Tian, L. W.; Wen, F.; Zhang, W. F.; Zhang, H. C.; Yu, H.; Lin, P.; Liu, X.; Zhou, S. H.; Zhou, X. Q.; Jiang, Y. T. et al. Rising from the ashes: Gaseous therapy for robust and large-area perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 49648–49658.

[83]

Zhou, Y. Y.; Game, O. S.; Pang, S. P.; Padture, N. P. Microstructures of organometal trihalide perovskites for solar cells: Their evolution from solutions and characterization. J. Phys. Chem. Lett. 2015, 6, 4827–4839.

[84]

Pang, S. P.; Zhou, Y. Y.; Wang, Z. W.; Yang, M. J.; Krause, A. R.; Zhou, Z. M.; Zhu, K.; Padture, N. P.; Cui, G. L. Transformative evolution of organolead triiodide perovskite thin films from strong room-temperature solid–gas interaction between HPbI3-CH3NH2 precursor pair. J. Am. Chem. Soc. 2016, 138, 750–753.

[85]

Liu, Z. H.; Qiu, L. B.; Juarez-Perez, E. J.; Hawash, Z.; Kim, T.; Jiang, Y.; Wu, Z. F.; Raga, S. R.; Ono, L. K.; Liu, S. Z. et al. Gas–solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules. Nat. Commun. 2018, 9, 3880.

[86]

Wang, J. F.; Luo, S. Q.; Tang, X. L.; Xiao, S.; Chen, Z. H.; Pang, S. P.; Zhang, L.; Lin, Y.; He, J.; Yuan, Y. B. Healing the buried cavities and defects in quasi-2D perovskite films by self-generated methylamine gas. ACS Energy. Lett. 2021, 6, 3634–3642.

[87]

Zhou, Y. Y.; Yang, M. J.; Pang, S. P.; Zhu, K.; Padture, N. P. Exceptional morphology-preserving evolution of formamidinium lead triiodide perovskite thin films via organic-cation displacement. J. Am. Chem. Soc. 2016, 138, 5535–5538.

[88]

Zhang, Y.; Zhou, Z. M.; Ji, F. X.; Li, Z. P.; Cui, G. L.; Gao, P.; Oveisi, E.; Nazeeruddin, M. K.; Pang, S. P. Trash into treasure: δ-FAPbI3 polymorph stabilized MAPbI3 perovskite with power conversion efficiency beyond 21%. Adv. Mater. 2018, 30, 1707143.

[89]

Li, Z. P.; Wang, X.; Wang, Z. W.; Shao, Z. P.; Hao, L. Z.; Rao, Y.; Chen, C.; Liu, D. C.; Zhao, Q. Q.; Sun, X. H. et al. Ammonia for post-healing of formamidinium-based perovskite films. Nat. Commun. 2022, 13, 4417.

[90]

Lin, Y. Z.; Liu, Y.; Chen, S. S.; Wang, S.; Ni, Z. Y.; Van Brackle, C. H.; Yang, S.; Zhao, J. J.; Yu, Z. H.; Dai, X. Z. et al. Revealing defective nanostructured surfaces and their impact on the intrinsic stability of hybrid perovskites. Energy Environ. Sci. 2021, 14, 1563–1572.

[91]

Fu, S.; Le, J. B.; Guo, X. M.; Sun, N. N.; Zhang, W. X.; Song, W. J.; Fang, J. F. Polishing the lead-poor surface for efficient inverted CsPbI3 perovskite solar cells. Adv. Mater. 2022, 34, 2205066.

[92]

Jiang, Q.; Chu, Z. M.; Wang, P. Y.; Yang, X. L.; Liu, H.; Wang, Y.; Yin, Z. G.; Wu, J. L.; Zhang, X. W.; You, J. B. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 2017, 29, 1703852.

[93]

Park, B. W.; Kedem, N.; Kulbak, M.; Lee, D. Y.; Yang, W. S.; Jeon, N. J.; Seo, J.; Kim, G.; Kim, K. J.; Shin, T. J. et al. Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nat. Commun. 2018, 9, 3301.

[94]

Zhao, L. C.; Li, Q. Y.; Hou, C. H.; Li, S. D.; Yang, X. Y.; Wu, J.; Zhang, S. Y.; Hu, Q.; Wang, Y. J.; Zhang, Y. Z. et al. Chemical polishing of perovskite surface enhances photovoltaic performances. J. Am. Chem. Soc. 2022, 144, 1700–1708.

[95]

Li, F. M.; Zhu, W. D.; Bao, C. X.; Yu, T.; Wang, Y. R. Q.; Zhou, X. X.; Zou, Z. G. Laser-assisted crystallization of CH3NH3PbI3 films for efficient perovskite solar cells with a high open-circuit voltage. Chem. Commun. 2016, 52, 5394–5397.

[96]

Park, S. J.; Kim, A. R.; Hong, J. T.; Park, J. Y.; Lee, S.; Ahn, Y. H. Crystallization kinetics of lead halide perovskite film monitored by in situ terahertz spectroscopy. J. Phys. Chem. Lett. 2017, 8, 401–406.

[97]

Shan, X. Y.; Wang, S. M.; Dong, W. W.; Pan, N.; Shao, J. Z.; Wang, X. Q.; Tao, R. H.; Deng, Z. H.; Hu, L. H.; Kong, F. T. et al. Flash surface treatment of CH3NH3PbI3 films using 248 nm KrF excimer laser enhances the performance of perovskite solar cells. Sol. RRL 2019, 3, 1900020.

[98]

Kong, W. C.; Zhao, C.; Xing, J.; Zou, Y. T.; Huang, T.; Li, F.; Yang, J. J.; Yu, W. L.; Guo, C. L. Enhancing perovskite solar cell performance through femtosecond laser polishing. Sol. RRL 2020, 4, 2000189.

[99]

Kedia, M.; Rai, M.; Phirke, H.; Aranda, C. A.; Das, C.; Chirvony, V.; Boehringer, S.; Kot, M.; Byranvand, M. M.; Flege, J. I. et al. Light makes right: Laser polishing for surface modification of perovskite solar cells. ACS Energy Lett. 2023, 8, 2603–2610.

[100]

Peng, J.; Wu, Y. L.; Ye, W.; Jacobs, D. A.; Shen, H. P.; Fu, X.; Wan, Y. M.; The Duong; Wu, N. D.; Barugkin, C. et al. Interface passivation using ultrathin polymer-fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ. Sci. 2017, 10, 1792–1800.

[101]

Zhang, F.; Bi, D. Q.; Pellet, N.; Xiao, C. X.; Li, Z.; Berry, J. J.; Zakeeruddin, S. M.; Zhu, K.; Grätzel, M. Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells. Energy Environ. Sci. 2018, 11, 3480–3490.

[102]

Yoo, J. J.; Wieghold, S.; Sponseller, M. C.; Chua, M. R.; Bertram, S. N.; Hartono, N. T. P.; Tresback, J. S.; Hansen, E. C.; Correa-Baena, J. P.; Bulović, V. et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 2019, 12, 2192–2199.

[103]

Cao, J.; Jiang, J. K.; Li, N.; Dong, Y. F.; Jia, Y. H.; Tao, S. X.; Zhao, N. Alkali-cation-enhanced benzylammonium passivation for efficient and stable perovskite solar cells fabricated through sequential deposition. J. Mater. Chem. A 2020, 8, 19357–19366.

[104]

Yang, T. H.; Gao, L. L.; Lu, J.; Ma, C.; Du, Y. C.; Wang, P. J.; Ding, Z. C.; Wang, S. Q.; Xu, P.; Liu, D. L. et al. One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells. Nat. Commun. 2023, 14, 839.

[105]

Cui, B. B.; Han, Y.; Huang, B. L.; Zhao, Y. Z.; Wu, X. X.; Liu, L.; Cao, G. Y.; Du, Q.; Liu, N.; Zou, W. et al. Locally collective hydrogen bonding isolates lead octahedra for white emission improvement. Nat. Commun. 2019, 10, 5190.

[106]

Yu, S. S.; Liu, H. L.; Wang, S. R.; Zhu, H. W.; Dong, X. F.; Li, X. G. Hydrazinium cation mixed FAPbI3-based perovskite with 1D/3D hybrid dimension structure for efficient and stable solar cells. Chem. Eng. J. 2021, 403, 125724.

[107]

Wu, G. H.; Zhou, C. K.; Ming, W. M.; Han, D.; Chen, S. Y.; Yang, D.; Besara, T.; Neu, J.; Siegrist, T.; Du, M. H. et al. A one-dimensional organic lead chloride hybrid with excitation-dependent broadband emissions. ACS Energy Lett. 2018, 3, 1443–1449.

[108]

Li, Z. Z.; Liu, X. L.; Xu, J.; Yang, S. J.; Zhao, H.; Huang, H.; Liu, S. Z.; Yao, J. X. All-inorganic 0D/3D Cs4Pb(IBr)6/CsPbI3− x Br x mixed-dimensional perovskite solar cells with enhanced efficiency and stability. J. Mater. Chem. C 2020, 8, 6977–6987.

[109]

Lee, J. W.; Dai, Z. H.; Han, T. H.; Choi, C.; Chang, S. Y.; Lee, S. J.; De Marco, N.; Zhao, H. X.; Sun, P. Y.; Huang, Y. et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 2018, 9, 3021

[110]

Li, X. T.; Kepenekian, M.; Li, L. D.; Dong, H.; Stoumpos, C. C.; Seshadri, R.; Katan, C.; Guo, P. J.; Even, J.; Kanatzidis, M. G. Tolerance factor for stabilizing 3D hybrid halide perovskitoids using linear diammonium cations. J. Am. Chem. Soc. 2022, 144, 3902–3912.

[111]

Mahmud, A.; Duong, T.; Peng, J.; Wu, Y. L.; Shen, H. P.; Walter, D.; Nguyen, H. T.; Mozaffari, N.; Tabi, G. D.; Catchpole, K. R. et al. Origin of efficiency and stability enhancement in high-performing mixed dimensional 2D-3D perovskite solar cells: A review. Adv. Funct. Mater. 2022, 32, 2009164.

[112]

Wang, Z. P.; Lin, Q. Q.; Chmiel, F. P.; Sakai, N.; Herz, L. M.; Snaith, H. J. Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2017, 2, 17135.

[113]

Zheng, X. P.; Hou, Y.; Bao, C. X.; Yin, J.; Yuan, F. L.; Huang, Z. R.; Song, K. P.; Liu, J. K.; Troughton, J.; Gasparini, N. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 2020, 5, 131–140.

[114]

Yao, Q.; Xue, Q. F.; Li, Z. C.; Zhang, K. C.; Zhang, T.; Li, N.; Yang, S. H.; Brabec, C. J.; Yip, H. L.; Cao, Y. Graded 2D/3D perovskite heterostructure for efficient and operationally stable MA-free perovskite solar cells. Adv. Mater. 2020, 32, 2000571.

[115]

Liu, T. T.; Zhang, J.; Qin, M. C.; Wu, X.; Li, F. Z.; Lu, X. H.; Zhu, Z. L.; Jen, A. K. Y. Modifying surface termination of CsPbI3 grain boundaries by 2D perovskite layer for efficient and stable photovoltaics. Adv. Funct. Mater. 2021, 31, 2009515.

[116]

Yu, B. B.; Chen, Z. H.; Zhu, Y. D.; Wang, Y. Y.; Han, B.; Chen, G. C.; Zhang, X. S.; Du, Z.; He, Z. B. Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 2021, 33, 2102055.

[117]

Feng, X. X.; Chen, R. H.; Nan, Z. A.; Lv, X. D.; Meng, R. Q.; Cao, J.; Tang, Y. Perfection of perovskite grain boundary passivation by Eu-porphyrin complex for overall-stable perovskite solar cells. Adv. Sci. 2019, 6, 1802040.

[118]

Tsai, H.; Nie, W. Y.; Blancon, J. C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016, 536, 312–316.

[119]

Li, W. H.; Gu, X. Y.; Shan, C. W.; Lai, X.; Sun, X. W.; Kyaw, A. K. K. Efficient and stable mesoscopic perovskite solar cell in high humidity by localized Dion–Jacobson 2D-3D heterostructures. Nano Energy 2022, 91, 106666.

[120]

Quan, L. N.; Yuan, M. J.; Comin, R.; Voznyy, O.; Beauregard, E. M.; Hoogland, S.; Buin, A.; Kirmani, A. R.; Zhao, K.; Amassian, A. et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 2016, 138, 2649–2655.

[121]

Jang, Y. W.; Lee, S.; Yeom, K. M.; Jeong, K.; Choi, K.; Choi, M.; Noh, J. H. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 2021, 6, 63–71.

[122]

Gharibzadeh, S.; Fassl, P.; Hossain, I. M.; Rohrbeck, P.; Frericks, M.; Schmidt, M.; The Duong; Khan, M. R.; Abzieher, T.; Nejand, B. A. et al. Two birds with one stone: Dual grain-boundary and interface passivation enables > 22% efficient inverted methylammonium-free perovskite solar cells. Energy Environ. Sci. 2021, 14, 5875–5893.

[123]

Li, G. D.; Song, J.; Wu, J. H.; Song, Z. Y.; Wang, X. B.; Sun, W. H.; Fan, L. Q.; Lin, J. M.; Huang, M. L.; Lan, Z. et al. Efficient and stable 2D@3D/2D perovskite solar cells based on dual optimization of grain boundary and interface. ACS. Energy Lett. 2021, 6, 3614–3623.

[124]

Li, L.; Zhou, N.; Chen, Q.; Shang, Q. Y.; Zhang, Q.; Wang, X. D.; Zhou, H. P. Unraveling the growth of hierarchical quasi-2D/3D perovskite and carrier dynamics. J. Phys. Chem. Lett. 2018, 9, 1124–1132.

[125]

Liu, Y.; Lu, R. X.; Zhang, J. F.; Guo, X.; Li, C. Construction of a gradient-type 2D/3D perovskite structure for subsurface passivation and energy-level alignment of an MAPbI3 film. J. Mater. Chem. A 2021, 9, 26086–26094.

[126]

Liu, P.; Xian, Y. M.; Yuan, W. N.; Long, Y.; Liu, K.; Rahman, N. U.; Li, W. Z.; Fan, J. D. Lattice-matching structurally-stable 1D@3D perovskites toward highly efficient and stable solar cells. Adv. Energy Mater. 2020, 10, 1903654.

[127]

Liu, X. M.; Wang, X. T.; Zhang, T. Y.; Miao, Y. F.; Qin, Z. X.; Chen, Y. T.; Zhao, Y. X. Organic tetrabutylammonium cation intercalation to heal inorganic CsPbI3 perovskite. Angew. Chem., Int. Ed. 2021, 60, 12351–12355.

[128]

Chen, B.; Li, T.; Dong, Q. F.; Mosconi, E.; Song, J. F.; Chen, Z. L.; Deng, Y. H.; Liu, Y.; Ducharme, S.; Gruverman, A. et al. Large electrostrictive response in lead halide perovskites. Nat. Mater. 2018, 17, 1020–1026.

[129]

Chen, Y. T.; Liu, X. M.; Zhao, Y. X. Organic matrix assisted low-temperature crystallization of black phase inorganic perovskites. Angew. Chem., Int. Ed. 2022, 61, e202110603.

[130]

Zhang, J. X.; Zhang, G. Z.; Su, P. Y.; Huang, R.; Lin, J. G.; Wang, W. R.; Pan, Z. X.; Rao, H. S.; Zhong, X. H. 1D choline-PbI3-based heterostructure boosts efficiency and stability of CsPbI3 perovskite solar cells. Angew. Chem., Int. Ed. 2023, 62, e202303486.

[131]

Han, Y.; Yue, S. J.; Cui, B. B. Low-dimensional metal halide perovskite crystal materials: Structure strategies and luminescence applications. Adv. Sci. 2021, 8, 2004805.

[132]

Chen, Y. T.; Wang, X. T.; Wang, Y.; Liu, X. M.; Miao, Y. F.; Zhao, Y. X. Functional organic cation induced 3D-to-0D phase transformation and surface reconstruction of CsPbI3 inorganic perovskite. Sci. Bull. 2023, 68, 706–712.

[133]

Ho-Baillie, A.; Zhang, M.; Lau, C. F. J.; Ma, F. J.; Huang, S. J. Untapped potentials of inorganic metal halide perovskite solar cells. Joule 2019, 3, 938–955.

[134]

Dastidar, S.; Hawley, C. J.; Dillon, A. D.; Gutierrez-Perez, A. D.; Spanier, J. E.; Fafarman, A. T. Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide. J. Phys. Chem. Lett. 2017, 8, 1278–1282.

[135]

Bai, F. J.; Zhang, J.; Yuan, Y. F.; Liu, H. B.; Li, X. S.; Chueh, C. C.; Yan, H.; Zhu, Z. L.; Jen, A. K. Y. A 0D/3D heterostructured all-inorganic halide perovskite solar cell with high performance and enhanced phase stability. Adv. Mater. 2019, 31, 1904735.

[136]

Zhuang, L. C.; Zhai, L. L.; Li, Y. Y.; Ren, H.; Li, M. J.; Lau, S. P. Mixed dimensional 0D/3D perovskite heterostructure for efficient green light-emitting diodes. J. Mater. Chem. C 2021, 9, 14318–14326.

[137]
Ke, Y.; Guo, J. S.; Kong, D. C.; Wang, J. M.; Kusch, G.; Lin, C.; Liu, D. W.; Kuang, Z. Y.; Qian, D. M.; Zhou, F. Y. et al. Efficient and bright deep-red light-emitting diodes based on a lateral 0D/3D perovskite heterostructure. Adv. Mater., in press, DOI: 10.1002/adma.202207301.
[138]

Zhang, J. R.; Bai, D. L.; Jin, Z. W.; Bian, H.; Wang, K.; Sun, J.; Wang, Q.; Liu, S. Z. 3D–2D–0D interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability. Adv. Energy Mater. 2018, 8, 1703246

[139]

Li, N.; Zhu, Z. L.; Chueh, C. C.; Liu, H. B.; Peng, B.; Petrone, A.; Li, X. S.; Wang, L. D.; Jen, A. K. Y. Mixed cation FA x PEA1− x PbI3 with enhanced phase and ambient stability toward high-performance perovskite solar cells. Adv. Energy Mater. 2017, 7, 1601307.

[140]

Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M. et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 2017, 8, 15684.

[141]

Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.

[142]

Yang, N.; Zhu, C.; Chen, Y. H.; Zai, H. C.; Wang, C. Y.; Wang, X.; Wang, H.; Ma, S.; Gao, Z. Y.; Wang, X. Y. et al. An in situ cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation. Energy Environ. Sci. 2020, 13, 4344–4352.

[143]

Chen, R. H.; Shen, H.; Chang, Q.; Tang, Z. H.; Nie, S. Q.; Chen, B. L.; Ping, T.; Wu, B. H.; Yin, J.; Li, J. et al. Conformal imidazolium 1D perovskite capping layer stabilized 3D perovskite films for efficient solar modules. Adv. Sci. 2022, 9, 2204017.

[144]

Yang, W. C.; Ding, B.; Lin, Z. D.; Sun, J. S.; Meng, Y. Y.; Ding, Y.; Sheng, J.; Yang, Z. H.; Ye, J. C.; Dyson, P. J. et al. Visualizing interfacial energy offset and defects in efficient 2D/3D heterojunction perovskite solar cells and modules. Adv. Mater. 2023, 35, 2302071.

[145]

Jiang, Y. T.; Wang, J. B.; Zai, H. C.; Ni, D. Y.; Wang, J. Y.; Xue, P. Y.; Li, N. X.; Jia, B. Y.; Lu, H. J.; Zhang, Y. et al. Reducing energy disorder in perovskite solar cells by chelation. J. Am. Chem. Soc. 2022, 144, 5400–5410.

[146]

Jiang, J. X.; Jin, Z. W.; Lei, J.; Wang, Q.; Zhang, X. S.; Zhang, J. R.; Gao, F.; Liu, S. Z. ITIC surface modification to achieve synergistic electron transport layer enhancement for planar-type perovskite solar cells with efficiency exceeding 20%. J. Mater. Chem. A 2017, 5, 9514–9522.

[147]

Xiong, S. B.; Hou, Z. Y.; Zou, S. J.; Lu, X. S.; Yang, J. M.; Hao, T. Y.; Zhou, Z. H.; Xu, J. H.; Zeng, Y. H.; Xiao, W. et al. Direct observation on p-to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule 2021, 5, 467–480.

[148]

Solomon, M.; Johnson, A. New research in solar cells: Urbach tails and open circuit voltage. Elements 2015, 11, 45–52.

[149]

Peng, C.; Li, C. W.; Zhu, M. Z.; Zhang, C. J.; Jiang, X. F.; Yin, H.; He, B. L.; Li, H. Y.; Li, M.; So, S. K. et al. Reducing energy disorder for efficient and stable Sn-Pb alloyed perovskite solar cells. Angew. Chem., Int. Ed. 2022, 61, e202201209.

[150]

Mehdizadeh-Rad, H.; Singh, J. Influence of Urbach energy, temperature, and longitudinal position in the active layer on carrier diffusion length in perovskite solar cells. ChemPhysChem 2019, 20, 2712–2717.

[151]

Zhong, Y. F.; Munir, R.; Balawi, A. H.; Sheikh, A. D.; Yu, L. Y.; Tang, M. C.; Hu, H. L.; Laquai, F.; Amassian, A. Mesostructured fullerene electrodes for highly efficient n-i-p perovskite solar cells. ACS Energy Lett. 2016, 1, 1049–1056.

[152]

Lian, J. R.; Lu, B.; Niu, F. F.; Zeng, P. J.; Zhan, X. W. Electron-transport materials in perovskite solar cells. Small Methods 2018, 2, 1800082.

[153]

Guo, Z. L.; Jena, A. K.; Kim, G. M.; Miyasaka, T. The high open-circuit voltage of perovskite solar cells: A review. Energy Environ. Sci. 2022, 15, 3171–3222.

[154]

Mahmood, K.; Sarwar, S.; Mehran, M. T. Current status of electron transport layers in perovskite solar cells: Materials and properties. RSC Adv. 2017, 7, 17044–17062.

[155]

Wei, D.; Ji, J.; Song, D. D.; Li, M. C.; Cui, P.; Li, Y. Y.; Mbengue, J. M.; Zhou, W. J.; Ning, Z. J.; Park, N. G. A TiO2 embedded structure for perovskite solar cells with anomalous grain growth and effective electron extraction. J. Mater. Chem. A 2017, 5, 1406–1414.

[156]

Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field. Energy Environ. Sci. 2015, 8, 995–1004.

[157]

Yang, D.; Yang, R. X.; Zhang, J.; Yang, Z.; Liu, S. Z.; Li, C. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ. Sci. 2015, 8, 3208–3214.

[158]

Deng, K. M.; Chen, Q. H.; Li, L. Modification engineering in SnO2 electron transport layer toward perovskite solar cells: Efficiency and stability. Adv. Funct. Mater. 2020, 30, 2004209.

[159]

Yang, D.; Yang, R. X.; Wang, K.; Wu, C. C.; Zhu, X. J.; Feng, J. S.; Ren, X. D.; Fang, G. J.; Priya, S.; Liu, S. Z. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 2018, 9, 3239.

[160]

Liu, Z. Z.; Deng, K. M.; Hu, J.; Li, L. Coagulated SnO2 colloids for high-performance planar perovskite solar cells with negligible hysteresis and improved stability. Angew. Chem. 2019, 131, 11621–11628.

[161]

Ma, J.; Lin, Z. H.; Guo, X.; Zhou, L.; Su, J.; Zhang, C. F.; Yang, Z.; Chang, J. J.; Liu, S. Z.; Hao, Y. Low-temperature solution-processed ZnO electron transport layer for highly efficient and stable planar perovskite solar cells with efficiency over 20%. Sol. RRL 2019, 3, 1900096.

[162]

Ma, J.; Su, J.; Lin, Z. H.; Zhou, L.; He, J.; Zhang, J. C.; Liu, S. Z.; Chang, J. J.; Hao, Y. Improve the oxide/perovskite heterojunction contact for low temperature high efficiency and stable all-inorganic CsPbI2Br perovskite solar cells. Nano Energy 2020, 67, 104241.

[163]

Xiao, Z. G.; Bi, C.; Shao, Y. C.; Dong, Q. F.; Wang, Q.; Yuan, Y. B.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619–2623.

[164]

Chen, K.; Hu, Q.; Liu, T. H.; Zhao, L. C.; Luo, D. Y.; Wu, J.; Zhang, Y. F.; Zhang, W.; Liu, F.; Russell, T. P. et al. Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells. Adv. Mater. 2016, 28, 10718–10724.

[165]

Dong, S. J.; Wan, Y. Y.; Wang, Y. L.; Yang, Y.; Wang, Y. H.; Zhang, X. Y.; Cao, H. Q.; Qin, W. J.; Yang, L. Y.; Yao, C. et al. Polyethylenimine as a dual functional additive for electron transporting layer in efficient solution processed planar heterojunction perovskite solar cells. RSC Adv. 2016, 6, 57793–57798.

[166]

Lee, K.; Ryu, J.; Yu, H.; Yun, J.; Lee, J.; Jang, J. Enhanced efficiency and air-stability of NiO x -based perovskite solar cells via PCBM electron transport layer modification with Triton X-100. Nanoscale 2017, 9, 16249–16255.

[167]

Jiang, M.; Niu, Q. L.; Tang, X.; Zhang, H. Y.; Xu, H. W.; Huang, W. T.; Yao, J. Z.; Yan, B. Y.; Xia, R. D. Improving the performances of perovskite solar cells via modification of electron transport layer. Polymers 2019, 11, 147.

[168]

Xu, L.; Chen, X. F.; Jin, J. J.; Liu, W.; Dong, B.; Bai, X.; Song, H. W.; Reiss, P. Inverted perovskite solar cells employing doped NiO hole transport layers: A review. Nano Energy 2019, 63, 103860.

[169]

Yin, X. T.; Guo, Y. X.; Xie, H. X.; Que, W. X.; Kong, L. B. Nickel oxide as efficient hole transport materials for perovskite solar cells. Sol. RRL 2019, 3, 1900001.

[170]

Chen, W.; Zhou, Y. C.; Wang, L. J.; Wu, Y. H.; Tu, B.; Yu, B. B.; Liu, F. Z.; Tam, H. W.; Wang, G.; Djurišić, A. B. et al. Molecule-doped nickel oxide: Verified charge transfer and planar inverted mixed cation perovskite solar cell. Adv. Mater. 2018, 30, 1800515.

[171]

Wang, S. J.; Li, Y. K.; Yang, J. B.; Wang, T.; Yang, B. W.; Cao, Q.; Pu, X. Y.; Etgar, L.; Han, J.; Zhao, J. S. et al. Critical role of removing impurities in nickel oxide on high-efficiency and long-term stability of inverted perovskite solar cells. Angew. Chem. 2022, 134, e202116534.

[172]

Zhang, B. J.; Su, J.; Guo, X.; Zhou, L.; Lin, Z. H.; Feng, L. P.; Zhang, J. C.; Chang, J. J.; Hao, Y. NiO/perovskite heterojunction contact engineering for highly efficient and stable perovskite solar cells. Adv. Sci. 2020, 7, 1903044.

[173]

Chen, Y.; Yang, Z.; Wang, S. B.; Zheng, X. J.; Wu, Y. H.; Yuan, N. Y.; Zhang, W. H.; Liu, S. Z. Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells. Adv. Mater. 2018, 30, 1805660.

[174]

Li, Y. Q.; Wang, W.; Dong, J.; Lu, Y.; Huang, X. F.; Niu, Y.; Qiao, B.; Zhao, S. L.; Xu, Z.; Smirnov, A. et al. Modification of PEDOT:PSS to enhance device efficiency and stability of the quasi-2D perovskite light-emitting diodes. Org. Electron. 2022, 108, 106579.

[175]

Chandel, A.; Ke, Q. B.; Thakur, D.; Chiang, S. E.; Wu, J. R.; Cai, K. B.; Yuan, C. T.; Chang, S. H. Regioregularity effects of p-type P3CT-Na polymers on inverted perovskite photovoltaic cells. Org. Electron. 2022, 102, 106449.

[176]

Hu, L. N.; Zhang, L. L.; Ren, W. H.; Zhang, C. X.; Wu, Y. K.; Liu, Y. F.; Sun, Q. J.; Dai, Z.; Cui, Y. X.; Cai, L. F. et al. High efficiency perovskite solar cells with PTAA hole transport layer enabled by PMMA:F4-TCNQ buried interface layer. J. Mater. Chem. C 2022, 10, 9714–9722.

[177]

Cai, X.; Tang, J.; Zhao, M.; Liu, L.; Yu, Z. B.; Du, J. J.; Bai, L.; Lu, F. S.; Jiu, T. G.; Li, Y. L. Graphdiyne oxide doping for aggregation control of hole-transport nanolayer in inverted perovskite solar cells. Nano Res. 2022, 15, 9734–9740.

[178]

Zhao, B. Y.; Gillan, L. V.; Scully, A. D.; Chesman, A. S. R.; Tan, B. E.; Lin, X. F.; Liu, J. Y.; Rietwyk, K. J.; Deng, S. Q.; Bailey, C. et al. Enhanced carrier diffusion enables efficient back-contact perovskite photovoltaics. Angew. Chem., Int. Ed. 2023, 62, e202218174.

[179]

Shi, M.; Li, G. N.; Tian, W. M.; Jin, S. Y.; Tao, X. P.; Jiang, Y. M.; Pidko, E. A.; Li, R. G.; Li, C. Understanding the effect of crystalline structural transformation for lead-free inorganic halide perovskites. Adv. Mater. 2020, 32, 2002137.

[180]

Cui, P.; Wei, D.; Ji, J.; Song, D. D.; Li, Y. Y.; Liu, X.; Huang, J.; Wang, T. Y.; You, J. B.; Li, M. C. Highly efficient electron-selective layer free perovskite solar cells by constructing effective p-n heterojunction. Sol. RRL 2017, 1, 1600027.

[181]

Cui, P.; Wei, D.; Ji, J.; Huang, H.; Jia, E. D.; Dou, S. Y.; Wang, T. Y.; Wang, W. J.; Li, M. C. Planar p-n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nat. Energy 2019, 4, 150–159.

[182]

Zhang, J. K.; Sun, Y. P.; Huang, C. W.; Yu, B.; Yu, H. Z. Reduced open-circuit voltage loss of perovskite solar cells via forming p/p+ homojunction and interface electric field on the surfaces of perovskite film. Adv. Energy Mater. 2022, 12, 2202542.

[183]

Chu, X. B.; Ye, Q. F.; Wang, Z. H.; Zhang, C.; Ma, F.; Qu, Z. H.; Zhao, Y.; Yin, Z. G.; Deng, H. X.; Zhang, X. W. et al. Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency. Nat. Energy 2023, 8, 372–380.

[184]

Luo, D. Y.; Zhao, L. C.; Wu, J.; Hu, Q.; Zhang, Y. F.; Xu, Z. J.; Liu, Y.; Liu, T. H.; Chen, K.; Yang, W. Q. et al. Dual-source precursor approach for highly efficient inverted planar heterojunction perovskite solar cells. Adv. Mater. 2017, 29, 1604758.

[185]

Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T. Y.; Lee, Y. G.; Kim, G.; Shin, H. W.; Il Seok, S.; Lee, J.; Seo, J. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 2018, 3, 682–689.

[186]

Wu, S. F.; Zhang, J.; Li, Z.; Liu, D. J.; Qin, M. C.; Cheung, S. H.; Lu, X. H.; Lei, D. Y.; So, S. K.; Zhu, Z. L. et al. Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells. Joule 2020, 4, 1248–1262.

[187]

Wu, S. F.; Li, Z.; Zhang, J.; Wu, X.; Deng, X.; Liu, Y. M.; Zhou, J. K.; Zhi, C. Y.; Yu, X. G.; Choy, W. C. H. et al. Low-bandgap organic bulk-heterojunction enabled efficient and flexible perovskite solar cells. Adv. Mater. 2021, 33, 2105539.

[188]

Zhang, B.; Oh, J.; Sun, Z.; Cho, Y.; Jeong, S.; Chen, X.; Sun, K.; Li, F.; Yang, C.; Chen, S. S. Buried guanidinium passivator with favorable binding energy for perovskite solar cells. ACS Energy. Lett. 2023, 8, 1848–1856.

[189]

Yin, Y. F.; Tian, W. M.; Luo, H.; Gao, Y. X.; Zhao, T. T.; Zhao, C. Y.; Leng, J.; Sun, Q.; Tang, J. B.; Wang, P. et al. Excellent carrier transport property of hybrid perovskites sustained under high pressures. ACS Energy Lett. 2022, 7, 154–161.

[190]

Hu, J. T.; Chen, P.; Luo, D. Y.; Dai, L. J.; Chen, N.; Li, S. D.; Yang, S. Y.; Fu, Z. W.; Wang, D. K.; Gong, Q. H. et al. Anchoring of halogen-cleaved organic ligands on perovskite surfaces. Energy Environ. Sci. 2022, 15, 5340–5349.

[191]

Yan, J. L.; Croes, G.; Fakharuddin, A.; Song, W. Y.; Heremans, P.; Chen, H. Z.; Qiu, W. M. Exploiting two-step processed mixed 2D/3D perovskites for bright green light emitting diodes. Adv. Opt. Mater. 2019, 7, 1900465.

[192]
Wang, M. R.; Shi, Z. F.; Fei, C. B.; Deng, Z. J. D.; Yang, G.; Dunfield, S. P.; Fenning, D. P.; Huang, J. S. Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat. Energy, in press, DOI: 10.1038/s41560-023-01362-0.
[193]

Li, H. Y.; Shen, N.; Chen, S.; Guo, F.; Xu, B. M. Recent progress on synthesis, intrinsic properties and optoelectronic applications of perovskite single crystals. Adv. Funct. Mater. 2023, 33, 2214339.

[194]

Li, Z. H.; Li, P. W.; Chen, G. S.; Cheng, Y. J.; Pi, X. D.; Yu, X. G.; Yang, D. R.; Han, L. Y.; Zhang, Y. Q.; Song, Y. L. Ink engineering of inkjet printing perovskite. ACS Appl. Mater. Interfaces 2020, 12, 39082–39091.

[195]

Park, N. G. Perovskite solar cell: Research direction for next 10 years. ACS Energy Lett. 2019, 4, 2983–2985.

[196]

Zhang, K.; Wang, Y.; Tao, M. Q.; Guo, L. T.; Yang, Y. R.; Shao, J. Y.; Zhang, Y. Y.; Wang, F. Y.; Song, Y. L. Efficient inorganic vapor-assisted defects passivation for perovskite solar module. Adv. Mater. 2023, 35, 2211593.

[197]

Luo, C.; Zheng, G. H. J.; Wang, X. J.; Gao, F.; Zhan, C. L.; Gao, X. Y.; Zhao, Q. Solid–solid chemical bonding featuring targeted defect passivation for efficient perovskite photovoltaics. Energy Environ. Sci. 2023, 16, 178–189.

[198]

Nazir, G.; Lee, S. Y.; Lee, J. H.; Rehman, A.; Lee, J. K.; Seok, S. I.; Park, S. J. Stabilization of perovskite solar cells: Recent developments and future perspectives. Adv. Mater. 2022, 34, 2204380.

[199]
Xie, L. S.; Du, S. Y.; Li, J.; Liu, C.; Pu, Z. W.; Tong, X. Y.; Liu, J.; Wang, Y. H.; Meng, Y. Y.; Yang, M. J. et al. Molecular dipole engineering-assisted strain release for mechanically robust flexible perovskite solar cells. Energy Environ. Sci., in press, DOI: 10.1039/D3EE02569A.
[200]

Nie, L.; Wang, T.; Yu, X.; Gao, W.; Peng, Q. P.; Xia, Z. G.; Qiu, J. B.; Yu, S. F.; Xu, X. H. Multicolor display fabricated via stacking CW laser-patterned perovskite films. ACS Energy. Lett. 2023, 8, 2025–2032.

[201]

Wang, R. J.; Wu, J. H.; Wei, S. P.; Zhu, J. W.; Guo, M. H.; Zheng, Q.; Wei, M. D.; Cheng, S. Y. Gadolinium-doped SnO2 electron transfer layer for highly efficient planar perovskite solar cells. J. Power Sources 2022, 544, 231870.

[202]

Mishra, A.; Bose, R.; Zheng, Y. Z.; Xu, W. J.; McMullen, R.; Mehta, A. B.; Kim, M. J.; Hsu, J. W. P.; Malko, A. V.; Slinker, J. D. Stable and bright electroluminescent devices utilizing emissive 0D perovskite nanocrystals incorporated in a 3D CsPbBr3 matrix. Adv. Mater. 2022, 34, 2203226.

[203]

Benin, B. M.; Dirin, D. N.; Morad, V.; Wörle, M.; Yakunin, S.; Rainò, G.; Nazarenko, O.; Fischer, M.; Infante, I.; Kovalenko, M. V. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides. Angew. Chem., Int. Ed. 2018, 57, 11329–11333.

[204]

Kong, T. F.; Xie, H. B.; Zhang, Y.; Song, J.; Li, Y. H.; Lim, E. L.; Hagfeldt, A.; Bi, D. Q. Perovskitoid-templated formation of a 1D@3D perovskite structure toward highly efficient and stable perovskite solar cells. Adv. Energy Mater. 2021, 11, 2101018.

[205]
Wang, Y.; Ye, J. C.; Song, J. X.; Chu, L.; Zang, Y.; Li, G. D.; Zhou, Q.; Yang, G. Y.; Tu, Y. B.; Jin, Y. Z. et al. Modulation of buried interface by 1-(3-aminopropyl)-imidazole for efficient inverted formamidinium-cesium perovskite solar cells. Small, in press, DOI: 10.1002/smll.202304273.
[206]

Chen, Q. H.; Deng, K. M.; Shen, Y.; Li, L. Stable one dimensional (1D)/three dimensional (3D) perovskite solar cell with an efficiency exceeding 23%. InfoMat 2022, 4, e12303.

[207]

Ge, C. Y.; Lu, J. F.; Singh, M.; Ng, A.; Yu, W.; Lin, H. R.; Satapathi, S.; Hu, H. L. Mixed dimensional perovskites heterostructure for highly efficient and stable perovskite solar cells. Sol. RRL 2022, 6, 2100879.

[208]

Zhang, H. J.; Shi, Z. J.; Hu, L. G.; Tang, Y. Y.; Qin, Z. Y.; Liao, W. Q.; Wang, Z. S.; Qin, J. J.; Li, X. G.; Wang, H. L. et al. Highly efficient 1D/3D ferroelectric perovskite solar cell. Adv. Funct. Mater. 2021, 31, 2100205.

[209]

Chen, P.; Bai, Y.; Wang, S. C.; Lyu, M. Q.; Yun, J. H.; Wang, L. Z. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 2018, 28, 1706923.

[210]

Cao, J.; Li, C. P.; Lv, X. D.; Feng, X. X.; Meng, R. Q.; Wu, Y. Y.; Tang, Y. Efficient grain boundary suture by low-cost tetra-ammonium zinc phthalocyanine for stable perovskite solar cells with expanded photoresponse. J. Am. Chem. Soc. 2018, 140, 11577–11580.

[211]

Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450.

[212]

Lin, L. Y.; Li, P.; Kang, Z. J.; Xiong, H.; Chen, Y. T.; Yan, Q.; Jiang, L. Q.; Qiu, Y. Device design of doping-controlled homojunction perovskite solar cells omitting HTL and exceeding 25% efficiency. Adv. Theory Simul. 2021, 4, 2000222.

[213]

Song, D. D.; Cui, P.; Wang, T. Y.; Wei, D.; Li, M. C.; Cao, F. H.; Yue, X. P.; Fu, P. F.; Li, Y. Y.; He, Y. et al. Managing carrier lifetime and doping property of lead halide perovskite by postannealing processes for highly efficient perovskite solar cells. J. Phys. Chem. C 2015, 119, 22812–22819.

[214]

Sengar, B. S.; Garg, V.; Kumar, A.; Dwivedi, P. Numerical simulation: Design of high-efficiency planar p-n homojunction perovskite solar cells. IEEE Trans. Electron Devices 2021, 68, 2360–2364.

[215]

Lian, X. M.; Chen, J. H.; Shan, S. Q.; Wu, G.; Chen, H. Z. Polymer modification on the NiO x hole transport layer boosts open-circuit voltage to 1.19 V for perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 46340–46347.

Publication history
Copyright
Acknowledgements

Publication history

Received: 17 September 2023
Revised: 25 October 2023
Accepted: 26 October 2023
Published: 29 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors thank the financial support from the National Key Research and Development (R&D) Program of China (No. 2018YFA0208501), the National Natural Science Foundation of China (Nos. 62104216 and 52321006), the Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXXM-202005), the China Postdoctoral Innovative Talent Support Program (No. BX2021271), the Key R&D and Promotion Project of Henan Province (No. 192102210032), the Opening Project of State Key Laboratory of Advanced Technology for Float Glass (No. 2022KF04), the Joint Research Project of Puyang Shengtong Juyuan New Materials Co., Ltd., and the Outstanding Young Talent Research Fund of Zhengzhou University.

Return