Journal Home > Volume 17 , Issue 1

Zinc-based aqueous rechargeable batteries have attracted extensive attention due to their low cost, safety, and environmental friendliness. However, dendrite growth and hydrogen evolution of Zn anodes limit their large-scale application. A new strategy to produce a polyacrylamide/reduced graphene oxide (PAM@rGO) molecular nanobrush coating and control Zn electrolyte interface engineering is proposed for use in highly reversible Zn plating/stripping. Hydrogen evolution is inhibited, and Zn deposition is consolidated using the rich zincophilic functional groups of the branched polyacrylamide chain and the high conductivity of rGO. Due to the synergistic effects of corrosion resistance and dendrite-free growth, PAM@rGO/Zn provides prolonged and reversible Zn plating/stripping. Density functional theory (DFT) calculations expand on homogenized nucleation. The PAM@rGO/Zn||activated carbon (AC) capacitor exhibits long cyclic stability, fast ion transfer, and minimal interfacial impedance. This study provides experimental and theoretical bases for the structural design of Zn anode.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A zincophilic molecular brush for a dendrite-free, corrosion-resistant, zinc metal anode with a long life cycle

Show Author's information Penggao Liu1,2,§( )Jia Guo1,§Xinyue Chen1Ting Wang1Yanping Huang3( )Shasha Gao4,5( )Tao Wang1Dongling Wu1Kaiyu Liu2( )
State Key Laboratory of Chemistry and Utilization of Carbon based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
Key Laboratory of New Low-carbon Green Chemical Technology, School of Chemistry and Chemical Engineering, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
Key Laboratory of Microelectronics and Energy of Henan Province, Department of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China

§ Penggao Liu and Jia Guo contributed equally to this work.

Abstract

Zinc-based aqueous rechargeable batteries have attracted extensive attention due to their low cost, safety, and environmental friendliness. However, dendrite growth and hydrogen evolution of Zn anodes limit their large-scale application. A new strategy to produce a polyacrylamide/reduced graphene oxide (PAM@rGO) molecular nanobrush coating and control Zn electrolyte interface engineering is proposed for use in highly reversible Zn plating/stripping. Hydrogen evolution is inhibited, and Zn deposition is consolidated using the rich zincophilic functional groups of the branched polyacrylamide chain and the high conductivity of rGO. Due to the synergistic effects of corrosion resistance and dendrite-free growth, PAM@rGO/Zn provides prolonged and reversible Zn plating/stripping. Density functional theory (DFT) calculations expand on homogenized nucleation. The PAM@rGO/Zn||activated carbon (AC) capacitor exhibits long cyclic stability, fast ion transfer, and minimal interfacial impedance. This study provides experimental and theoretical bases for the structural design of Zn anode.

Keywords: surface modification, zincophilic nanobrush, Zn based energy storage, polyacrylamide/reduced graphene oxide (PAM@rGO)/Zn

References(37)

[1]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[2]

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

[3]

Chen, X.; Bai, Y. K.; Shen, X.; Peng, H. J.; Zhang, Q. Sodiophilicity/potassiophilicity chemistry in sodium/potassium metal anodes. J. Energy Chem. 2020, 51, 1–6.

[4]

Liu, W.; Liu, P. C.; Mitlin, D. Tutorial review on structure-dendrite growth relations in metal battery anode supports. Chem. Soc. Rev. 2020, 49, 7284–7300.

[5]

Yang, Q.; Li, Q.; Liu, Z. X.; Wang, D. H.; Guo, Y.; Li, X. L.; Tang, Y. C.; Li, H. F.; Dong, B. B.; Zhi, C. Y. Dendrites in Zn-based batteries. Adv. Mater. 2020, 32, 2001854.

[6]

Van Noorden, R. The rechargeable revolution: A better battery. Nature 2014, 507, 26–28.

[7]

Zeng, L. C.; Qiu, L.; Cheng, H. M. Towards the practical use of flexible lithium ion batteries. Energy Storage Mater. 2019, 23, 434–438.

[8]

Li, B.; Zheng, J. S.; Zhang, H. Y.; Jin, L. M.; Yang, D. J.; Lv, H.; Shen, C.; Shellikeri, A.; Zheng, Y. R.; Gong, R. Q. et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 2018, 30, 1705670.

[9]

Xing, Z. Y.; Wang, S.; Yu, A. P.; Chen, Z. W. Aqueous intercalation-type electrode materials for grid-level energy storage: Beyond the limits of lithium and sodium. Nano Energy 2018, 50, 229–244.

[10]

Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.

[11]

Du, W. C.; Ang, E. H. X.; Yang, Y.; Zhang, Y. F.; Ye, M. H.; Li, C. C. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2020, 13, 3330–3360.

[12]

Yi, T. F.; Qiu, L. Y.; Qu, J. P.; Liu, H. Y.; Zhang, J. H.; Zhu, Y. R. Towards high-performance cathodes: Design and energy storage mechanism of vanadium oxides-based materials for aqueous Zn-ion batteries. Coord. Chem. Rev. 2021, 446, 214124.

[13]

Zhang, T. S.; Tang, Y.; Guo, S.; Cao, X. X.; Pan, A. Q.; Fang, G. Z.; Zhou, J.; Liang, S. Q. Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review. Energy Environ. Sci. 2020, 13, 4625–4665.

[14]

Shi, L. N.; Cui, L. T.; Ji, Y. R.; Xie, Y.; Zhu, Y. R.; Yi, T. F. Towards high-performance electrocatalysts: Activity optimization strategy of 2D MXenes-based nanomaterials for water-splitting. Coord. Chem. Rev. 2022, 469, 214668.

[15]

Mainar, A. R.; Leonet, O.; Bengoechea, M.; Boyano, I.; Meatza, I. D.; De Kvasha, A.; Guerfi, A.; Blázquez, J. A. Alkaline aqueous electrolytes for secondary zinc-air batteries: An overview. Int. J. Energy Res. 2016, 40, 1032–1049.

[16]

Fan, L.; Wei, S. Y.; Li, S. Y.; Li, Q.; Lu, Y. Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 2018, 8, 1702657.

[17]

Liu, X. Q.; Yang, F.; Xu, W.; Zeng, Y. X.; He, J. J.; Lu, X. H. Zeolitic imidazolate frameworks as zn2+ modulation layers to enable dendrite-free Zn anodes. Adv. Sci. 2020, 7, 2002173.

[18]

Zhang, Y. J.; Wang, G. Y.; Yu, F. F.; Xu, G.; Li, Z.; Zhu, M.; Yue, Z. J.; Wu, M. H.; Liu, H. K.; Dou, S. X. et al. Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries. Chem. Eng. J. 2021, 416, 128062.

[19]

Deng, Y. P.; Liang, R. L.; Jiang, G. P.; Jiang, Y.; Yu, A. P.; Chen, Z. W. The current state of aqueous Zn-based rechargeable batteries. ACS Energy Lett. 2020, 5, 1665–1675.

[20]

Shin, J.; Lee, J.; Park, Y.; Choi, J. W. Aqueous zinc ion batteries: Focus on zinc metal anodes. Chem. Sci. 2020, 11, 2028–2044.

[21]

Xie, C. L.; Li, Y. H.; Wang, Q.; Sun, D.; Tang, Y. G.; Wang, H. Y. Issues and solutions toward zinc anode in aqueous zinc-ion batteries: A mini review. Carbon Energy 2020, 2, 540–560.

[22]

Huang, T. Q.; Xu, K.; Jia, N.; Yang, L.; Liu, H. T.; Zhu, J. X.; Yan, Q. Y. Intrinsic interfacial dynamic engineering of zincophilic microbrushes via regulating Zn deposition for highly reversible aqueous zinc ion battery. Adv. Mater. 2023, 35, 2205206.

[23]

Cui, Y. H.; Zhao, Q. H.; Wu, X. J.; Chen, X.; Yang, J. L.; Wang, Y. T.; Qin, R. Z.; Ding, S. X.; Song, Y. L.; Wu, J. W. et al. An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem., Int. Ed. 2020, 59, 16594–16601.

[24]

Tao, F.; Feng, K. J.; Liu, Y.; Ren, J. Z.; Xiong, Y.; Li, C. B.; Ren, F. Z. Suppressing interfacial side reactions of zinc metal anode via isolation effect toward high-performance aqueous zinc-ion batteries. Nano Res. 2023, 16, 6789–6797.

[25]

Liu, P. G.; Liu, W. F.; Huang, Y. P.; Li, P. L.; Yan, J.; Liu, K. Y. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage. Energy Storage Mater. 2020, 25, 858–865.

[26]

Li, C. P.; Shi, X. D.; Liang, S. Q.; Ma, X. M.; Han, M. M.; Wu, X. W.; Zhou, J. Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem. Eng. J. 2020, 379, 122248.

[27]

Zheng, J. X.; Zhao, Q.; Tang, T.; Yin, J. F.; Quilty, C. D.; Renderos, G. D.; Liu, X. T.; Deng, Y.; Wang, L.; Bock, D. C. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019, 366, 645–648.

[28]
Zeng, L.; He, H. N.; Chen, H. Y.; Luo, D.; He, J.; Zhang, C. H. 3D printing architecting reservoir-integrated anode for dendrite-free, safe, and durable Zn batteries. Adv. Energy Mater. 2022 , 12, 2103708.
DOI
[29]

Li, S. Y.; Fu, J.; Miao, G. X.; Wang, S. P.; Zhao, W. Y.; Wu, Z. C.; Zhang, Y. J.; Yang, X. W. Toward planar and dendrite-free zn electrodepositions by regulating Sn-crystal textured surface. Adv. Mater. 2021, 33, 2008424.

[30]

Zhang, Q.; Luan, J. Y.; Fu, L.; Wu, S. G.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem., Int. Ed. 2019, 58, 15841–15847.

[31]

Lu, H. T.; Zhang, X. L.; Luo, M. H.; Cao, K. S.; Lu, Y. H.; Xu, B. B.; Pan, H. G.; Tao, K.; Jiang, Y. Z. Amino acid-induced interface charge engineering enables highly reversible Zn anode. Adv. Funct. Mater. 2021, 31, 2103514.

[32]

Gao, S. S.; Zhang, Z.; Mao, F. F.; Liu, P. G.; Zhou, Z. Advances and strategies of electrolyte regulation in Zn-ion batteries. Mater. Chem. Front. 2023, 7, 3232–3258.

[33]

Huang, C.; Zhao, X.; Hao, Y. S.; Yang, Y. J.; Qian, Y.; Chang, G.; Zhang, Y.; Tang, Q. L.; Hu, A. P.; Liu, Z. X. et al. Highly reversible zinc metal anodes enabled by protonated melamine. J. Mater. Chem. A 2022, 10, 6636–6640.

[34]

Lee, B. S.; Cui, S.; Xing, X.; Liu, H. D.; Yue, X. J.; Petrova, V.; Lim, H. D.; Chen, R. K.; Liu, P. Dendrite suppression membranes for rechargeable zinc batteries. ACS Appl. Mater. Interfaces 2018, 10, 38928–38935.

[35]

Ghosh, M.; Vijayakumar, V.; Kurungot, S. Dendrite growth suppression by zn2+-integrated nafion ionomer membranes: Beyond porous separators toward aqueous Zn/V2O5 batteries with extended cycle life. Energy Technol. 2019, 7, 1900442.

[36]

Jia, H.; Wang, Z. Q.; Tawiah, B.; Wang, Y. D.; Chan, C. Y.; Fei, B.; Pan, F. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 2020, 70, 104523.

[37]

Zhou, L. F.; Du, T.; Li, J. Y.; Wang, Y. S.; Gong, H.; Yang, Q. R.; Chen, H.; Luo, W. B.; Wang, J. Z. A strategy for anode modification for future zinc-based battery application. Mater. Horiz. 2022, 9, 2722–2751.

File
12274_2023_6290_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 September 2023
Revised: 17 October 2023
Accepted: 26 October 2023
Published: 03 January 2024
Issue date: January 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22208273 and 22272204) and Tianchi Talent Plan of Xinjiang Uygur Autonomous Region.

Return