Journal Home > Volume 17 , Issue 5

Aqueous zinc-ion batteries (ZIBs) are attaining increasing attention for their high safety and low cost. Despite significant progresses in realizing high-performance cathode material for ZIBs, simultaneously endowing them with high capacity and fast-charging capability, the long-term cycling stability remains a major unsolved challenge. In this work, a polyoxovanadate cluster of (NH4)8[V19O41(OH)9]·11H2O (NOV) is defined as a cathode material for ZIBs that contains mixed-valence vanadium sites (V4+ and V5+). A maximum of 26 electrons can be accommodated in one [V19O41(OH)9]8− {V19O50} cluster, contributing to the high theoretical specific capacity of 328 mA·h·g−1. The Ti3C2Tx MXene nanosheets are incorporated into NOV with the help of ionic liquid (IL) linkers to restrain the dissolution of vanadium species and facilitate electron transport across the electrode. The interfacial bonding, anion exchange, and electrostatic interactions among NOV and MXene are provided by IL liquid. The nanohybrid of NOV-IL-MXene endows excellent contact between MXene and NOV, thereby enhanced charge transfer is observed at interface. Subsequently, the as-synthesized NOV-IL-MXene cathodes exhibit high discharge capacity of 413 mA·h·g−1 at 0.2 A·g−1 even at high mass loading of 5.2 mg·cm−2, remarkable rate performance of 182 mA·h·g−1 at 10 A·g−1, and impressive cycling stability of 94% capacity retention after 2000 cycles. This work opens up new opportunities to develop advanced polyoxovanadate hybrid cathodes for low-cost and high-performance aqueous ZIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

26-electrons redox-active polyoxovanadate clusters for aqueous zinc-ion batteries

Show Author's information Yimin Xing,§Wen Yan,§Haiyang Wu,§Peng Huang( )Chao WangChao Lai( )
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China

§ Yimin Xing, Wen Yan, and Haiyang Wu contributed equally to this work.

Abstract

Aqueous zinc-ion batteries (ZIBs) are attaining increasing attention for their high safety and low cost. Despite significant progresses in realizing high-performance cathode material for ZIBs, simultaneously endowing them with high capacity and fast-charging capability, the long-term cycling stability remains a major unsolved challenge. In this work, a polyoxovanadate cluster of (NH4)8[V19O41(OH)9]·11H2O (NOV) is defined as a cathode material for ZIBs that contains mixed-valence vanadium sites (V4+ and V5+). A maximum of 26 electrons can be accommodated in one [V19O41(OH)9]8− {V19O50} cluster, contributing to the high theoretical specific capacity of 328 mA·h·g−1. The Ti3C2Tx MXene nanosheets are incorporated into NOV with the help of ionic liquid (IL) linkers to restrain the dissolution of vanadium species and facilitate electron transport across the electrode. The interfacial bonding, anion exchange, and electrostatic interactions among NOV and MXene are provided by IL liquid. The nanohybrid of NOV-IL-MXene endows excellent contact between MXene and NOV, thereby enhanced charge transfer is observed at interface. Subsequently, the as-synthesized NOV-IL-MXene cathodes exhibit high discharge capacity of 413 mA·h·g−1 at 0.2 A·g−1 even at high mass loading of 5.2 mg·cm−2, remarkable rate performance of 182 mA·h·g−1 at 10 A·g−1, and impressive cycling stability of 94% capacity retention after 2000 cycles. This work opens up new opportunities to develop advanced polyoxovanadate hybrid cathodes for low-cost and high-performance aqueous ZIBs.

Keywords: MXene, zinc-ion batteries, polyoxovanadate, composite materials cathodes

References(50)

[1]

Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564.

[2]

Yu, P.; Zeng, Y. X.; Zhang, H. Z.; Yu, M. H.; Tong, Y. X.; Lu, X. H. Flexible Zn-ion batteries: Recent progresses and challenges. Small 2019, 15, 1804760.

[3]

Wu, H. Y.; Gu, X. X.; Huang, P.; Sun, C.; Hu, H.; Zhong, Y.; Lai, C. Polyoxometalate driven dendrite-free zinc electrodes with synergistic effects of cation and anion cluster regulation. J. Mater. Chem. A 2021, 9, 7025–7033.

[4]

Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

[5]

Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.

[6]

Soundharrajan, V.; Sambandam, B.; Kim, S.; Alfaruqi, M. H.; Putro, D. Y.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. K.; Kim, J. Na2V6O16·3H2O barnesite nanorod: An open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 2018, 18, 2402–2410.

[7]

Zhu, Q. C.; Xiao, Q.; Zhang, B. W.; Yan, Z. C.; Liu, X.; Chen, S.; Ren, Z. F.; Yu, Y. VS4 with a chain crystal structure used as an intercalation cathode for aqueous Zn-ion batteries. J. Mater. Chem. A 2020, 8, 10761–10766.

[8]

Cao, H. L.; Zheng, Z. Y.; Norby, P.; Xiao, X. X.; Mossin, S. Electrochemically induced phase transition in V3O7·H2O nanobelts/reduced graphene oxide composites for aqueous zinc-ion batteries. Small 2021, 17, 2100558.

[9]

Deng, W. J.; Li, Z. G.; Ye, Y. K.; Zhou, Z. Q.; Li, Y. B.; Zhang, M.; Yuan, X. R.; Hu, J.; Zhao, W. G.; Huang, Z. Y. et al. Zn2+ induced phase transformation of K2MnFe(CN)6 boosts highly stable zinc-ion storage. Adv. Energy Mater. 2021, 11, 2003639.

[10]

Wang, S.; Sang, Z. Y.; Zhao, X. Q.; Guo, J. D.; Chen, H.; Yang, D. A. Synthesis and performance optimization of manganese-based cathode materials for zinc-ion batteries. Batter. Supercaps 2022, 5, e202100313.

[11]

Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

[12]

Han, J. J.; Chen, Z. W.; Xu, J. W.; Han, J. J. A novel electrolyte study on polyaniline aqueous zinc-ion battery. Mater. Lett. 2021, 304, 130629.

[13]

Wan, F.; Zhang, L. L.; Dai, X.; Wang, X. Y.; Niu, Z. Q.; Chen, J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 2018, 9, 1656.

[14]

Liu, N.; Li, B.; He, Z. X.; Dai, L.; Wang, H. Y.; Wang, L. Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries. J. Energy Chem. 2021, 59, 134–159.

[15]

Chen, K. J.; Li, X.; Zang, J. H.; Zhang, Z. F.; Wang, Y.; Lou, Q.; Bai, Y. C.; Fu, J. T.; Zhuang, C. F.; Zhang, Y. et al. Robust VS4@rGO nanocomposite as a high-capacity and long-life cathode material for aqueous zinc-ion batteries. Nanoscale 2021, 13, 12370–12378.

[16]

Zou, Y. N.; Guo, Z. X.; Wang, X.; Zhao, L. J. A composite material with internal hydrophilicity and external stability as the cathode of aqueous zinc-ion batteries exhibiting excellent rate performance and energy density at high power density. ACS Appl. Energy Mater. 2021, 4, 11580–11589.

[17]

Wang, X. W.; Wang, L. Q.; Zhang, B.; Feng, J. M.; Zhang, J. F.; Ou, X.; Hou, F.; Liang, J. A flexible carbon nanotube@V2O5 film as a high-capacity and durable cathode for zinc ion batteries. J. Energy Chem. 2021, 59, 126–133.

[18]

Lin, Y. T.; Zhou, F. S.; Xie, M. X.; Zhang, S.; Deng, C. V6O13− δ @C nanoscrolls with expanded distances between adjacent shells as a high-performance cathode for a knittable zinc-ion battery. ChemSusChem 2020, 13, 3696–3706

[19]

Dai, X.; Wan, F.; Zhang, L. L.; Cao, H. M.; Niu, Z. Q. Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance. Energy Storage Mater. 2019, 17, 143–150.

[20]

Wu, H. Y.; Hu, H.; Qin, C.; Huang, P.; Wang, X. L.; Su, Z. M. Self-assembly and lithium storage performance of a nanoscale polyoxometalate based on the {MnTa18} Cluster. Chem. Commun. 2020, 56, 2403–2406.

[21]

Chen, S.; Xiang, Y. F.; Banks, M. K.; Peng, C.; Xu, W. J.; Wu, R. X. Polyoxometalate-coupled MXene nanohybrid via poly(ionic liquid) linkers and its electrode for enhanced supercapacitive performance. Nanoscale 2018, 10, 20043–20052.

[22]

Anjass, M.; Lowe, G. A.; Streb, C. Molecular vanadium oxides for energy conversion and energy storage: Current trends and emerging opportunities. Angew. Chem., Int. Ed. 2021, 60, 7522–7532.

[23]

Klemperer, W. G.; Marquart, T. A.; Yaghi, O. M. New directions in polyvanadate chemistry: From cages and clusters to baskets, belts, bowls, and barrels. Angew. Chem., Int. Ed. 1992, 31, 49–51.

[24]

Liu, F.; Chen, Z. X.; Fang, G. Z.; Wang, Z. Q.; Cai, Y. S.; Tang, B. Y.; Zhou, J.; Liang, S. Q. V2O5 Nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 2019, 11, 25

[25]

Yang, K.; Hu, Y. Y.; Li, L. Y.; Cui, L. L.; He, L.; Wang, S. J.; Zhao, J. W.; Song, Y. F. First high-nuclearity mixed-valence polyoxometalate with hierarchical interconnected Zn2+ migration channels as an advanced cathode material in aqueous zinc-ion battery. Nano Energy 2020, 74, 104851.

[26]

Yang, K.; Hu, Y. Y.; Zhang, T. S.; Wang, B. Y.; Qin, J. X.; Li, N. X.; Zhao, Z. W.; Zhao, J. W.; Chao, D. L. Triple-functional polyoxovanadate cluster in regulating cathode, anode, and electrolyte for tough aqueous zinc-ion battery. Adv. Energy Mater. 2022, 12, 2202671.

[27]

Yang, K.; Ying, Y. X.; Cui, L. L.; Sun, J. C.; Luo, H.; Hu, Y. Y.; Zhao, J. W. Stable aqueous Zn-Ag and Zn-polyoxometalate hybrid battery driven by successive Ag+ cation and polyoxoanion redox reactions. Energy Storage Mater. 2021, 34, 203–210.

[28]

Müller, A.; Penk, M.; Krickemeyer, E.; Bögge, H.; Walberg, H. J. [V19O41(OH)9]8⊖, an ellipsoid-shaped cluster anion belonging to the unusual family of V/V oxygen clusters. Angew. Chem., Int. Ed. 1988, 27, 1719–1721.

[29]

Hantanasirisakul, K.; Zhao, M. Q.; Urbankowski, P.; Halim, J.; Anasori, B.; Kota, S.; Ren, C. E.; Barsoum, M. W.; Gogotsi, Y. Fabrication of Ti3C2T x MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2016, 2, 1600050.

[30]

Nishimoto, Y.; Yokogawa, D.; Yoshikawa, H.; Awaga, K.; Irle, S. Super-reduced polyoxometalates: Excellent molecular cluster battery components and semipermeable molecular capacitors. J. Am. Chem. Soc. 2014, 136, 9042–9052.

[31]

Lee, C.; Yang, W.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

[32]

Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746.

[33]

Sun, C.; Shi, X. L.; Zhang, Y. B.; Liang, J. J.; Qu, J.; Lai, C. Ti3C2T x MXene interface layer driving ultra-stable lithium-iodine batteries with both high iodine content and mass loading. ACS Nano 2020, 14, 1176–1184.

[34]

Liu, Y.; Dai, Z. W.; Zhang, W.; Jiang, Y.; Peng, J.; Wu, D. L.; Chen, B.; Wei, W.; Chen, X.; Liu, Z. J. et al. Sulfonic-group-grafted Ti3C2T x MXene: A silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano 2021, 15, 9065–9075.

[35]

Bin, D.; Huo, W. C.; Yuan, Y. B.; Huang, J. H.; Liu, Y.; Zhang, Y. X.; Dong, F.; Wang, Y. G.; Xia, Y. Y. Organic–inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery. Chem 2020, 6, 968–984.

[36]

Guo, Q. B.; Kim, K. I.; Jiang, H.; Zhang, L.; Zhang, C.; Yu, D. X.; Ni, Q.; Chang, X. Q.; Chen, T. T.; Xia, H. et al. A high-potential anion-insertion carbon cathode for aqueous zinc dual-ion battery. Adv. Funct. Mater. 2020, 30, 2002825.

[37]

Zhang, Y. R.; Chen, A. B.; Sun, J. Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries. J. Energy Chem. 2021, 54, 655–667.

[38]

Wang, D.; Wei, Q. L.; Sheng, J. Z.; Hu, P.; Yan, M. Y.; Sun, R. M.; Xu, X. M.; An, Q. Y.; Mai, L. Q. Flexible additive free H2V3O8 nanowire membrane as cathode for sodium ion batteries. Phys. Chem. Chem. Phys. 2016, 18, 12074–12079.

[39]

Fang, Y. Z.; Hu, R.; Liu, B. Y.; Zhang, Y.; Zhu, K.; Yan, J.; Ye, K.; Cheng, K.; Wang, G. L.; Cao, D. X. MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J. Mater. Chem. A 2019, 7, 5363–5372.

[40]

Pu, X. J.; Zhao, D.; Fu, C. L.; Chen, Z. X.; Cao, S. N.; Wang, C. S.; Cao, Y. L. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew. Chem., Int. Ed. 2021, 60, 21310–21318.

[41]

Li, J. W.; Luo, N. J.; Wan, F.; Zhao, S. Y.; Li, Z. N.; Li, W. Y.; Guo, J.; Shearing, P. R.; Brett, D. J. L.; Carmalt, C. J. et al. Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries. Nanoscale 2020, 12, 20638–20648.

[42]

Xie, D.; Hu, F.; Yu, X.; Cui, F. H.; Song, G. H.; Zhu, K. High-performance Na1.25V3O8 nanosheets for aqueous zinc-ion battery by electrochemical induced de-sodium at high voltage. Chin. Chem. Lett. 2020, 31, 2268–2274.

[43]

Ren, Z. G.; Sun, Y. H.; Yin, Y. R.; Zhang, J. Q.; Ren, X. C.; Zhao, Y. X.; Liang, Z. F.; Huai, P.; Song, F.; Jiang, Z. et al. Metallic V5S8 microparticles with tunnel-like structure for high-rate and stable zinc-ion energy storage. Energy Storage Mater. 2021, 42, 786–793.

[44]

Li, Y. K.; Huang, Z. M.; Kalambate, P. K.; Zhong, Y.; Huang, Z. M.; Xie, M. L.; Shen, Y.; Huang, Y. H. V2O5 Nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy 2019, 63, 752–759

[45]

Zhang, Z. C. Y.; Xi, B. J.; Wang, X.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Oxygen defects engineering of VO2· xH2O nanosheets via in situ polypyrrole polymerization for efficient aqueous zinc ion storage. Adv. Funct. Mater. 2021, 31, 2103070.

[46]

Lv, T. T.; Liu, Y. Y.; Wang, H.; Yang, S. Y.; Liu, C. S.; Pang, H. Crystal water enlarging the interlayer spacing of ultrathin V2O5·4VO2·2.72H2O nanobelts for high-performance aqueous zinc-ion battery. Chem. Eng. J. 2021, 411, 128533.

[47]

Li, Q. F.; Rui, X. H.; Chen, D.; Feng, Y. Z.; Xiao, N.; Gan, L. Y.; Zhang, Q.; Yu, Y.; Huang, S. M. A high-capacity ammonium vanadate cathode for zinc-ion battery. Nano-Micro Lett. 2020, 12, 67.

[48]

Xu, G. B.; Liu, X.; Huang, S. J.; Li, L.; Wei, X. L.; Cao, J. X.; Yang, L. W.; Chu, P. K. Freestanding, hierarchical, and porous bilayered Na x V2O5· nH2O/rGO-CNT composites as high-performance cathode materials for nonaqueous K-ion batteries and aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 706–716.

[49]

Yang, Y. Q.; Tang, Y.; Fang, G. Z.; Shan, L. T.; Guo, J. S.; Zhang, W. Y.; Wang, C.; Wang, L. B.; Zhou, J.; Liang, S. Q. Li+ intercalated V2O5· nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 2018, 11, 3157–3162.

[50]

Shan, L. T.; Zhou, J.; Han, M. M.; Fang, G. Z.; Cao, X. X.; Wu, X. W.; Liang, S. Q. Reversible Zn-driven reduction displacement reaction in aqueous zinc-ion battery. J. Mater. Chem. A 2019, 7, 7355–7359.

File
12274_2023_6286_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 September 2023
Revised: 22 October 2023
Accepted: 23 October 2023
Published: 12 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51871113) and Natural Science Foundation of Jiangsu Province (No. BK20200047).

Return