Journal Home > Volume 17 , Issue 5

The widespread applications of lithium-ion batteries (LIBs) generate tons of spent LIBs. Therefore, recycling LIBs is of paramount importance in protecting the environment and saving the resources. Current commercialized LIBs mostly adopt layered oxides such as LiCoO2 (LCO) or LiNixCoyMn1−xyO2 (NMC) as the cathode materials. Converting the intercalation-type spent oxides into conversion-type cathodes (such as metal fluorides (MFs)) offers a valid recycling strategy and provides substantially improved energy densities for LIBs. Herein, two typical Co-based cathodes, LCO and LiNi0.6Co0.2Mn0.2O2 (NMC622), in spent LIBs were successfully converted to CoF2 and (NixCoyMnz)F2 cathodes by a reduction and fluorination technique. The as converted CoF2 and (NixCoyMnz)F2 delivered cell energy densities of 650 and 700 Wh/kg, respectively. Advanced atomic-level electron microscopy revealed that the used LCO and NMC622 were converted to highly phase pure Co metal and Ni0.6Co0.2Mn0.2 alloys in the used graphite-assisted reduction roasting, simultaneously producing the important product of Li2CO3 using only environment friendly solvent. Our study provided a versatile strategy to convert the intercalation-type Co-based cathode in the spent LIBs into conversion-type MFs cathodes, which offers a new avenue to recycle the spent LIBs and substantially increase the energy densities of next generation LIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Converting intercalation-type cathode in spent lithium-ion batteries into conversion-type cathode

Show Author's information Dingding Zhu1,§Yong Su1,§Jingzhao Chen2,§Xiangze Ou1Xuedong Zhang1Wen Xie1Yuyan Zhou1Yunna Guo2Qiushi Dai2Peng Jia2Jitong Yan2Lin Geng2Baiyu Guo2Liqiang Zhang2Yongfu Tang2Qiao Huang1( )Jianyu Huang1,2( )
School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066000, China

§ Dingding Zhu, Yong Su, and Jingzhao Chen contributed equally to this work.

Abstract

The widespread applications of lithium-ion batteries (LIBs) generate tons of spent LIBs. Therefore, recycling LIBs is of paramount importance in protecting the environment and saving the resources. Current commercialized LIBs mostly adopt layered oxides such as LiCoO2 (LCO) or LiNixCoyMn1−xyO2 (NMC) as the cathode materials. Converting the intercalation-type spent oxides into conversion-type cathodes (such as metal fluorides (MFs)) offers a valid recycling strategy and provides substantially improved energy densities for LIBs. Herein, two typical Co-based cathodes, LCO and LiNi0.6Co0.2Mn0.2O2 (NMC622), in spent LIBs were successfully converted to CoF2 and (NixCoyMnz)F2 cathodes by a reduction and fluorination technique. The as converted CoF2 and (NixCoyMnz)F2 delivered cell energy densities of 650 and 700 Wh/kg, respectively. Advanced atomic-level electron microscopy revealed that the used LCO and NMC622 were converted to highly phase pure Co metal and Ni0.6Co0.2Mn0.2 alloys in the used graphite-assisted reduction roasting, simultaneously producing the important product of Li2CO3 using only environment friendly solvent. Our study provided a versatile strategy to convert the intercalation-type Co-based cathode in the spent LIBs into conversion-type MFs cathodes, which offers a new avenue to recycle the spent LIBs and substantially increase the energy densities of next generation LIBs.

Keywords: recycling, spent lithium-ion batteries, energy densities, conversion-type cathode

References(51)

[1]

Xu, J. J.; Cai, X. Y.; Cai, S. M.; Shao, Y. X.; Hu, C.; Lu, S. R.; Ding, S. J. High-energy lithium-ion batteries: Recent progress and a promising future in applications. Energy Environ. Mater. 2023, 6, e12450.

[2]

Wang, C. Y.; Yang, C. P.; Zheng, Z. J. Toward practical high-energy and high-power lithium battery anodes: Present and future. Adv. Sci. 2022, 9, 2105213.

[3]

Baum, Z. J.; Bird, R. E.; Yu, X.; Ma, J. Lithium-ion battery recycling-overview of techniques and trends. ACS Energy Lett. 2022, 7, 712–719.

[4]

Cao, W. Z.; Zhang, J. N.; Li, H. Batteries with high theoretical energy densities. Energy Storage Mater. 2020, 26, 46–55.

[5]

Guo, F. Y.; Xie, Y. F.; Zhang, Y. X. Low-temperature strategy to synthesize single-crystal LiNi0.8Co0.1Mn0.1O2 with enhanced cycling performances as cathode material for lithium-ion batteries. Nano Res. 2022, 15, 2052–2059.

[6]

Li, M.; Lu, J. Cobalt in lithium-ion batteries. Science 2020, 367, 979–980.

[7]

Turcheniuk, K.; Bondarev, D.; Singhal, V.; Yushin, G. Ten years left to redesign lithium-ion batteries. Nature 2018, 559, 467–470.

[8]

Talens Peiró, L.; Villalba Méndez, G.; Ayres, R. U. Lithium: Sources, production, uses, and recovery outlook. JOM 2013, 65, 986–996.

[9]

Neumann, J.; Petranikova, M.; Meeus, M.; Gamarra, J. D.; Younesi, R.; Winter, M.; Nowak, S. Recycling of lithium-ion batteries-current state of the art, circular economy, and next generation recycling. Adv. Energy Mater. 2022, 12, 2102917.

[10]

Mrozik, W.; Rajaeifar, M. A.; Heidrich, O.; Christensen, P. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ. Sci. 2021, 14, 6099–6121.

[11]

Natarajan, S.; Aravindan, V. An urgent call to spent LIB recycling: Whys and wherefores for graphite recovery. Adv. Energy Mater. 2020, 10, 2002238.

[12]

Zhang, N. J.; Xu, Z. X.; Deng, W. J.; Wang, X. L. Recycling and upcycling spent LIB cathodes: A comprehensive review. Electrochem. Energy Rev. 2022, 5, 33.

[13]

Wu, F. X.; Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 2017, 10, 435–459.

[14]

Wang, L. P.; Wu, Z. R.; Zou, J.; Gao, P.; Niu, X. B.; Li, H.; Chen, L. Q. Li-free cathode materials for high energy density lithium batteries. Joule 2019, 3, 2086–2102.

[15]

Turcheniuk, K.; Bondarev, D.; Amatucci, G. G.; Yushin, G. Battery materials for low-cost electric transportation. Mater. Today 2021, 42, 57–72.

[16]

Huang, Q.; Turcheniuk, K.; Ren, X. L.; Magasinski, A.; Song, A. Y.; Xiao, Y. R.; Kim, D.; Yushin, G. Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites. Nat. Mater. 2019, 18, 1343–1349.

[17]

Yan, D.; Yang, H. Y.; Bai, Y. Tactics to optimize conversion-type metal fluoride/sulfide/oxide cathodes toward advanced lithium metal batteries. Nano Res. 2023, 16, 8173–8190.

[18]

Lu, X. F.; Fang, Y. J.; Luan, D. Y.; Lou, X. W. D. Metal-organic frameworks derived functional materials for electrochemical energy storage and conversion: A mini review. Nano Lett. 2021, 21, 1555–1565.

[19]

Fan, X. L.; Hu, E. Y.; Ji, X.; Zhu, Y. Z.; Han, F. D.; Hwang, S.; Liu, J.; Bak, S.; Ma, Z. H.; Gao, T. et al. High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction. Nat. Commun. 2018, 9, 2324.

[20]

Huang, Q.; Pollard, T. P.; Ren, X. L.; Kim, D.; Magasinski, A.; Borodin, O.; Yushin, G. Fading mechanisms and voltage hysteresis in FeF2-NiF2 solid solution cathodes for lithium and lithium-ion batteries. Small 2019, 15, 1804670.

[21]

Wang, F.; Kim, S. W.; Seo, D. H.; Kang, K.; Wang, L. P.; Su, D.; Vajo, J. J.; Wang, J.; Graetz, J. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis. Nat. Commun. 2015, 6, 6668.

[22]

Plitz, I.; Badway, F.; Al-Sharab, J.; DuPasquier, A.; Cosandey, F.; Amatucci, G. G. Structure and electrochemistry of carbon-metal fluoride nanocomposites fabricated by solid-state redox conversion reaction. J. Electrochem. Soc. 2005, 152, A307.

[23]

Xiao, A. W.; Lee, H. J.; Capone, I.; Robertson, A.; Wi, T. U.; Fawdon, J.; Wheeler, S.; Lee, H. W.; Grobert, N.; Pasta, M. Understanding the conversion mechanism and performance of monodisperse FeF2 nanocrystal cathodes. Nat. Mater. 2020, 19, 644–654.

[24]

Yu, S. H.; Feng, X. R.; Zhang, N.; Seok, J.; Abruña, H. D. Understanding conversion-type electrodes for lithium rechargeable batteries. Acc. Chem. Res. 2018, 51, 273–281.

[25]

Hua, X.; Eggeman, A. S.; Castillo-Martínez, E.; Robert, R.; Geddes, H. S.; Lu, Z. H.; Pickard, C. J.; Meng, W.; Wiaderek, K. M.; Pereira, N. et al. Revisiting metal fluorides as lithium-ion battery cathodes. Nat. Mater. 2021, 20, 841–850.

[26]

Zhou, M. X.; Li, B.; Li, J.; Xu, Z. M. Pyrometallurgical technology in the recycling of a spent lithium ion battery: Evolution and the challenge. ACS EST Eng. 2021, 1, 1369–1382.

[27]

Windisch-Kern, S.; Holzer, A.; Ponak, C.; Raupenstrauch, H. Pyrometallurgical lithium-ion-battery recycling: Approach to limiting lithium slagging with the InduRed reactor concept. Processes 2021, 9, 84.

[28]

Li, Y. K.; Lv, W. G.; Zhao, H.; Xie, Y. B.; Ruan, D. S.; Sun, Z. Regeneration of anode materials from complex graphite residue in spent lithium-ion battery recycling process. Green Chem. 2022, 24, 9315–9328.

[29]

Niu, B.; Xiao, J. F.; Xu, Z. M. Advances and challenges in anode graphite recycling from spent lithium-ion batteries. J. Hazard. Mater. 2022, 439, 129678.

[30]

Chen, X. P.; Wang, Y.; Li, S. Z.; Jiang, Y. Z.; Cao, Y.; Ma, X. Selective recycling of valuable metals from waste LiCoO2 cathode material of spent lithium-ion batteries through low-temperature thermochemistry. Chem. Eng. J. 2022, 434, 134542.

[31]

Jiao, M. L.; Zhang, Q.; Ye, C. L.; Liu, Z. B.; Zhong, X. W.; Wang, J. X.; Li, C.; Dai, L. X.; Zhou, G. M.; Cheng, H. M. Recycling spent LiNi1− x y Mn x Co y O2 cathodes to bifunctional NiMnCo catalysts for zinc-air batteries. Proc. Natl. Acad. Sci. USA 2022, 119, e2202202119.

[32]

Wang, W. Q.; Zhang, Y. C.; Liu, X. G.; Xu, S. M. A simplified process for recovery of Li and Co from spent LiCoO2 cathode using Al Foil as the in situ reductant. ACS Sustain. Chem. Eng. 2019, 7, 12222–12230.

[33]

Ha, Y.; Martin, T. R.; Frisco, S.; Rynearson, L.; Schulze, M. C.; Han, S. D.; Trask, S. E.; Lucht, B. L.; Teeter, G.; Neale, N. R. Evaluating the effect of electrolyte additive functionalities on NMC622/Si cell performance. J. Electrochem. Soc. 2022, 169, 070515.

[34]

Lutjes, N. R.; Zhou, S. L.; Antoja-Lleonart, J.; Noheda, B.; Ocelík, V. Spherulitic and rotational crystal growth of quartz thin films. Sci. Rep. 2021, 11, 14888.

[35]

Zhu, Y. M.; Wu, D. J.; Yang, X. M.; Zeng, L. Y.; Zhang, J.; Chen, D. L.; Wang, B.; Gu, M. Microscopic investigation of crack and strain of LiCoO2 cathode cycled under high voltage. Energy Storage Mater. 2023, 60, 102828.

[36]

Wilson, J. R.; Cronin, J. S.; Barnett, S. A.; Harris, S. J. Measurement of three-dimensional microstructure in a LiCoO2 positive electrode. J. Power Sources 2011, 196, 3443–3447.

[37]

Luo, J. W.; Zhang, J. C.; Guo, Z. X.; Liu, Z. D.; Dou, S. M.; Liu, W. D.; Chen, Y. N.; Hu, W. B. Recycle spent graphite to defect-engineered, high-power graphite anode. Nano Res. 2023, 16, 4240–4245.

[38]

Jiang, Y. Y.; Yan, P. F.; Yu, M. C.; Li, J. M.; Jiao, H.; Zhou, B.; Sui, M. Atomistic mechanism of cracking degradation at twin boundary of LiCoO2. Nano Energy 2020, 78, 105364.

[39]

Chen, J.; Chen, H. Y.; Zhang, S.; Dai, A.; Li, T. Y.; Mei, Y.; Ni, L. S.; Gao, X.; Deng, W. T.; Yu, L. et al. Structure/interface coupling effect for high-voltage LiCoO2 cathodes. Adv. Mater. 2022, 34, 2204845.

[40]

Huang, J. Y.; Wu, Y. K.; Ye, H. Q. Allotropic transformation of cobalt induced by ball milling. Acta Mater. 1996, 44, 1201–1209.

[41]

Li, Z.; Bigdeli, S.; Mao, H. H.; Chen, Q.; Selleby, M. Thermodynamic evaluation of pure Co for the third generation of thermodynamic databases. Phys. Status Solidi (B) 2017, 254, 1600231.

[42]

Zhao, X. Q.; Veintemillas-Verdaguer, S.; Bomati-Miguel, O.; Morales, M. P.; Xu, H. B. Thermal history dependence of the crystal structure of Co fine particles. Phys. Rev. B 2005, 71, 024106.

[43]

Sato, H.; Kitakami, O.; Sakurai, T.; Shimada, Y.; Otani, Y.; Fukamichi, K. Structure and magnetism of hcp-Co fine particles. J. Appl. Phys. 1997, 81, 1858–1862.

[44]

Sort, J.; Nogués, J.; Suriñach, S.; Baró, M. D. Microstructural aspects of the hcp-fcc allotropic phase transformation induced in cobalt by ball milling. Philos. Mag. 2003, 83, 439–455.

[45]

De La Peña O’Shea, V. A.; De La Piscina, P. R.; Homs, N.; Aromí, G.; Fierro, J. L. G. Development of hexagonal closed-packed cobalt nanoparticles stable at high temperature. Chem. Mater. 2009, 21, 5637–5643.

[46]

Gonzalez, G.; Sagarzazu, A.; Bonyuet, D.; D’Angelo, L.; Villalba, R. Solid state amorphisation in binary systems prepared by mechanical alloying. J. Alloys Compd. 2009, 483, 289–297.

[47]

Huang, Q.; Turcheniuk, K.; Ren, X. L.; Magasinski, A.; Gordon, D.; Bensalah, N.; Yushin, G. Insights into the effects of electrolyte composition on the performance and stability of FeF2 conversion-type cathodes. Adv. Energy Mater. 2019, 9, 1803323.

[48]

Wang, X. F.; Liu, G. F.; Tang, C.; Tang, H. L.; Zhang, W. Y.; Ju, Z. C.; Jiang, J. M.; Zhuang, Q. C.; Cui, Y. H. A novel high entropy perovskite fluoride anode with 3D cubic framework for advanced lithium-ion battery. J. Alloys Compd. 2023, 934, 167889.

[49]

Park, H.; Jang, I. S.; Song, B. Y.; Kang, Y. C.; Kim, S.; Chun, J. Facile synthesis of cobalt fluoride (CoF2)/multi-walled carbon nanotube (MWCNT) nanocomposites and improvement of their electrochemical performance as cathode materials for Li-ion batteries. J. Mater. Chem. A 2023, 11, 15319–15328.

[50]

Su, Y.; Liu, S. X.; Zhu, D. D.; Luo, Y.; Zhang, X. D.; Yan, J. T.; Chen, J. Z.; Geng, L.; Guo, B. Y.; Li, H. et al. Cryo-TEM studies of binder free high performance FeF2 cathode based full cells enabled by surface engineering. Energy Storage Mater. 2023, 59, 102779.

[51]
Zhou, X.; Zhu, D. D.; Su, Y.; Wu, F. X.; Ren, X. L.; Zhang, X. D.; Ou, X. Z.; Rao, Y. L.; Xie, L.; Tang, L. et al. Cryo-TEM study of high-performance iron difluoride cathode enabled by low temperature CVD carbon coating. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202307131.
File
12274_2023_6289_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 September 2023
Revised: 17 October 2023
Accepted: 25 October 2023
Published: 21 November 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U20A20336, 21935009, 52002346, 52022088, 51971245, and 22205191), the Science and Technology Innovation Program of Hunan Province (No. 2021RC3109), the Natural Science Foundation of Hunan Province, China (No. 2022JJ40446), and Natural Science Foundation of Hebei Province (Nos. B2020203037 and B2018203297).

Return