Journal Home > Volume 17 , Issue 5

Efficient photocatalysis and electrocatalysis in energy conversion have been important strategies to alleviate energy crises and environmental issues. In recent years, with the rapid development of emerging catalysts, significant progress has been made in photocatalysis for converting solar energy into chemical energy and electrocatalysis for converting electrical energy into chemical energy. However, their selectivity and efficiency of the products are poor. Rare earth (RE) can achieve atomic level fine regulation of catalysts and play an crucial role in optimizing catalyst performance by their unique electronic and orbital structures. However, there is a lack of systematic review on the atomic interface regulation mechanism of RE and their role in energy conversion processes. Single atom catalysts (SACs) provide clear active sites and 100% atomic utilization, which is conducive to exploring the regulatory mechanisms of RE. Therefore, this review mainly takes atomic level doped RE as an example to review and discuss the atomic interface regulation role of RE elements in energy conversion. Firstly, a brief introduction was given to the synthesis strategies that can effectively exert the atomic interface regulation effect of RE, with a focus on the atomic interface regulation mechanism of RE. Meanwhile, the regulatory mechanisms of RE atoms have been systematically summarized in various energy conversion applications. Finally, the challenges faced by RE in energy conversion, as well as future research directions and prospects, were pointed out.


menu
Abstract
Full text
Outline
About this article

Atomic interface regulation of rare-marth metal single atom catalysts for energy conversion

Show Author's information Ziheng ZhanZhiyi SunZihao WeiYaqiong LiWenxing Chen( )Shenghua Li( )Siping Pang( )
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

Efficient photocatalysis and electrocatalysis in energy conversion have been important strategies to alleviate energy crises and environmental issues. In recent years, with the rapid development of emerging catalysts, significant progress has been made in photocatalysis for converting solar energy into chemical energy and electrocatalysis for converting electrical energy into chemical energy. However, their selectivity and efficiency of the products are poor. Rare earth (RE) can achieve atomic level fine regulation of catalysts and play an crucial role in optimizing catalyst performance by their unique electronic and orbital structures. However, there is a lack of systematic review on the atomic interface regulation mechanism of RE and their role in energy conversion processes. Single atom catalysts (SACs) provide clear active sites and 100% atomic utilization, which is conducive to exploring the regulatory mechanisms of RE. Therefore, this review mainly takes atomic level doped RE as an example to review and discuss the atomic interface regulation role of RE elements in energy conversion. Firstly, a brief introduction was given to the synthesis strategies that can effectively exert the atomic interface regulation effect of RE, with a focus on the atomic interface regulation mechanism of RE. Meanwhile, the regulatory mechanisms of RE atoms have been systematically summarized in various energy conversion applications. Finally, the challenges faced by RE in energy conversion, as well as future research directions and prospects, were pointed out.

Keywords: single-atom catalyst, energy conversion, rare earth elements, interface regulation effect

References(155)

[1]

Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326–11353.

[2]

Sun, L. J.; Su, H. W.; Liu, Q. Q.; Hu, J.; Wang, L. L.; Tang, H. A review on photocatalytic systems capable of synchronously utilizing photogenerated electrons and holes. Rare Met. 2022, 41, 2387–2404.

[3]

Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175.

[4]

Painuly, J. P. Barriers to renewable energy penetration; a framework for analysis. Renew. Energy 2001, 24, 73–89.

[5]

Tilman, D.; Socolow, R.; Foley, J. A.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.; Somerville, C.; Williams, R. Beneficial biofuels-the food, energy, and environment trilemma: Exploiting multiple feedstocks, under new policies and accounting rules, to balance biofuel production, food security, and greenhouse-gas reduction. Science 2009, 325, 270–271.

[6]

Zhang, W.; Jia, B. H.; Liu, X.; Ma, T. Y. Surface and interface chemistry in metal-free electrocatalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 5–34.

[7]

Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

[8]

Fujishima, A.; Zhang, X. T.; Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582.

[9]

Fu, J. W.; Xu, Q. L.; Low, J.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B Environ. 2019, 243, 556–565.

[10]

Sun, Z. Y.; Wang, S.; Chen, W. X. Metal single-atom catalysts for selective hydrogenation of unsaturated bonds. J. Mater. Chem. A 2021, 9, 5296–5319.

[11]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[12]

Xu, J.; Chen, X. Y.; Xu, Y. S.; Du, Y. P.; Yan, C. H. Ultrathin 2D rare-earth nanomaterials: Compositions, syntheses, and applications. Adv. Mater. 2020, 32, 1806461.

[13]

Donati, F.; Pivetta, M.; Wolf, C.; Singha, A.; Wäckerlin, C.; Baltic, R.; Fernandes, E.; De Groot, J. G.; Ahmed, S. L.; Persichetti, L. et al. Correlation between electronic configuration and magnetic stability in dysprosium single atom magnets. Nano Lett. 2021, 21, 8266–8273.

[14]

Liu, J. X.; Chen, W. F.; Li, J. F.; Cui, C. M. Rare-earth-catalyzed regioselective hydrosilylation of aryl-substituted internal alkenes. ACS Catal. 2018, 8, 2230–2235.

[15]

Zhang, F. X.; Hu, P. Q.; Zhang, Z. M.; Gong, J. H.; Wang, D. H. Tailoring coercive field in rare earth giant magnetostrictive materials by α-Fe precipitation. Rare Met. 2023, 42, 606–613.

[16]

Pan, X. J.; Yang, Z. Q.; Xu, Y.; Wang, M.; Huang, X. W.; Feng, Z. Y.; Zhong, Q.; Peng, X. L. Separation and purification of Yb2O3 by ion exchange chromatography and preparation of ultra-high purity Yb2O3. Rare Met. 2023, 42, 2725–2735.

[17]

Liu, J. Y.; Kong, X.; Zheng, L. R.; Guo, X.; Liu, X. F.; Shui, J. L. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020, 14, 1093–1101.

[18]

Stojadinović, S.; Radić, N.; Grbić, B.; Maletić, S.; Stefanov, P.; Pačevski, A.; Vasilić, R. Structural, photoluminescent, and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation. Appl. Surf. Sci. 2016, 370, 218–228.

[19]

Bünzli, J. C. G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 2010, 110, 2729–2755.

[20]

Bingham, S.; Daoud, W. A. Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping. J. Mater. Chem. 2011, 21, 2041–2050.

[21]

Zhu, F. L.; Meng, Y. S.; Huang, X. Y. Electro-catalytic degradation properties of Ti/SnO2-Sb electrodes doped with different rare earths. Rare Met. 2016, 35, 412–418.

[22]

Ma, Y.; Mu, G. M.; Miao, Y. J.; Lin, D. M.; Xu, C. G.; Xie, F. Y.; Zeng, W. Hydrangea flower-like nanostructure of dysprosium-doped Fe-MOF for highly efficient oxygen evolution reaction. Rare Met. 2022, 41, 844–850.

[23]

Liang, Z.; Yin, L. L.; Yin, H.; Yin, Z. Y.; Du, Y. P. Rare earth element based single-atom catalysts: Synthesis, characterization, and applications in photo/electro-catalytic reactions. Nanoscale Horiz. 2022, 7, 31–40.

[24]

Zhang, N. Q.; Yan, H.; Li, L. C.; Wu, R.; Song, L. Y.; Zhang, G. Z.; Liang, W. J.; He, H. Use of rare earth elements in single-atom site catalysis: A critical review—Commemorating the 100th anniversary of the birth of Academician Guangxian Xu. J. Rare Earths. 2021, 39, 233–242.

[25]

Wang, X.; Zhu, Y.; Li, H.; Lee, J. M.; Tang, Y. W.; Fu, G. T. Rare-earth single-atom catalysts: A new frontier in photo/electrocatalysis. Small Methods 2022, 6, 2200413.

[26]

Chen, W. P.; Liao, P. Q.; Jin. P. B.; Zhang, L.; Ling, B. K.; Wang, S. C.; Chan, Y. T.; Chen, X. M.; Zheng, Y. Z. The gigantic {Ni36Gd102} hexagon: A sulfate-templated “star-of-david” for photocatalytic CO2 reduction and magnetic cooling. J. Am. Chem. Soc. 2020, 142, 4663–4670.

[27]

Wu, J.; Xie, Y.; Ling, Y.; Si, J. C.; Li, X.; Wang, J. L.; Ye, H.; Zhao, J. S.; Li, S. Q.; Zhao, Q. D. et al. One-step synthesis and Gd3+ decoration of BiOBr microspheres consisting of nanosheets toward improving photocatalytic reduction of CO2 into hydrocarbon fuel. Chem. Eng. J. 2020, 400, 125944.

[28]

Shi, J. W.; Ye, J. H.; Ma, L. J.; Ouyang, S. X.; Jing, D. W.; Guo, L. J. Site-selected doping of upconversion luminescent Er3+ into SrTiO3 for visible-light-driven photocatalytic H2 or O2 evolution. Chem.—Eur. J. 2012, 18, 7543–7551.

[29]

Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

[30]

Yin, L. L.; Zhang, S.; Sun, M. Z.; Wang, S. Y.; Huang, B. L.; Du, Y. P. Heteroatom-driven coordination fields altering single cerium atom sites for efficient oxygen reduction reaction. Adv. Mat. 2023, 35, 2302485

[31]
Xiao, Y. J.; Zhang, X.; Yan, D. K.; Deng, J. B.; Chen, M. J.; Zhang, H. L.; Sun, W. H.; Zhao, J. P.; Li, Y. Defect engineering of W6+-doped NiO for high-performance black smart windows. Nano Res., in press, https://doi.org/10.1007/s12274-023-6106-z.
[32]
Ding, Y. J.; Huang, Y. C.; Li, Y. J.; Zhang, T.; Wu, Z. S. Regulating surface electron structure of PtNi nanoalloy via boron doping for high-current-density Li-O2 batteries with low overpotential and long-life cyclability. SmartMat, in press, https://doi.org/10.1002/smm2.1150.
[33]

Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, 9120029.

[34]

Chen, Q. Y.; Gao, G. Y.; Zhang, Y. Z.; Li, Y. N.; Zhu, H. Y.; Zhu, P. F.; Qu, Y.; Wang, G. F.; Qin, W. P. Dual functions of CO2 molecular activation and 4f levels as electron transport bridges in erbium single atom composite photocatalysts therefore enhancing visible-light photoactivities. J. Mater. Chem. A 2021, 9, 15820–15826.

[35]

Zhou, X. H.; Su, T. M.; Jiang, Y. X.; Qin, Z. Z.; Ji, H. B.; Guo, Z. H. CuO-Fe2O3-CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis. Chem. Eng. Sci. 2016, 153, 10–20.

[36]

Fan, Z. Y.; Shi, J. W.; Gao, C.; Gao, G.; Wang, B. R.; Wang, Y.; He, C.; Niu. C. M. Gd-modified MnO x for the selective catalytic reduction of NO by NH3: The promoting effect of Gd on the catalytic performance and sulfur resistance. Chem. Eng. J. 2018, 348, 820–830.

[37]

Si, X. Z.; Pan, X. Z.; Xue, J. T.; Yao, Q. X.; Huang, X. Q.; Duan, W. Z.; Qiu, Y.; Su, J.; Cao, M. L.; Li, J. Robust acid–base Ln-MOFs: Searching for efficient catalysts in cycloaddition of CO2 with epoxides and cascade deacetalization-knoevenagel reactions. RSC Adv. 2022, 12, 33501–33509.

[38]

Wang, X. N.; Tong, Y. F.; Feng, W. T.; Liu, P. Y.; Li, X. J.; Cui, Y. P.; Cai, T. H.; Zhao, L. M.; Xue, Q. Z.; Yan, Z. F. et al. Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation. Nat. Commun. 2023, 14, 3767.

[39]

Wang, L.; Liu, H.; Huang, S.; Zhong, S. L. Low-temperature molten salt synthesis and luminescence properties of Eu(III)-based coordination polymer nanosheets. Rare Met. 2021, 40, 728–735.

[40]

Sarkar, R.; Kumari, S.; Kundu, T. K. Density functional theory based studies on the adsorption of rare-earth ions from hydrated nitrate salt solutions on g-C3N4 monolayer surface. J. Mol. Graph. Model. 2020, 97, 107577.

[41]

Kang, H. C.; Peng, H.; Kang, Y. M.; Hao, Y. X.; Li, L. F.; Liu, F. Q.; Xin, H. Y.; Wang, W.; Lei, Z. Q. Nitrogen-doped carbon-encapsulated SmFeO x bimetallic nanoparticles as high-performance electrocatalysts for oxygen reduction reaction. J. Taiwan Inst. Chem. E. 2022, 141, 104579.

[42]

Wang, S. G.; Zhou, P.; Zhou, L.; Lv, F.; Sun, Y. J.; Zhang, Q. H.; Gu, L.; Yang, H.; Guo, S. J. A unique gas-migration, trapping, and emitting strategy for high-loading single atomic Cd sites for carbon dioxide electroreduction. Nano Lett. 2021, 21, 4262–4269.

[43]

Liu, J. B.; Gong, H. S.; Ye, G. L.; Fei, H. L. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022, 41, 1703–1726.

[44]

Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

[45]

Zhu, M. Z.; Zhao, C.; Liu, X. K.; Wang, X. L.; Zhou, F. Y.; Wang, J.; Hu, Y. M.; Zhao, Y. F.; Yao, T.; Yang, L. M. et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells. ACS Catal. 2021, 11, 3923–3929.

[46]

Nagai, Y.; Hirabayashi, T. Dohmae, K. Takagi, N. Minami, T. Shinjoh, H.; Matsumoto, S. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction. J. Catal. 2006, 242, 103–109.

[47]

Zhang, W. H.; Ding, S. J.; Zhang, Q. S.; Yi, H.; Liu, Z. X.; Shi, M. L.; Guan, R. F.; Yue, L. Rare earth element-doped porous In2O3 nanosheets for enhanced gas-sensing performance. Rare Met. 2021, 40, 1662–1668.

[48]

Zhu, Y. G.; Shang, C. Q.; Wang, Z. Y.; Zhang, J. Q.; Yang, M. Y.; Cheng, H.; Lu, Z. G. Co and N co-modified carbon nanotubes as efficient electrocatalyst for oxygen reduction reaction. Rare Met. 2021, 40, 90–95.

[49]

Sun, L. J.; Su, H. W.; Xu, D. F.; Wang, L. L.; Tang, H.; Liu, Q. Q. Carbon hollow spheres as cocatalyst of Cu-doped TiO2 nanoparticles for improved photocatalytic H2 generation. Rare Met. 2022, 41, 2063–2073.

[50]

Zhou, X. L.; Liu, H.; Xia, B. Y.; Ostrikov, K. Zheng, Y; Qiao, S. Z. Customizing the microenvironment of CO2 electrocatalysis via three-phase interface engineering. SmartMat 2022, 3, 111–129.

[51]
Yang, Y. P.; Liu, C. H.; Song, T. L.; Li, M. F.; Zhao, Z. P. Surface engineering of 1D nanocatalysts for value-added selective electrooxidation of organic chemicals. Nano Res., in press, https://doi.org/10.1007/s12274-023-5944-z.
[52]

Tang, J.; Chen, Z. L.; Yu, X. L.; Tang, W. Z. Rare earth elements (lanthanum, cerium, and erbium) doped black oxygen deficient Bi2O3-Bi2O3− x as novel photocatalysts enhanced photocatalytic performance. J. Rare Earths 2022, 40, 1053–1062.

[53]

Chen, P.; Lei, B.; Dong, X. A.; Wang, H.; Sheng, J. P.; Cui, W.; Li, J. Y.; Sun, Y. J.; Wang, Z. M.; Dong, F. Rare-earth single-atom La-N charge-transfer bridge on carbon nitride for highly efficient and selective photocatalytic CO2 reduction. ACS Nano 2020, 14, 15841–15852.

[54]

Zhang, L. F.; Meng, J. L.; Yao, F.; Liu, X. J.; Meng, J.; Zhang, H. J. Strong-correlated behavior of 4f electrons and 4f5d hybridization in PrO2. Sci. Rep. 2018, 8, 15995.

[55]

Zhang, L. F.; Meng, J. L.; Liu, X. J.; Yao, F.; Meng, J.; Zhang, H. J. Mechanism of the high transition temperature for the 1111-type iron-based superconductors RFeAsO (R = rare earth): Synergistic effects of local structures and 4f electrons. Phys. Rev. B 2017, 96, 045114.

[56]

Han, Z. D.; Zhao, Y.; Gao, G. Y.; Zhang, W. Y.; Qu, Y.; Zhu, H. Y.; Zhu, P. F.; Wang, G. F. Erbium single atom composite photocatalysts for reduction of CO2 under visible light: CO2 molecular activation and 4f levels as an electron transport bridge. Small 2021, 17, 2102089.

[57]

Wang, P.; Shi, W. W.; Jin, N.; Liu, Z. Y.; Wang, Y. C.; Cai, T.; Hills-Kimball, K.; Yang, H. J.; Yang, X. T.; Jin, Y. D. et al. Counterbalancing of electron and hole transfer in quantum dots for enhanced photocatalytic H2 evolution. Nano Res. 2023, 16, 2271–2277.

[58]

Nazarov, A. N.; Tiagulskyi, S. I.; Tyagulskyy, I. P.; Lysenko, V. S.; Rebohle, L.; Lehmann, J.; Prucnal, S.; Voelskow, M.; Skorupa, W. The effect of rare-earth clustering on charge trapping and electroluminescence in rare-earth implanted metal-oxide-semiconductor light-emitting devices. J. Appl. Phys. 2010, 107, 123112.

[59]

Sun, D.; Chen, Y. J.; Yu, X. Y.; Yin, Y. J.; Tian, G. H. Engineering high-coordinated cerium single-atom sites on carbon nitride nanosheets for efficient photocatalytic amine oxidation and water splitting into hydrogen. Chem. Eng. J. 2023, 462, 142084.

[60]

Ichihara, F.; Sieland, F.; Pang, H.; Philo, D.; Duong, A. T.; Chang, K.; Kako, T.; Bahnemann, D. W.; Ye, J. H. Photogenerated charge carriers dynamics on La- and/or Cr-doped SrTiO3 nanoparticles studied by transient absorption spectroscopy. J. Phys. Chem. C 2020, 124, 1292–1302.

[61]

Bhatt, H.; Goswami, T.; Yadav, D. K.; Ghorai, N.; Shukla, A.; Kaur, G.; Kaur, A.; Ghosh, H. N. Ultrafast hot electron transfer and trap-state mediated charge carrier separation toward enhanced photocatalytic activity in g-C3N4/ZnIn2S4 heterostructure. J. Phys. Chem. Lett. 2021, 12, 11865–11872.

[62]

Tong, J.; Huan, J.; Yu, X.; Cheng, J. H.; Zhang, Z. J.; Xing, J. J.; Zhao, J. T.; Yang, X. X. Significantly enhanced mechanoluminescence from Nb5+ co-doped ZrO2:Sm3+ via a high valence ion doping strategy. J. Mater. Chem. C 2023, 11, 11597–11605.

[63]

Li, M.; Wu, X. D.; Liu, K.; Zhang, Y. F.; Jiang, X. C.; Sun, D. M.; Tang, Y. W.; Huang, K.; Fu, G. T. Nitrogen vacancies enriched Ce-doped Ni3N hierarchical nanosheets triggering highly-efficient urea oxidation reaction in urea-assisted energy-saving electrolysis. J. Energy Chem. 2022, 69, 506–515.

[64]

Liu, Y.; Ma, C.; Zhang, Q. H.; Wang, W.; Pan, P. F.; Gu, L.; Xu, D. D.; Bao, J. C.; Dai, Z. H. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv. Mater. 2019, 31, 1900062

[65]

Liu, X. F.; Luo, Y. N.; Ling, C. C.; Shi, Y. B.; Zhan, G. M.; Li, H.; Gu, H. Y.; Wei, K.; Guo, F. R.; Ai, Z. H. et al. Rare earth La single atoms supported MoO3− x for efficient photocatalytic nitrogen fixation. App. Catal. B Environ. 2022, 301, 120766.

[66]

Ci, H. M.; Shi, Z. X.; Wang, M. L.; He, Y.; Sun, J. Y. A review in rational design of graphene toward advanced Li-S batteries. Nano Res. Energy 2023, 2, e9120054.

[67]

Hammer, B.; Norskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.

[68]

Yu, Z. Z.; Yang, K.; Yu, C. L.; Lu, K. Q.; Huang, W. Y.; Xu, L.; Zou, L. X.; Wang, S. B.; Chen, Z.; Hu, J. et al. Steering unit cell dipole and internal electric field by highly dispersed Er atoms embedded into NiO for efficient CO2 photoreduction. Adv. Funct. Mater. 2022, 32, 2111999.

[69]

Wang, Y.; You, L. M.; Zhou, K. Origin of the N-coordinated single-atom Ni sites in heterogeneous electrocatalysts for CO2 reduction reaction. Chem. Sci. 2021, 12, 14065–14073.

[70]

Liu, D. Y.; Zeng, Q.; Hu, C. Q.; Chen, D.; Liu, H.; Han, Y. S.; Xu, L.; Zhang, Q. B.; Yang, J. Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Res. Energy 2022, 1, 9120017.

[71]

Yang, D. R.; Wang, X. 2D π-conjugated metal–organic frameworks for CO2 electroreduction. SmartMat 2022, 3, 54–67

[72]

Li, L. L.; Hasan, I. M. U.; Farwa; He, R. N.; Peng, L. W.; Xu, N. M.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, 9120015.

[73]

Feng, Q.; Chang, Z.; Hao, Y.; Liu, C. L.; Yang, Z. X.; Su, H. R.; Tan, W. W.; Xu, L. J. Highly efficient Ni-Mo-P composite rare earth elements electrode as electrocatalytic cathode for oil-based drill sludge treatment. J. Environ. Manage. 2022, 324, 116328.

[74]

Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, 9120021.

[75]

Li, L.; Zhang, Z. C. Sn–Bi bimetallic interface induced by nano-crumples for CO2 electroreduction to formate. Rare Met. 2022, 41, 3943–3945.

[76]

Wang, J. J.; Li, X. P.; Cui, B. F.; Zhang, Z.; Hu, X. F.; Ding, J.; Deng, Y. D.; Han, X. P.; Hu, W. B. A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Met. 2021, 40, 3019–3037.

[77]

Shang, H. S.; Liu, D. Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano Res. 2023, 16, 6477–6506.

[78]

Sandrini, G.; Matthijs, H. C. P.; Verspagen, J. M. H.; Muyzer, G.; Huisman, J. Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis. ISME J. 2014, 8, 589–600.

[79]

Li, Q.; Wang, Y. C.; Zeng, J. Z.; Zhao, X.; Chen, C.; Wu, Q. M.; Chen, L. M.; Chen, Z. Y.; Lei, Y. P. Bimetallic chalcogenides for electrocatalytic CO2 reduction. Rare Met. 2021, 40, 3442–3453.

[80]

König, M.; Vaes, J.; Klemm, E.; Pant, D. Solvents and supporting electrolytes in the electrocatalytic reduction of CO2. iScience 2019, 19, 135–160.

[81]

Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.

[82]
Wang, S. W.; Gao, Q.; Xu, C.; Jiang, S.; Zhang, M. Y.; Yin, X. J.; Peng, H. Q.; Liu, B.; Song, Y. F. Molecular surface functionalization of In2O3 to tune interfacial microenvironment for enhanced catalytic performance of CO2 electroreduction. Nano Res., in press, https://doi.org/10.1007/s12274-023-6019-x.
[83]

Bhowmik, A.; Vegge, T.; Hansen, H. A. Descriptors and thermodynamic limitations of electrocatalytic carbon dioxide reduction on rutile oxide surfaces. ChemSusChem 2016, 9, 3230–3243.

[84]

Wang, Z. Q.; Chu, D. R.; Zhou, H.; Wu, X. P.; Gong, X. Q. Role of low-coordinated Ce in hydride formation and selective hydrogenation reactions on CeO2 surfaces. ACS Catal. 2022, 12, 624–632.

[85]

Hu, F. Z.; Liao, L. L.; Chi, B. Z.; Wang, H. M. Rare earth praseodymium-based single atom catalyst for high performance CO2 reduction reaction. Chem. Eng. J. 2022, 436, 135271.

[86]

Gupta, N.; Gattrell, M.; MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 2006, 36, 161–172.

[87]

Singh, M. R.; Goodpaster, J. D.; Weber, A. Z.; Head-Gordon, M.; Bell, A. T. Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models. Proc. Natl. Acad. Sci. USA 2017, 114, E8812–E8821.

[88]

Li, C.; Zhao, D. H.; Long, H. L.; Li, M. Recent advances in carbonized non-noble metal–organic frameworks for electrochemical catalyst of oxygen reduction reaction. Rare Met. 2021, 40, 2657–2689.

[89]

Liu, K. Y.; Chen, P. W.; Sun, Z. Y.; Chen, W. X.; Zhou, Q.; Gao, X. The atomic interface effect of single atom catalysts for electrochemical hydrogen peroxide production. Nano Res. 2023, 16, 10724–10741.

[90]

Li, L. B.; Huang, B. Y.; Tang, X. N.; Hong, Y. S.; Zhai, W. J.; Hu, T.; Yuan, K.; Chen, Y. W. Recent developments of microenvironment engineering of single-atom catalysts for oxygen reduction toward desired activity and selectivity. Adv. Funct. Mater. 2021, 31, 2103857.

[91]

Wang, X. T.; Lin, X. F.; Yu, D. S. Metal-containing covalent organic framework: A new type of photo/electrocatalyst. Rare Met. 2022, 41, 1160–1175.

[92]

Li, J. C.; Qin, X. P.; Xiao, F.; Liang, C. H.; Xu, M. J.; Meng, Y.; Sarnello, E.; Fang, L. Z.; Li, T.; Ding, S. C. et al. Highly dispersive cerium atoms on carbon nanowires as oxygen reduction reaction electrocatalysts for Zn-air batteries. Nano Lett. 2021, 21, 4508–4515.

[93]

Shao, C. F.; Wu, L. M.; Wang, Y. H.; Qu, K. G.; Chu, H. L.; Sun, L. X.; Ye, J. S.; Li, B. T.; Wang, X. J. Engineering asymmetric Fe coordination centers with hydroxyl adsorption for efficient and durable oxygen reduction catalysis. Appl. Catal. B Environ. 2022, 316, 121607.

[94]

Yang, Y.; Mao, K. T.; Gao, S. Q.; Huang, H.; Xia, G. L.; Lin, Z. Y.; Jiang, P.; Wang, C. L.; Wang, H.; Chen, Q. W. O-, N-atoms-coordinated Mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv. Mater. 2018, 30, 1801732.

[95]

Hou, C. C.; Zou, L. L.; Sun, L. M.; Zhang, K. X.; Liu, Z.; Li, Y. W.; Li, C. X.; Zou, R. Q.; Yu, J. H.; Xu, Q. Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 7384–7389.

[96]

Ma, M.; Kumar, A.; Wang, D. N.; Wang, Y. Y.; Jia, Y.; Zhang, Y.; Zhang, G. X.; Yan, Z. F.; Sun, X. M. Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring. Appl. Catal. B Environ. 2020, 274, 119091.

[97]

Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.

[98]

Yi, Y. H.; Wang, X. X.; Wang, L.; Yan, J. H.; Zhang, J. L.; Guo, H. C. Plasma-triggered CH3OH/NH3 coupling reaction for synthesis of nitrile compounds. Acta. Phys. Chim. Sin. 2018, 34, 247–255.

[99]

Cheng, D. D.; Meng, B.; Li, C.; Wang, X. B.; Meng, X. X.; Sunarso, J.; Tan, X. Y.; Liu, S. M. Single-step synthesized dual-layer hollow fiber membrane reactor for on-site hydrogen production through ammonia decomposition. Int. J. Hydrogen. Energy 2020, 45, 7423–7432.

[100]

Ma, R. Y.; Zou, J. W.; Han, Z. Q.; Yu, K.; Wu, S.; Li, Z. F.; Liu, S. W.; Niu, S. L.; Horwath, W. R.; Zhu-Barker, X. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: A refinement based on regional and crop-specific emission factors. Global Change Biol. 2021, 27, 855–867.

[101]

Rafiqul, I.; Weber, C.; Lehmann, B.; Voss, A. Energy efficiency improvements in ammonia production-perspectives and uncertainties. Energy 2005, 30, 2487–2504.

[102]

Drahl, C. PALLADIUM’S HIDDEN TALENT: Structures support previously suspected pathway for making CARBON-FLUORINE BONDS. Chem. Eng. News 2008, 86, 53–56.

[103]

Guo, W. H.; Zhang, K. X.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials, and system design. Chem. Soc. Rev. 2019, 48, 5658–5716.

[104]

Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; Macfarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

[105]

Guo, X. X.; Du, H. T.; Qu, F. L.; Li, J. H. Recent progress in electrocatalytic nitrogen reduction. J. Mater. Chem. A 2019, 7, 3531–3543.

[106]

Chen, X. R.; Guo, Y. T.; Du, X. C.; Zeng, Y. S.; Chu, J. W.; Gong, C. H.; Huang, J. W.; Fan, C.; Wang, X. F.; Xiong, J. Atomic structure modification for electrochemical nitrogen reduction to ammonia. Adv. Energy Mater. 2020, 10, 1903172.

[107]

Wang, S. Y.; Ichihara, F.; Pang, H.; Chen, H.; Ye, J. H. Nitrogen fixation reaction derived from nanostructured catalytic materials. Adv. Funct. Mater. 2018, 28, 1803309.

[108]

Han, Y.; Wang, Y. L.; Ma, T. Z.; Li, W.; Zhang, J. L.; Zhang, M. H. Mechanistic understanding of Cu-based bimetallic catalysts. Front. Chem. Sci. Eng. 2020, 14, 689–748.

[109]

Liu, T. Y.; Qu, X. Y.; Zhang, Y. Q.; Wang, X. H.; Dang, Q.; Li, X. X.; Wang, B. J.; Tang, S. B.; Luo, Y.; Jiang, J. Regulating the charge densities of s-block calcium single-atom site catalysts for efficient N2 activation and reduction. Chem. Eng. J. 2023, 457, 141187.

[110]

Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

[111]

Deng, J.; Iñiguez, J. A.; Liu, C. Electrocatalytic nitrogen reduction at low temperature. Joule 2018, 2, 846–856.

[112]

Hering-Junghans, C. Metal-free nitrogen fixation at boron. Angew. Chem., Int. Ed. 2018, 57, 6738–6740.

[113]

Koper, M. T. M. A basic solution. Nat. Chem. 2013, 5, 255–256.

[114]

Su, L. X.; Jin, Y. M.; Gong, D.; Ge, X.; Zhang, W.; Fan, X. R.; Luo, W. The role of discrepant reactive intermediates on Ru–Ru2P heterostructure for pH-universal hydrogen oxidation reaction. Angew. Chem., Int. Ed. 2023, 62, e202215585.

[115]

Shi, Q. R.; Zhu, C. Z.; Zhong, H.; Su, D.; Li, N.; Engelhard, M. H.; Xia, H. B.; Zhang, Q.; Feng, S.; Beckman, S. P. et al. Nanovoid incorporated Ir x Cu metallic aerogels for oxygen evolution reaction catalysis. ACS Energy Lett. 2018, 3, 2038–2044.

[116]

Chen, P. Z.; Zhou, T. P.; Zhang, M. X.; Tong, Y.; Zhong, C. A.; Zhang, N.; Zhang, L. D.; Wu, C. Z.; Xie, Y. 3D nitrogen-anion-decorated nickel sulfides for highly efficient overall water splitting. Adv. Mater. 2017, 29, 1701584

[117]

Zhu, S. Q.; Qin, X. P.; Xiao, F.; Yang, S. L.; Xu, Y.; Tan, Z.; Li, J. D.; Yan, J. W.; Chen, Q.; Chen, M. S. et al. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 2021, 4, 711–718.

[118]

Lemmon, J. P. Energy: Reimagine fuel cells. Nature 2015, 525, 447–449.

[119]

Liu, S.; Wang, X.; Yu, H. G.; Wu, Y. P.; Li, B.; Lan, Y. Q.; Wu, T.; Zhang, J.; Li, D. S. Two new pseudo-isomeric nickel(II) metal–organic frameworks with efficient electrocatalytic activity toward methanol oxidation. Rare Met. 2021, 40, 489–498.

[120]

Shi, Y.; Fang, Y.; Zhang, G. L.; Wang, X. S.; Cui, P.; Wang, Q.; Wang, Y. X. Hollow PtCu nanorings with high performance for the methanol oxidation reaction and their enhanced durability by using trace Ir. J. Mater. Chem. A 2020, 8, 3795–3802.

[121]

Li, D. G.; Wang, C.; Strmcnik, D. S.; Tripkovic, D. V.; Sun, X. L.; Kang, Y. J.; Chi, M. F.; Snyder, J. D.; van der Vliet, D.; Tsai, Y. et al. Functional links between Pt single crystal morphology and nanoparticles with different size and shape: The oxygen reduction reaction case. Energy Environ. Sci. 2014, 7, 4061–4069.

[122]

Andreadis, G.; Tsiakaras, P. Ethanol crossover and direct ethanol PEM fuel cell performance modeling and experimental validation. Chem. Eng. Sci. 2006, 61, 7497–7508.

[123]

Hao, Y. F.; Wang, X. D.; Shen, J. F.; Yuan, J. H.; Wang, A. J.; Niu, L.; Huang, S. T. One-pot synthesis of single-crystal Pt nanoplates uniformly deposited on reduced graphene oxide, and their high activity and stability on the electrocalalytic oxidation of methanol. Nanotechnology 2016, 27, 145602.

[124]

Chen, L. G.; Liang, X.; Li, X. T.; Pei, J. J.; Lin, H.; Jia, D. Z.; Chen, W. X.; Wang, D. S.; Li, Y. D. Promoting electrocatalytic methanol oxidation of platinum nanoparticles by cerium modification. Nano Energy 2020, 73, 104784.

[125]

Bhunia, K.; Khilari, S.; Pradhan, D. Trimetallic PtAuNi alloy nanoparticles as an efficient electrocatalyst for the methanol electrooxidation reaction. Dalton Trans. 2017, 46, 15558–15566.

[126]

Neto, A. O.; Watanabe, A. Y.; Brandalise, M.; Tusi, M. M; de S. Rodrigues, R. M.; Linardi, M.; Spinacé, E. V.; Forbicini, C. A. L. G. O. Preparation and characterization of Pt-rare earth/C electrocatalysts using an alcohol reduction process for methanol electro-oxidation. J. Alloys Compd. 2009, 476, 288–291

[127]

Guney. M. S. Solar power and application methods. Renew. Sustain. Energy Rev. 2016, 57, 776–785.

[128]

Jebasingh, V. K.; Herbert, G. M. J. A review of solar parabolic trough collector. Renew. Sustain. Energy Rev. 2016, 54, 1085–1091.

[129]

Meng, X. G.; Liu, L. Q.; Ouyang, S. X.; Xu, H.; Wang, D. F.; Zhao, N. Q.; Ye, J. H. Nanometals for solar-to-chemical energy conversion: From semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv. Mater. 2016, 28, 6781–6803.

[130]

Wang, F. F.; Li, Q.; Xu, D. S. Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion. Adv. Energy Mater. 2017, 7, 1700529.

[131]

Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.

[132]

Chen, F.; Huang, H. W.; Guo, L.; Zhang, Y. H.; Ma, T. Y. The role of polarization in photocatalysis. Angew. Chem., Int. Ed. 2019, 58, 10061–10073.

[133]

Shah, J. H.; Huang, B. H.; Idris, A. M.; Liu, Y.; Malik, A. S.; Hu, W. J.; Zhang, Z. D.; Han, H. X.; Li, C. Regulation of ferroelectric polarization to achieve efficient charge separation and transfer in particulate RuO2/BiFeO3 for high photocatalytic water oxidation activity. Small 2020, 16, 2003361.

[134]

Jiang, Y.; Chen, H. Y.; Li, J. Y.; Liao, J. F.; Zhang, H. H.; Wang, X. D.; Kuang, D. B. Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2020, 30, 2004293.

[135]

Chakrabortty, S.; Kumar, R.; Nayak, J.; Jeon, B. H.; Dargar, S. K.; Tripathy, S. K.; Pal, P.; Ha, G. S.; Kim, K. H.; Jasiński, M. Green synthesis of MeOH derivatives through in situ catalytic transformations of captured CO2 in a membrane integrated photo-microreactor system: A state-of-art review for carbon capture and utilization. Renew. Sustain. Energy Rev. 2023, 182, 113417.

[136]

Chen, X. Q.; Wei, Z. H.; Li, Y. Q.; Sun, Q.; Ding, N.; Zheng, L. R.; Liu, S. H.; Chen, W. X.; Li, S. H.; Pang, S. P. Modulating the conduction band of MOFs by introducing tiny TiO2 nanoparticles for enhanced photocatalytic performance: Importance of the loading position. Inorg. Chem. 2023, 62, 10572–10581.

[137]

Wei, Z. H.; Song, S. J.; Gu, H. F.; Li, Y. Q.; Sun, Q.; Ding, N.; Tang, H.; Zheng, L. R.; Liu, S. H.; Li, Z. X. et al. Enhancing the photocatalytic activity of zirconium-based metal–organic frameworks through the formation of mixed-valence centers. Adv. Sci. 2023, 10, 2303206.

[138]

Mekhilef, S.; Faramarzi, S. Z.; Saidur, R.; Salam, Z. The application of solar technologies for sustainable development of agricultural sector. Renew. Sustain. Energy Rev. 2013, 18, 583–594.

[139]

Osterloh, F. R. Photocatalysis versus photosynthesis: A sensitivity analysis of devices for solar energy conversion and chemical transformations. ACS Energy Lett. 2017, 2, 445–453.

[140]

Wang, Z. H.; Shi, R.; Lu, S. Y.; Zhang, K.; Zhang, T. R. Atom manufacturing of photocatalyst towards solar CO2 reduction. Rep. Prog. Phys. 2022, 85, 026501.

[141]

Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.

[142]

Fu, J. W.; Jiang, K. X.; Qiu, X. Q.; Yu, J. G.; Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222–243.

[143]

Schmitt-Rink, S.; Varma, C. M.; Levi, A. F. J. Excitation mechanisms and optical properties of rare-earth ions in semiconductors. Phys. Rev. Lett. 1991, 66, 2782–2785.

[144]

Egranov. A. V.; Sizova, T. Y.; Shendrik, R. Y.; Smirnova, N. A. Instability of some divalent rare earth ions and photochromic effect. J. Phys. Chem. Solids 2016, 90, 7–15.

[145]

Yu, Y. G.; Chen, G.; Zhou, Y. S.; Han, Z. H. Recent advances in rare-earth elements modification of inorganic semiconductor-based photocatalysts for efficient solar energy conversion: A review. J. Rare Earths 2015, 33, 453–462.

[146]

Kildgaard, J. V.; Hansen, H. A.; Vegge, T. DFT + U study of strain-engineered CO2 reduction on a CeO2− x (111) facet. J. Phys. Chem. C 2021, 125, 14221–14227

[147]

Zhao, Y.; Han, Z. D.; Gao, G. Y.; Zhang, W. Y.; Qu, Y.; Zhu, H. Y.; Zhu, P. F.; Wang, G. F. Dual functions of CO2 molecular activation and 4f levels as electron transport bridge in dysprosium single atom composite photocatalysts with enhanced visible-light photoactivities. Adv. Funct. Mater. 2021, 31, 2104976.

[148]

Li, Y. L.; Qu, Y.; Wang, G. F. Europium single atom based heterojunction photocatalysts with enhanced visible-light catalytic activity. J. Mater. Chem. A 2022, 10, 5990–5997.

[149]

Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

[150]

Medford, A. J.; Hatzell, M. C. Photon-driven nitrogen fixation: Current progress, thermodynamic considerations, and future outlook. ACS Catal. 2017, 7, 2624–2643.

[151]

Kim, S.; Kim, K. H.; Oh, C.; Zhang, K.; Park, J. H. Artificial photosynthesis for high-value-added chemicals: Old material, new opportunity. Carbon Energy 2022, 4, 21–44.

[152]

Chen, X. Z.; Li, N.; Kong, Z. Z.; Ong, W. J.; Zhao, X. J. Photocatalytic fixation of nitrogen to ammonia: State-of-the-art advancements and future prospects. Mater. Horiz. 2018, 5, 9–27.

[153]

Guo, J. P.; Chen, P. Catalyst: NH3 as an energy carrier. Chem 2017, 3, 709–712.

[154]

Yang, L. H.; Choi, C.; Hong, S.; Liu, Z. M.; Zhao, Z. Q.; Yang, M. M.; Shen, H. D.; Robertson, A. W.; Zhang, H.; Lo, T. W. B. et al. Single yttrium sites on carbon-coated TiO2 for efficient electrocatalytic N2 reduction. Chem. Commun. 2020, 56, 10910–10913.

[155]

Zhang, Y. F.; Zhu, Y. K.; Lv, C. X.; Lai, S. J.; Xu, W. J.; Sun, J.; Sun, Y. Y.; Yang, D. J. Enhanced visible-light photoelectrochemical performance via chemical vapor deposition of Fe2O3 on a WO3 film to form a heterojunction. Rare Met. 2020, 39, 841–849.

Publication history
Copyright
Acknowledgements

Publication history

Received: 28 September 2023
Revised: 16 October 2023
Accepted: 22 October 2023
Published: 02 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 21875021 and 22075024) and the Beijing Natural Science Foundation (No. 2212018). All authors have given approval to the final version of the manuscript.

Return