Journal Home > Volume 17 , Issue 2

Infectious diseases pose a serious threat to global health. Although immunizations can control most viral infections, bacterial infections, particularly those caused by drug-resistant strains, continue to cause high rates of illness and death. Unfortunately, the creation of new antibiotics has come to a grinding halt in the last ten years. In response to this crisis, nanotechnology has emerged as a hopeful solution to tackle drug resistance and enhance treatment results. A large variety of biomimetic nanomaterials, termed nanozymes, have demonstrated strong antimicrobial efficacy. While the inherent toxicity of nanomaterials is a concern, recent studies have harnessed the stimuli-responsiveness of nanomaterials to enable local and/or targeted delivery to reduce the treatment side effects. Indeed, the physicochemical versatility of nanomaterials affords many degrees of freedom that enable rational design of smart or autonomous therapeutics, which cannot be achieved using conventional antibiotics. The design straddles the fields of catalysis, nanoscience, microbiology, and translational medicine. To provide an overview of this interdisciplinary landscape, this review is organized based on composition into lipid, metal, metal oxide, and non-metallic nanomaterials. Liposomes as a delivery vehicle enhance bioavailability and reduce toxicity. Metal- and metal oxide-based nanomaterials inhibit bacterial growth by mimicking natural enzymatic activities such as peroxidase (POD) and oxidase. Furthermore, carbon-, polymer-, and cell membrane-based nanomaterials are combined into a discussion on non-metallic materials. At the end of this review, potentially fruitful directions for future bioinspired nanomaterials in infectious disease treatment are included.


menu
Abstract
Full text
Outline
About this article

Bioinspired nanomaterials for the treatment of bacterial infections

Show Author's information Xiaojing Ma,§Wenjing Tang,§Rong Yang( )
Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA

§ Xiaojing Ma and Wenjing Tang contributed equally to this work.

Abstract

Infectious diseases pose a serious threat to global health. Although immunizations can control most viral infections, bacterial infections, particularly those caused by drug-resistant strains, continue to cause high rates of illness and death. Unfortunately, the creation of new antibiotics has come to a grinding halt in the last ten years. In response to this crisis, nanotechnology has emerged as a hopeful solution to tackle drug resistance and enhance treatment results. A large variety of biomimetic nanomaterials, termed nanozymes, have demonstrated strong antimicrobial efficacy. While the inherent toxicity of nanomaterials is a concern, recent studies have harnessed the stimuli-responsiveness of nanomaterials to enable local and/or targeted delivery to reduce the treatment side effects. Indeed, the physicochemical versatility of nanomaterials affords many degrees of freedom that enable rational design of smart or autonomous therapeutics, which cannot be achieved using conventional antibiotics. The design straddles the fields of catalysis, nanoscience, microbiology, and translational medicine. To provide an overview of this interdisciplinary landscape, this review is organized based on composition into lipid, metal, metal oxide, and non-metallic nanomaterials. Liposomes as a delivery vehicle enhance bioavailability and reduce toxicity. Metal- and metal oxide-based nanomaterials inhibit bacterial growth by mimicking natural enzymatic activities such as peroxidase (POD) and oxidase. Furthermore, carbon-, polymer-, and cell membrane-based nanomaterials are combined into a discussion on non-metallic materials. At the end of this review, potentially fruitful directions for future bioinspired nanomaterials in infectious disease treatment are included.

Keywords: bacteria, antimicrobial, nanozyme, liposome, infectious disease, bioinspired nanomaterial

References(342)

[1]

Carvalho, G. C.; Sábio, R. M.; de Cássia Ribeiro, T.; Monteiro, A. S.; Pereira, D. V.; Ribeiro, S. J. L.; Chorilli, M. Highlights in mesoporous silica nanoparticles as a multifunctional controlled drug delivery nanoplatform for infectious diseases treatment. Pharm. Res. 2020, 37, 191.

[2]

Chen, P. Y.; Lang, J. Y.; Zhou, Y. L.; Khlyustova, A.; Zhang, Z. Y.; Ma, X. J.; Liu, S.; Cheng, Y. F.; Yang, R. An imidazolium-based zwitterionic polymer for antiviral and antibacterial dual functional coatings. Sci. Adv. 2022, 8, eabl8812.

[3]

GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248.

[4]

Quagliarello, V.; Scheld, W. M. Bacterial meningitis: Pathogenesis, pathophysiology, and progress. N. Engl. J. Med. 1992, 327, 864–872.

[5]

Tzeng, Y. L.; Stephens, D. S. Epidemiology and pathogenesis of Neisseria meningitidis. Microbes Infect. 2000, 2, 687–700.

[6]

van Hal, S. J.; Jensen, S. O.; Vaska, V. L.; Espedido, B. A.; Paterson, D. L.; Gosbell, I. B. Predictors of mortality in Staphylococcus aureus bacteremia. Clin. Microbiol. Rev. 2012, 25, 362–386.

[7]
Tang, Y. W.; Sussman, M.; Liu, D. Y.; Poxton, I.; Schwartzman, J. Molecular Medical Microbiology; 2nd edition. Academic Press, 2014.
DOI
[8]

Deurenberg, R. H.; Vink, C.; Kalenic, S.; Friedrich, A. W.; Bruggeman, C. A.; Stobberingh, E. E. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 2007, 13, 222–235.

[9]

Aminov, R. I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010, 1, 134.

[10]

Coates, A. R. M.; Halls, G.; Hu, Y. M. Novel classes of antibiotics or more of the same. Br. J. Pharmacol. 2011, 163, 184–194.

[11]

Hashemi, S.; Nasrollah, A.; Rajabi, M. Irrational antibiotic prescribing: A local issue or global concern. EXCLI J. 2013, 12, 384–395.

[12]

Zeng, X. M.; Lin, J. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Front. Microbiol. 2013, 4, 128.

[13]

Velkov, T.; Thompson, P. E.; Nation, R. L.; Li, J. Structure–activity relationships of polymyxin antibiotics. J. Med. Chem. 2010, 53, 1898–1916.

[14]

Krause, K. M.; Serio, A. W.; Kane, T. R.; Connolly, L. E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029.

[15]

Champney, W. S. Antibiotics targeting bacterial ribosomal subunit biogenesis. J. Antimicrob. Chemother. 2020, 75, 787–806.

[16]

Schwarz, S.; Shen, J. Z.; Kadlec, K.; Wang, Y.; Michael, G. B.; Feßler, A. T.; Vester, B. Lincosamides, streptogramins, phenicols, and pleuromutilins: Mode of action and mechanisms of resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a027037.

[17]

Bush, N. G.; Diez-Santos, I.; Abbott, L. R.; Maxwell, A. Quinolones: Mechanism, lethality and their contributions to antibiotic resistance. Molecules 2020, 25, 5662.

[18]

Ausubel, J. H.; Meyer, P. S.; Wernick, I. K. Death and the human environment: The United States in the 20th century. Technol. Soc. 2001, 23, 131–146.

[19]

Casal, M.; Vaquero, M.; Rinder, H.; Tortoli, E.; Grosset, J.; Rüsch-Gerdes, S.; Gutiérrez, J.; Jarlier, V. A case-control study for multidrug-resistant tuberculosis: Risk factors in four European countries. Microb. Drug Resist. 2005, 11, 62–67.

[20]

Chambers, H. F. The changing epidemiology of Staphylococcus aureus. Emerg. Infect. Dis. 2001, 7, 178–182.

[21]

Hemaiswarya, S.; Kruthiventi, A. K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008, 15, 639–652.

[22]

Uldum, S. A.; Bangsborg, J. M.; Gahrn-Hansen, B.; Ljung, R.; Mølvadgaard, M.; Petersen, R. F.; Svarrer, C. W. Epidemic of Mycoplasma pneumoniae infection in Denmark, 2010 and 2011. Eurosurveillance 2012, 17, 20073.

[23]

Livermore, D. M. Bacterial resistance: Origins, epidemiology, and impact. Clin. Infect. Dis. 2003, 36, S11–S23.

[24]

Van Bambeke, F.; Glupczynski, Y.; Plésiat, P.; Pechère, J. C.; Tulkens, P. M. Antibiotic efflux pumps in prokaryotic cells: Occurrence, impact on resistance and strategies for the future of antimicrobial therapy. J. Antimicrob. Chemother. 2003, 51, 1055–1065.

[25]

Berger-Bächi, B. Resistance mechanisms of Gram-positive bacteria. Int. J. Med. Microbiol. 2002, 292, 27–35.

[26]

Xu, Z.; Li, L.; Shirtliff, M. E.; Peters, B. M.; Li, B.; Peng, Y.; Alam, M. J.; Yamasaki, S.; Shi, L. Resistance class 1 integron in clinical methicillin-resistant Staphylococcus aureus strains in southern China, 2001-2006. Clin. Microbiol. Infect. 2011, 17, 714–718.

[27]

Levy, S. B. Antibiotic resistance: Consequences of inaction. Clin. Infect. Dis. 2001, 33, S124–S129.

[28]

Dancer, S. J. The problem with cephalosporins. J. Antimicrob. Chemother. 2001, 48, 463–478.

[29]

Capita, R.; Alonso-Calleja, C. Antibiotic-resistant bacteria: A challenge for the food industry. Crit. Rev. Food Sci. Nutr. 2013, 53, 11–48.

[30]

Angsantikul, P.; Thamphiwatana, S.; Zhang, Q. Z.; Spiekermann, K.; Zhuang, J.; Fang, R. H.; Gao, W. W.; Obonyo, M.; Zhang, L. F. Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection. Adv. Ther. 2018, 1, 1800016.

[31]

Vickers, N. J. Animal communication: When I’m calling you, will you answer too. Curr. Biol. 2017, 27, R713–R715.

[32]

Gareev, K. G.; Grouzdev, D. S.; Koziaeva, V. V.; Sitkov, N. O.; Gao, H. L.; Zimina, T. M.; Shevtsov, M. Biomimetic nanomaterials: Diversity, technology, and biomedical applications. Nanomaterials 2022, 12, 2485.

[33]
Ngo, T. D. Biomimetic Technologies: Principles and Applications; Woodhead Publishing: Cambridge, 2015.
[34]

Zaidi, S. A. Molecular imprinted polymers as drug delivery vehicles. Drug Deliv. 2016, 23, 2262–2271.

[35]
Milovanovic, M.; Arsenijevic, A.; Milovanovic, J.; Kanjevac, T.; Arsenijevic, N. Nanoparticles in antiviral therapy. In Antimicrobial Nanoarchitectonics: From Synthesis to Applications. Grumezescu, A. M., Ed.; Elsevier: Amsterdam, 2017; pp 383–410.
DOI
[36]

Singh, L.; Kruger, H. G.; Maguire, G. E. M.; Govender, T.; Parboosing, R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis. 2017, 4, 105–131.

[37]

Evans, G. B.; Tyler, P. C.; Schramm, V. L. Immucillins in infectious diseases. ACS Infect. Dis. 2018, 4, 107–117.

[38]
Gupta, A.; Landis, R. F.; Rotello, V. M. Nanoparticle-based antimicrobials: Surface functionality is critical. F1000Res. 2016 , 5, 364.
DOI
[39]

Gupta, A.; Mumtaz, S.; Li, C. H.; Hussain, I.; Rotello, V. M. Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 2019, 48, 415–427.

[40]

Pelgrift, R. Y.; Friedman, A. J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 2013, 65, 1803–1815.

[41]

Friedman, A.; Blecher, K.; Sanchez, D.; Tuckman-Vernon, C.; Gialanella, P.; Friedman, J. M.; Martinez, L. R.; Nosanchuk, J. D. Susceptibility of Gram-positive and negative bacteria to novel nitric oxide-releasing nanoparticle technology. Virulence 2011, 2, 217–221.

[42]

Hajipour, M. J.; Fromm, K. M.; Ashkarran, A. A.; de Aberasturi, D. J.; de Larramendi, I. R.; Rojo, T.; Serpooshan, V.; Parak, W. J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499–511.

[43]

Schairer, D. O.; Chouake, J. S.; Nosanchuk, J. D.; Friedman, A. J. The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence 2012, 3, 271–279.

[44]

Gupta, A.; Saleh, N. M.; Das, R.; Landis, R. F.; Bigdeli, A.; Motamedchaboki, K.; Campos, A. R.; Pomeroy, K.; Mahmoudi, M.; Rotello, V. M. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection. Nano Futures 2017, 1, 015004.

[45]

Padwal, P.; Bandyopadhyaya, R.; Mehra, S. Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria. Langmuir 2014, 30, 15266–15276.

[46]

Nallathamby, P. D.; Lee, K. J.; Desai, T.; Xu, X. H. N. Study of the multidrug membrane transporter of single living Pseudomonas aeruginosa cells using size-dependent plasmonic nanoparticle optical probes. Biochemistry 2010, 49, 5942–5953.

[47]

Lang, J. Y.; Ma, X. J.; Liu, S. S.; Streever, D. L.; Serota, M. D.; Franklin, T.; Loew, E. R.; Yang, R. On-demand synthesis of antiseptics at the site of infection for treatment of otitis media. Nano Today 2022, 47, 101672.

[48]

Zhou, L. Y.; Qiu, T.; Lv, F. T.; Liu, L. B.; Ying, J. M.; Wang, S. Self-assembled nanomedicines for anticancer and antibacterial applications. Adv. Healthc. Mater. 2018, 7, 1800670.

[49]

Ma, X. J.; Lang, J. Y.; Chen, P. Y.; Yang, R. Silver nanoparticles as an effective antimicrobial against otitis media pathogens. AIChE J. 2021, 67, e17468.

[50]

Ma, X. J.; Lang, J. Y.; Chen, P. Y.; Tang, W. J.; Shindler, S.; Yang, R. A cascade nanozyme with antimicrobial effects against nontypeable Haemophilus influenzae. Nanoscale 2023, 15, 1014–1023.

[51]

Moretton, M. A.; Glisoni, R. J.; Chiappetta, D. A.; Sosnik, A. Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles. Colloids Surf. B: Biointerfaces 2010, 79, 467–479.

[52]

Vernekar, A. A.; Sinha, D.; Srivastava, S.; Paramasivam, P. U.; D’Silva, P.; Mugesh, G. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat. Commun. 2014, 5, 5301.

[53]

Kumar, M.; Curtis, A.; Hoskins, C. Application of nanoparticle technologies in the combat against anti-microbial resistance. Pharmaceutics 2018, 10, 11.

[54]

Luo, D. D.; Carter, K. A.; Molins, E. A. G.; Straubinger, N. L.; Geng, J. M.; Shao, S.; Jusko, W. J.; Straubinger, R. M.; Lovell, J. F. Pharmacokinetics and pharmacodynamics of liposomal chemophototherapy with short drug–light intervals. J. Control. Release  2019, 297, 39–47.

[55]

Rukavina, Z.; Vanić, Ž. Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics 2016, 8, 18.

[56]

Ferreira, M.; Ogren, M.; Dias, J. N. R.; Silva, M.; Gil, S.; Tavares, L.; Aires-da-Silva, F.; Gaspar, M. M.; Aguiar, S. I. Liposomes as antibiotic delivery systems: A promising nanotechnological strategy against antimicrobial resistance. Molecules 2021, 26, 2047.

[57]

Gbian, D. L.; Omri, A. The impact of an efflux pump inhibitor on the activity of free and liposomal antibiotics against Pseudomonas aeruginosa. Pharmaceutics 2021, 13, 577.

[58]

Shang, Y. X.; Liu, F. S.; Wang, Y. N.; Li, N.; Ding, B. Q. Enzyme mimic nanomaterials and their biomedical applications. ChemBioChem 2020, 21, 2408–2418.

[59]

Yang, D. Z.; Chen, Z. Z.; Gao, Z.; Tammina, S. K.; Yang, Y. L. Nanozymes used for antimicrobials and their applications. Colloids Surf. B: Biointerfaces 2020, 195, 111252.

[60]

Chen, Z. W.; Wang, Z. Z.; Ren, J. S.; Qu, X. G. Enzyme mimicry for combating bacteria and biofilms. Acc. Chem. Res. 2018, 51, 789–799.

[61]

Ji, H. W.; Dong, K.; Yan, Z. Q.; Ding, C.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Bacterial hyaluronidase self-triggered prodrug release for chemo-photothermal synergistic treatment of bacterial infection. Small 2016, 12, 6200–6206.

[62]

Yan, L.; Mu, J.; Ma, P. X.; Li, Q.; Yin, P. X.; Liu, X.; Cai, Y. Y.; Yu, H. P.; Liu, J. C.; Wang, G. Q. et al. Gold nanoplates with superb photothermal efficiency and peroxidase-like activity for rapid and synergistic antibacterial therapy. Chem. Commun. 2021, 57, 1133–1136.

[63]

Juven, B. J.; Pierson, M. D. Antibacterial effects of hydrogen peroxide and methods for its detection and quantitation. J. Food Prot. 1996, 59, 1233–1241.

[64]

Sies, H.; Berndt, C.; Jones, D. P. Oxidative stress. Annu. Rev. Biochem. 2017, 86, 715–748.

[65]

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

[66]
Lin, S. C.; Wu, J. J. X.; Yao, J.; Cao, W.; Muhammad, F.; Wei, H. Nanozymes for biomedical sensing applications: From in vitro to living systems. In Biomedical Applications of Functionalized Nanomaterials. Sarmento, B.; das Neves, J., Eds.; Elsevier: Amsterdam, 2018; pp 171–209.
DOI
[67]

Ergene, C.; Yasuhara, K.; Palermo, E. F. Biomimetic antimicrobial polymers: Recent advances in molecular design. Polym. Chem. 2018, 9, 2407–2427.

[68]

Hu, C. M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. F. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980–10985.

[69]

Kroll, A. V.; Fang, R. H.; Zhang, L. F. Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug. Chem. 2017, 28, 23–32.

[70]

Dehaini, D.; Wei, X. L.; Fang, R. H.; Masson, S.; Angsantikul, P.; Luk, B. T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A. V. et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 2017, 29, 1606209.

[71]

Oroojalian, F.; Beygi, M.; Baradaran, B.; Mokhtarzadeh, A.; Shahbazi, M. A. Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy. Small 2021, 17, 2006484.

[72]

Fang, R. H.; Hu, C. M. J.; Luk, B. T.; Gao, W. W.; Copp, J. A.; Tai, Y. Y.; O’Connor, D. E.; Zhang, L. F. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014, 14, 2181–2188.

[73]

Gootz, T. D. The global problem of antibiotic resistance. Crit. Rev. Immunol. 2010, 30, 79–93.

[74]

Hasan, T. H.; Al-Harmoosh, R. A. Mechanisms of antibiotics resistance in bacteria. Syst. Rev. Pharm. 2020, 11, 817–823.

[75]

Andersson, D. I. Persistence of antibiotic resistant bacteria. Curr. Opin. Microbiol. 2003, 6, 452–456.

[76]

Singh, R.; Lillard, J. W. Jr. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009, 86, 215–223.

[77]

Kukowska-Latallo, J. F.; Candido, K. A.; Cao, Z. Y.; Nigavekar, S. S.; Majoros, I. J.; Thomas, T. P.; Balogh, L. P.; Khan, M. K.; Baker, J. R. Jr. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005, 65, 5317–5324.

[78]

Zhang, X. Y.; Tang, W. J.; Wen, H. Y.; Wu, E. C.; Ding, T. H.; Gu, J.; Lv, Z. W.; Zhan, C. Y. Evaluation of CTB-sLip for targeting lung metastasis of colorectal cancer. Pharmaceutics 2022, 14, 868.

[79]

Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 2014, 13, 813–827.

[80]

Zhang, Z.; Chu, Y. X.; Li, C.; Tang, W. J.; Qian, J.; Wei, X. L.; Lu, W. Y.; Ying, T. L.; Zhan, C. Y. Anti-PEG scFv corona ameliorates accelerated blood clearance phenomenon of PEGylated nanomedicines. J. Control. Release 2021, 330, 493–501.

[81]

Tang, W. J.; Zhang, Z.; Li, C.; Chu, Y. X.; Qian, J.; Ying, T. L.; Lu, W. Y.; Zhan, C. Y. Facile separation of PEGylated liposomes enabled by anti-PEG scFv. Nano Lett. 2021, 21, 10107–10113.

[82]
Bangham, A. D.; Horne, R. W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol. 1964 , 8, 660–668, IN2–IN10.
DOI
[83]

Large, D. E.; Abdelmessih, R. G.; Fink, E. A.; Auguste, D. T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021, 176, 113851.

[84]

Spector, A. A.; Yorek, M. A. Membrane lipid composition and cellular function. J. Lipid Res. 1985, 26, 1015–1035.

[85]

Nakhaei, P.; Margiana, R.; Bokov, D. O.; Abdelbasset, W. K.; Jadidi Kouhbanani, M. A.; Varma, R. S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N. Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front. Bioeng. Biotechnol. 2021, 9, 705886.

[86]

Lu, L. W.; Xu, Q. Z.; Wang, J.; Wu, S. Y.; Luo, Z. M.; Lu, W. Y. Drug nanocrystals for active tumor-targeted drug delivery. Pharmaceutics 2022, 14, 797.

[87]

Dawidczyk, C. M.; Kim, C.; Park, J. H.; Russell, L. M.; Lee, K. H.; Pomper, M. G.; Searson, P. C. State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines. J. Control. Release 2014, 187, 133–144.

[88]

Boswell, G. W.; Buell, D.; Bekersky, I. AmBisome (liposomal amphotericin B): A comparative review. J. Clin. Pharmacol. 1998, 38, 583–592.

[89]

Groll, A. H.; Rijnders, B. J. A.; Walsh, T. J.; Adler-Moore, J.; Lewis, R. E.; Brüggemann, R. J. M. Clinical pharmacokinetics, pharmacodynamics, safety and efficacy of liposomal amphotericin B. Clin. Infect. Dis. 2019, 68, S260–S274.

[90]

Griffith, D. E.; Eagle, G.; Thomson, R.; Aksamit, T. R.; Hasegawa, N.; Morimoto, K.; Addrizzo-Harris, D. J.; O’Donnell, A. E.; Marras, T. K.; Flume, P. A. et al. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex (CONVERT). A prospective, open-label, randomized study. Am. J. Respir. Crit. Care Med. 2018, 198, 1559–1569.

[91]

Hutchings, M. I.; Truman, A. W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80.

[92]

Jeu, L.; Piacenti, F. J.; Lyakhovetskiy, A. G.; Fung, H. B. Voriconazole. Clin. Ther. 2003, 25, 1321–1381.

[93]

Saravolatz, L. D.; Johnson, L. B.; Kauffman, C. A. Voriconazole: A new triazole antifungal agent. Clin. Infect. Dis. 2003, 36, 630–637.

[94]

Veloso, D. F. M. C.; Benedetti, N. I. G. M.; Ávila, R. I.; Bastos, T. S. A.; Silva, T. C.; Silva, M. R. R.; Batista, A. C.; Valadares, M. C.; Lima, E. M. Intravenous delivery of a liposomal formulation of voriconazole improves drug pharmacokinetics, tissue distribution, and enhances antifungal activity. Drug Deliv. 2018, 25, 1585–1594.

[95]

Walkey, C. D.; Olsen, J. B.; Guo, H. B.; Emili, A.; Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 2012, 134, 2139–2147.

[96]

Moghimi, S. M.; Szebeni, J. Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 2003, 42, 463–478.

[97]

Wang, H. Y.; Wang, Y. S.; Yuan, C. Z.; Xu, X.; Zhou, W. B.; Huang, Y. H.; Lu, H.; Zheng, Y.; Luo, G.; Shang, J. et al. Polyethylene glycol (PEG)-associated immune responses triggered by clinically relevant lipid nanoparticles in rats. NPJ vaccines 2023, 8, 169

[98]

Barenholz, Y. C. Doxil®-The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134.

[99]
Najjar, V. A.; Nishioka, K. ‘Tuftsin’: A natural phagocytosis stimulating peptide. Nature 1970 , 228, 672–673.
DOI
[100]

Agrawal, A. K.; Gupta, C. M. Tuftsin-bearing liposomes in treatment of macrophage-based infections. Adv. Drug Deliv. Rev. 2000, 41, 135–146.

[101]

Wijagkanalan, W.; Kawakami, S.; Takenaga, M.; Igarashi, R.; Yamashita, F.; Hashida, M. Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J. Control. Release 2008, 125, 121–130.

[102]

Li, G. H.; Wang, M. K.; Ding, T. H.; Wang, J.; Chen, T.; Shao, Q. W.; Jiang, K.; Wang, L. P.; Yu, Y. F.; Pan, F. et al. cRGD enables rapid phagocytosis of liposomal vancomycin for intracellular bacterial clearance. J. Control. Release 2022, 344, 202–213.

[103]

Bogdanowich-Knipp, S. J.; Chakrabarti, S.; Siahaan, T. J.; Williams, T. D.; Dillman, R. K. Solution stability of linear vs. cyclic RGD peptides. J. Pept. Res. 1999, 53, 530–541.

[104]

Dechantsreiter, M. A.; Planker, E.; Mathä, B.; Lohof, E.; Hölzemann, G.; Jonczyk, A.; Goodman, S. L.; Kessler, H. N-Methylated cyclic RGD peptides as highly active and selective αvβ3 integrin antagonists. J. Med. Chem. 1999, 42, 3033–3040.

[105]

Nation, R. L.; Li, J. Colistin in the 21st century. Curr. Opin. Infect. Dis. 2009, 22, 535–543.

[106]

Menina, S.; Eisenbeis, J.; Kamal, M. A. M.; Koch, M.; Bischoff, M.; Gordon, S.; Loretz, B.; Lehr, C. M. Bioinspired liposomes for oral delivery of colistin to combat intracellular infections by Salmonella enterica. Adv. Healthc. Mater. 2019, 8, 1900564.

[107]

Los, F. C. O.; Randis, T. M.; Aroian, R. V.; Ratner, A. J. Role of pore-forming toxins in bacterial infectious diseases. Microbiol. Mol. Biol. Rev. 2013, 77, 173–207.

[108]

Henry, B. D.; Neill, D. R.; Becker, K. A.; Gore, S.; Bricio-Moreno, L.; Ziobro, R.; Edwards, M. J.; Mühlemann, K.; Steinmann, J.; Kleuser, B. et al. Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat. Biotechnol. 2015, 33, 81–88.

[109]

Filipczak, N.; Pan, J. Y.; Yalamarty, S. S. K.; Torchilin, V. P. Recent advancements in liposome technology. Adv. Drug Deliv. Rev. 2020, 156, 4–22.

[110]

Kirtane, A. R.; Verma, M.; Karandikar, P.; Furin, J.; Langer, R.; Traverso, G. Nanotechnology approaches for global infectious diseases. Nat. Nanotechnol. 2021, 16, 369–384.

[111]

Bassetti, M.; Vena, A.; Russo, A.; Peghin, M. Inhaled liposomal antimicrobial delivery in lung infections. Drugs 2020, 80, 1309–1318.

[112]

Leal, J.; Smyth, H. D. C.; Ghosh, D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm. 2017, 532, 555–572.

[113]

Roy, I.; Vij, N. Nanodelivery in airway diseases: Challenges and therapeutic applications. Nanomed.: Nanotechnol. Biol. Med. 2010, 6, 237–244.

[114]

Pornpattananangkul, D.; Zhang, L.; Olson, S.; Aryal, S.; Obonyo, M.; Vecchio, K.; Huang, C. M.; Zhang, L. F. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J. Am. Chem. Soc. 2011, 133, 4132–4139.

[115]

Giddings, K. S.; Johnson, A. E.; Tweten, R. K. Redefining cholesterol’s role in the mechanism of the cholesterol-dependent cytolysins. Proc. Natl. Acad. Sci. USA 2003, 100, 11315–11320.

[116]

Dal Peraro, M.; van der Goot, F. G. Pore-forming toxins: Ancient, but never really out of fashion. Nat. Rev. Microbiol. 2016, 14, 77–92.

[117]

Xie, J. J.; Meng, Z. P.; Han, X. X.; Li, S. P.; Ma, X. N.; Chen, X. Y.; Liang, Y. M.; Deng, X. M.; Xia, K. X.; Zhang, Y. et al. Cholesterol microdomain enhances the biofilm eradication of antibiotic liposomes. Adv. Healthc. Mater. 2022, 11, 2101745.

[118]

Lai, C. C.; Shih, T. P.; Ko, W. C.; Tang, H. J.; Hsueh, P. R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924.

[119]

Wang, N.; Ferhan, A. R.; Yoon, B. K.; Jackman, J. A.; Cho, N. J.; Majima, T. Chemical design principles of next-generation antiviral surface coatings. Chem. Soc. Rev. 2021, 50, 9741–9765.

[120]

Nasrollahzadeh, M.; Sajjadi, M.; Soufi, G. J.; Iravani, S.; Varma, R. S. Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomaterials 2020, 10, 1072.

[121]

Sen, C. K.; Gordillo, G. M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T. K.; Gottrup, F.; Gurtner, G. C.; Longaker, M. T. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen. 2009, 17, 763–771.

[122]

Chang, R. Y. K.; Morales, S.; Okamoto, Y.; Chan, H. K. Topical application of bacteriophages for treatment of wound infections. Transl. Res. 2020, 220, 153–166.

[123]

Walsh, T. R.; Efthimiou, J.; Dréno, B. Systematic review of antibiotic resistance in acne: An increasing topical and oral threat. Lancet Infect. Dis. 2016, 16, e23–e33.

[124]
Thassu, D.; Chader, G. J. Ocular Drug Delivery Systems: Barriers and Application of Nanoparticulate Systems; CRC Press: Boca Raton, 2012.
DOI
[125]

Thapa, R. K.; Kiick, K. L.; Sullivan, M. O. Encapsulation of collagen mimetic peptide-tethered vancomycin liposomes in collagen-based scaffolds for infection control in wounds. Acta Biomater. 2020, 103, 115–128.

[126]

Virgin, H. W.; Wherry, E. J.; Ahmed, R. Redefining chronic viral infection. Cell 2009, 138, 30–50.

[127]

Paterson, R. R. M.; Lima, N. Filamentous fungal human pathogens from food emphasising Aspergillus, Fusarium and Mucor. Microorganisms 2017, 5, 44.

[128]

Omar, A.; Wright, J. B.; Schultz, G.; Burrell, R.; Nadworny, P. Microbial biofilms and chronic wounds. Microorganisms 2017, 5, 9.

[129]

Meers, P.; Neville, M.; Malinin, V.; Scotto, A. W.; Sardaryan, G.; Kurumunda, R.; Mackinson, C.; James, G.; Fisher, S.; Perkins, W. R. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J. Antimicrob. Chemother. 2008, 61, 859–868.

[130]

Waters, V.; Ratjen, F. Inhaled liposomal amikacin. Expert Rev. Respir. Med. 2014, 8, 401–409.

[131]

Hemmingsen, L. M.; Giordani, B.; Paulsen, M. H.; Vanić, Ž.; Flaten, G. E.; Vitali, B.; Basnet, P.; Bayer, A.; Strøm, M. B.; Škalko-Basnet, N. Tailored anti-biofilm activity—Liposomal delivery for mimic of small antimicrobial peptide. Biomater. Adv. 2023, 145, 213238.

[132]

Price, C. I.; Horton, J. W.; Baxter, C. R. Liposome encapsulation: A method for enhancing the effectiveness of local antibiotics. Surgery 1994, 115, 480–487.

[133]

Price, C. I.; Horton, J. W.; Baxter, C. R. Topical liposomal delivery of antibiotics in soft tissue infection. J. Surg. Res. 1990, 49, 174–178.

[134]

Chang, T. M. S. Artificial cell evolves into nanomedicine, biotherapeutics, blood substitutes, drug delivery, enzyme/gene therapy, cancer therapy, cell/stem cell therapy, nanoparticles, liposomes, bioencapsulation, replicating synthetic cells, cell encapsulation/scaffold, biosorbent/immunosorbent haemoperfusion/plasmapheresis, regenerative medicine, encapsulated microbe, nanobiotechnology, nanotechnology. Artif. Cells Nanomed. Biotechnol. 2019, 47, 997–1013.

[135]

Pandey, N.; Dhiman, S.; Srivastava, T.; Majumder, S. Transition metal oxide nanoparticles are effective in inhibiting lung cancer cell survival in the hypoxic tumor microenvironment. Chem. Biol. Interact. 2016, 254, 221–230.

[136]

Ai, Y. J.; Hu, Z. N.; Liang, X. P.; Sun, H. B.; Xin, H. B.; Liang, Q. L. Recent advances in nanozymes: From matters to bioapplications. Adv. Funct. Mater. 2022, 32, 2110432.

[137]

Karthik, A. D.; Geetha, K. Applications of transition metal nanoparticles in antimicrobial therapy. Biomater. Tissue Eng. Bull. 2016, 3, 28–34.

[138]

Bonda, D. J.; Liu, G.; Men, P.; Perry, G.; Smith, M. A.; Zhu, X. W. Nanoparticle delivery of transition-metal chelators to the brain: Oxidative stress will never see it coming! CNS Neurol. Disord. Drug Targets. 2012, 11, 81–85.

[139]

Molino, N. M.; Wang, S. W. Caged protein nanoparticles for drug delivery. Curr. Opin. Biotechnol. 2014, 28, 75–82.

[140]

Iqbal, H.; Yang, T.; Li, T.; Zhang, M. Y.; Ke, H. T.; Ding, D. W.; Deng, Y. B.; Chen, H. B. Serum protein-based nanoparticles for cancer diagnosis and treatment. J. Control. Release 2021, 329, 997–1022.

[141]

Wang, C. S.; Liu, C.; Luo, J. B.; Tian, Y. P.; Zhou, N. D. Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 2016, 936, 75–82.

[142]

Weerathunge, P.; Ramanathan, R.; Torok, V. A.; Hodgson, K.; Xu, Y.; Goodacre, R.; Behera, B. K.; Bansal, V. Ultrasensitive colorimetric detection of murine norovirus using NanoZyme aptasensor. Anal. Chem. 2019, 91, 3270–3276.

[143]

He, W. W.; Zhou, Y. T.; Wamer, W. G.; Hu, X. N.; Wu, X. C.; Zheng, Z.; Boudreau, M. D.; Yin, J. J. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 2013, 34, 765–773.

[144]

Ma, M.; Zhang, Y.; Gu, N. Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloids Surf. A: Physicochem. Eng. Aspects 2011, 373, 6–10.

[145]

Cui, M. L.; Zhou, J. D.; Zhao, Y.; Song, Q. J. Facile synthesis of iridium nanoparticles with superior peroxidase-like activity for colorimetric determination of H2O2 and xanthine. Sens. Actuators B: Chem. 2017, 243, 203–210.

[146]

Shen, X. M.; Liu, W. Q.; Gao, X. J.; Lu, Z. H.; Wu, X. C.; Gao, X. F. Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: A general way to the activation of molecular oxygen. J. Am. Chem. Soc. 2015, 137, 15882–15891.

[147]

Glantz, M. J.; Jaeckle, K. A.; Chamberlain, M. C.; Phuphanich, S.; Recht, L.; Swinnen, L. J.; Maria, B.; LaFollette, S.; Schumann, G. B.; Cole, B. F. et al. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin. Cancer Res. 1999, 5, 3394–3402.

[148]

Tian, J.; Wong, K. K. Y.; Ho, C. M.; Lok, C. N.; Yu, W. Y.; Che, C. M.; Chiu, J. F.; Tam, P. K. H. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2007, 2, 129–136.

[149]

Santoro, C. M.; Duchsherer, N. L.; Grainger, D. W. Minimal in vitro antimicrobial efficacy and ocular cell toxicity from silver nanoparticles. Nanobiotechnology 2007, 3, 55–65.

[150]

Divya, M.; Kiran, G. S.; Hassan, S.; Selvin, J. Biogenic synthesis and effect of silver nanoparticles (AgNPs) to combat catheter-related urinary tract infections. Biocatal. Agric. Biotechnol. 2019, 18, 101037.

[151]

Wang, J. L.; Zhan, L. L.; Zhang, X. H.; Wu, R. F.; Liao, L.; Wei, J. C. Silver nanoparticles coated poly(L-lactide) electrospun membrane for implant associated infections prevention. Front. Pharmacol. 2020, 11, 431.

[152]

He, W. W.; Zhou, Y. T.; Wamer, W. G.; Boudreau, M. D.; Yin, J. J. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 2012, 33, 7547–7555.

[153]

He, D.; Jones, A. M.; Garg, S.; Pham, A. N.; Waite, T. D. Silver nanoparticle-reactive oxygen species interactions: Application of a charging-discharging model. J. Phys. Chem. C 2011, 115, 5461–5468.

[154]

Qing, Y.; Cheng, L.; Li, R. Y.; Liu, G. C.; Zhang, Y. B.; Tang, X. F.; Wang, J. C.; Liu, H.; Qin, Y. G. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomedicine 2018, 13, 3311–3327.

[155]

Murray, R. G. E.; Steed, P.; Elson, H. E. The location of the mucopeptide in sections of the cell wall of escherichia coli and other gram-negative bacteria. Can. J. Microbiol. 1965, 11, 547–560.

[156]

Lancee, B. The negative side effects of vocational education: A cross-national analysis of the relative unemployment risk of young non-western immigrants in Europe. Am. Behav. Sci. 2016, 60, 659–679.

[157]

Shockman, G. D.; Barrett, J. F. Structure, function, and assembly of cell walls of gram-positive bacteria. Annu. Rev. Microbiol. 1983, 37, 501–527.

[158]

Gupta, P.; Bajpai, M.; Bajpai, S. K. Investigation of antibacterial properties of silver nanoparticle-loaded poly (acrylamide-co-itaconic acid)-grafted cotton fabric. J. Cotton Sci. 2008, 12, 280–286.

[159]

Alula, M. T. Peroxidase-like activity of biosynthesized silver nanoparticles for colorimetric detection of cysteine. RSC Adv. 2023, 13, 16396–16404.

[160]

Tran, H. V.; Nguyen, N. D.; Tran, C. T. Q.; Tran, L. T.; Le, T. D.; Tran, H. T. T.; Piro, B.; Huynh, C. D.; Nguyen, T. N.; Nguyen, N. T. T. et al. Silver nanoparticles-decorated reduced graphene oxide: A novel peroxidase-like activity nanomaterial for development of a colorimetric glucose biosensor. Arab. J. Chem. 2020, 13, 6084–6091.

[161]

Tran, H. V.; Nguyen, T. V.; Nguyen, L. T. N.; Hoang, H. S.; Huynh, C. D. Silver nanoparticles as a bifunctional probe for label-free and reagentless colorimetric hydrogen peroxide chemosensor and cholesterol biosensor. J. Sci.: Adv. Mater. Devices 2020, 5, 385–391.

[162]

Lemire, J. A.; Harrison, J. J.; Turner, R. J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384.

[163]

Silver, S. Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 2003, 27, 341–353.

[164]

Percival, S. L.; Bowler, P. G.; Russell, D. Bacterial resistance to silver in wound care. J. Hosp. Infect. 2005, 60, 1–7.

[165]

Shahverdi, A. R.; Fakhimi, A.; Shahverdi, H. R.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed.: Nanotechnol. Biol. Med. 2007, 3, 168–171.

[166]

Umapathi, A.; Nagaraju, N. P.; Madhyastha, H.; Jain, D.; Srinivas, S. P.; Rotello, V. M.; Daima, H. K. Highly efficient and selective antimicrobial isonicotinylhydrazide-coated polyoxometalate-functionalized silver nanoparticles. Colloids Surf. B: Biointerfaces 2019, 184, 110522.

[167]

Yamase, T. Anti-tumor, -viral, and -bacterial activities of polyoxometalates for realizing an inorganic drug. J. Mater. Chem. 2005, 15, 4773–4782.

[168]

Lee, S. H.; Jun, B. H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019, 20, 865.

[169]

Liu, Y. T.; Duan, Z. Q.; Xie, X. M.; Ye, X. Y. A universal strategy for the hierarchical assembly of functional 0/2D nanohybrids. Chem. Commun. 2013, 49, 1642–1644.

[170]

Deshmukh, A. R.; Aloui, H.; Kim, B. S. In situ growth of gold and silver nanoparticles onto phyto-functionalized boron nitride nanosheets: Catalytic, peroxidase mimicking, and antimicrobial activity. J. Clean. Prod. 2020, 270, 122339.

[171]

Hsu, C. L.; Li, Y. J.; Jian, H. J.; Harroun, S. G.; Wei, S. C.; Ravindranath, R.; Lai, J. Y.; Huang, C. C.; Chang, H. T. Green synthesis of catalytic gold/bismuth oxyiodide nanocomposites with oxygen vacancies for treatment of bacterial infections. Nanoscale 2018, 10, 11808–11819.

[172]

Deng, H. H.; Luo, B. Y.; He, S. B.; Chen, R. T.; Lin, Z.; Peng, H. P.; Xia, X. H.; Chen, W. Redox recycling-triggered peroxidase-like activity enhancement of bare gold nanoparticles for ultrasensitive colorimetric detection of rare-earth Ce3+ ion. Anal. Chem. 2019, 91, 4039–4046.

[173]

Zheng, Y. K.; Liu, W. W.; Qin, Z. J.; Chen, Y.; Jiang, H.; Wang, X. M. Mercaptopyrimidine-conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs. Bioconjug. Chem. 2018, 29, 3094–3103.

[174]

Lorenzana-Vázquez, G.; Pavel, I.; Meléndez, E. Gold nanoparticles functionalized with 2-thiouracil for antiproliferative and photothermal therapies in breast cancer cells. Molecules 2023, 28, 4453.

[175]

Zhang, S. N.; Lu, Q. J.; Wang, F. Y.; Xiao, Z. Y.; He, L. D.; He, D. G.; Deng, L. Gold-platinum nanodots with high-peroxidase-like activity and photothermal conversion efficiency for antibacterial therapy. ACS Appl. Mater. Interfaces 2021, 13, 37535–37544.

[176]

Chen, J. X.; Ma, Q.; Li, M. H.; Chao, D. Y.; Huang, L.; Wu, W. W.; Fang, Y. X.; Dong, S. J. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 2021, 12, 3375.

[177]

Das, R.; Dhiman, A.; Kapil, A.; Bansal, V.; Sharma, T. K. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal. Bioanal. Chem. 2019, 411, 1229–1238.

[178]

Liu, M. Y.; Zhang, F. J.; Dou, S. Y.; Sun, J. S.; Vriesekoop, F.; Li, F. L.; Guo, Y. M.; Sun, X. Label-free colorimetric apta-assay for detection of Escherichia coli based on gold nanoparticles with peroxidase-like amplification. Anal. Methods 2023, 15, 1661–1667.

[179]

Xue, J. W.; Wang, R.; Yang, J. Y.; Wang, L. X.; Cao, Y.; Li, H. D.; Yang, T.; Wang, J. H. Sensitive plasmonic ELISA assay based on butyrylcholinesterase catalyzed hydrolysis for the detection of Staphylococcus aureus. Sens. Actuators B: Chem. 2022, 365, 131948.

[180]

Yao, S.; Li, J.; Pang, B.; Wang, X. C.; Shi, Y. J.; Song, X. L.; Xu, K.; Wang, J.; Zhao, C. Colorimetric immunoassay for rapid detection of Staphylococcus aureus based on etching-enhanced peroxidase-like catalytic activity of gold nanoparticles. Microchim. Acta 2020, 187, 504.

[181]

Aithal, S.; Mishriki, S.; Gupta, R.; Sahu, R. P.; Botos, G.; Tanvir, S.; Hanson, R. W.; Puri, I. K. SARS-CoV-2 detection with aptamer-functionalized gold nanoparticles. Talanta 2022, 236, 122841.

[182]

Ahmed, S. R.; Kim, J.; Suzuki, T.; Lee, J.; Park, E. Y. Detection of influenza virus using peroxidase-mimic of gold nanoparticles. Biotechnol. Bioeng. 2016, 113, 2298–2303.

[183]

Jiang, T.; Song, Y.; Wei, T. X.; Li, H.; Du, D.; Zhu, M. J.; Lin, Y. H. Sensitive detection of Escherichia coli O157:H7 using Pt-Au bimetal nanoparticles with peroxidase-like amplification. Biosens. Bioelectron. 2016, 77, 687–694.

[184]

Jung, B. Y.; Jung, S. C.; Kweon, C. H. Development of a rapid immunochromatographic strip for detection of Escherichia coli O157. J. Food Prot. 2005, 68, 2140–2143.

[185]

Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 2009, 8, 132–138.

[186]

Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.

[187]

Fang, G.; Li, W. F.; Shen, X. M.; Perez-Aguilar, J. M.; Chong, Y.; Gao, X. F.; Chai, Z. F.; Chen, C. Y.; Ge, C. C.; Zhou, R. H. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat. Commun. 2018, 9, 129.

[188]

Xiang, S. J.; Fan, Z. X.; Sun, D.; Zhu, T. B.; Ming, J.; Chen, X. L. Near-infrared light enhanced peroxidase-like activity of PEGylated palladium nanozyme for highly efficient biofilm eradication. J. Biomed. Nanotechnol. 2021, 17, 1131–1147.

[189]

Guo, J. X.; Wei, W. Y.; Zhao, Y. N.; Dai, H. L. Iron oxide nanoparticles with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Regen. Biomater. 2022, 9, rbac041.

[190]

Liu, C.; Zhang, M.; Geng, H. Q.; Zhang, P.; Zheng, Z.; Zhou, Y. L.; He, W. W. NIR enhanced peroxidase-like activity of Au@CeO2 hybrid nanozyme by plasmon-induced hot electrons and photothermal effect for bacteria killing. Appl. Catal. B: Environ. 2021, 295, 120317.

[191]

Li, Z. P.; Xu, D. Q.; Deng, Z. A.; Yin, J. N.; Qian, Y. N.; Hou, J. T.; Ding, X.; Shen, J. L.; He, X. J. Single-atom-catalyzed MXene-based nanoplatform with photo-enhanced peroxidase-like activity nanotherapeutics for Staphylococcus aureus infection. Chem. Eng. J. 2023, 452, 139587.

[192]

Huang, T.; Yu, Z.; Yuan, B.; Jiang, L.; Liu, Y.; Sun, X.; Liu, P.; Jiang, W.; Tang, J. Synergy of light-controlled Pd nanozymes with NO therapy for biofilm elimination and diabetic wound treatment acceleration. Mater. Today Chem. 2022, 24, 100831.

[193]

Ma, M. H.; Wang, R. X.; Xu, L. N.; Du, J. J.; Xu, M.; Liu, S. J. Emerging investigator series: Enhanced peroxidase-like activity and improved antibacterial performance of palladium nanosheets by an alginate-corona. Environ. Sci.: Nano 2021, 8, 3511–3523.

[194]

Khalil, M. M. H.; Ismail, E. H.; El-Magdoub, F. Biosynthesis of Au nanoparticles using olive leaf extract: 1st Nano Updates. Arab. J. Chem. 2012, 5, 431–437.

[195]

Lang, J. Y.; Ma, X. J.; Chen, P. Y.; Serota, M. D.; Andre, N. M.; Whittaker, G. R.; Yang, R. Haloperoxidase-mimicking CeO2− x nanorods for the deactivation of human coronavirus OC43. Nanoscale 2022, 14, 3731–3737.

[196]

Chen, J.; Zhang, S.; Chen, X.; Wang, L. Y.; Yang, W. S. A self-assembled fmoc-diphenylalanine hydrogel-encapsulated Pt nanozyme as oxidase- and peroxidase-like breaking pH limitation for potential antimicrobial application. Chem. -Eur. J. 2022, 28, e202104247.

[197]

Ranu, B. C.; Dey, R.; Chatterjee, T.; Ahammed, S. Copper nanoparticle-catalyzed carbon–carbon and carbon–heteroatom bond formation with a greener perspective. ChemSusChem 2012, 5, 22–44.

[198]

Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Aerobic copper-catalyzed organic reactions. Chem. Rev. 2013, 113, 6234–6458.

[199]

Amadine, O.; Maati, H.; Abdelouhadi, K.; Fihri, A.; El Kazzouli, S.; Len, C.; El Bouari, A.; Solhy, A. Ceria-supported copper nanoparticles: A highly efficient and recyclable catalyst for N-arylation of indole. J. Mol. Catal. A: Chem. 2014, 395, 409–419.

[200]

Gu, M.; Bode, D. C.; Viles, J. H. Copper redox cycling inhibits Aβ fibre formation and promotes fibre fragmentation, while generating a dityrosine Aβ dimer. Sci. Rep. 2018, 8, 16190.

[201]

Dai, X. M.; Zhao, Y.; Yu, Y. J.; Chen, X. L.; Wei, X. S.; Zhang, X. G.; Li, C. X. Single continuous near-infrared laser-triggered photodynamic and photothermal ablation of antibiotic-resistant bacteria using effective targeted copper sulfide nanoclusters. ACS Appl. Mater. Interfaces 2017, 9, 30470–30479.

[202]

He, X. J.; Rong, S.; Jin, Y. R.; Zhang, R. P. Copper-doped melanin nanozyme with enhanced photothermal and peroxidase-like catalytic property for synergistic antimicrobial effect. Mater. Lett. 2023, 341, 134226.

[203]

Pecci, L.; Montefoschi, G.; Cavallini, D. Some new details of the copper–hydrogen peroxide interaction. Biochem. Biophys. Res. Commun. 1997, 235, 264–267.

[204]

Yilmaz, S. G.; Demirbas, A.; Karaagac, Z.; Dadi, S.; Celik, C.; Yusufbeyoglu, S.; Ildiz, N.; Mandal, A. K.; Cimen, B.; Ocsoy, I. Synthesis of taurine-Cu3(PO4)2 hybrid nanoflower and their peroxidase-mimic and antimicrobial properties. J. Biotechnol. 2022, 343, 96–101.

[205]

Wang, L.; Hou, J. J.; Liu, S. Z.; Carrier, A. J.; Guo, T.; Liang, Q. S.; Oakley, D.; Zhang, X. CuO nanoparticles as haloperoxidase-mimics: Chloride-accelerated heterogeneous Cu-Fenton chemistry for H2O2 and glucose sensing. Sens. Actuators B: Chem. 2019, 287, 180–184.

[206]

Zhuang, Q. Q.; Deng, Q.; He, S. B.; Chen, Q. Q.; Peng, H. P.; Deng, H. H.; Xia, X. H.; Chen, W. Bifunctional cupric oxide nanoparticle-catalyzed self-cascade oxidation reactions of ascorbic acid for bacterial killing and wound disinfection. Compos. Part B: Eng. 2021, 222, 109074.

[207]

Xie, Y. X.; Qian, Y.; Li, Z. X.; Liang, Z. C.; Liu, W. F.; Yang, D. J.; Qiu, X. Q. Near-infrared-activated efficient bacteria-killing by lignin-based copper sulfide nanocomposites with an enhanced photothermal effect and peroxidase-like activity. ACS Sustain. Chem. Eng. 2021, 9, 6479–6488.

[208]

Xie, Y. X.; Gan, C. C.; Li, Z. X.; Liu, W. F.; Yang, D. J.; Qiu, X. Q. Fabrication of a lignin-copper sulfide-incorporated PVA hydrogel with near-infrared-activated photothermal/photodynamic/peroxidase-like performance for combating bacteria and biofilms. ACS Biomater. Sci. Eng. 2022, 8, 560–569.

[209]

Xi, J. Q.; Wei, G.; An, L. F.; Xu, Z. B.; Xu, Z. L.; Fan, L.; Gao, L. Z. Copper/carbon hybrid nanozyme: Tuning catalytic activity by the copper state for antibacterial therapy. Nano Lett. 2019, 19, 7645–7654.

[210]

Cuevas, R.; Durán, N.; Diez, M. C.; Tortella, G. R.; Rubilar, O. Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from chilean forests. J. Nanomater. 2015, 2015, 789089.

[211]

Ovais, M.; Khalil, A. T.; Raza, A.; Islam, N. U.; Ayaz, M.; Saravanan, M.; Ali, M.; Ahmad, I.; Shahid, M.; Shinwari, Z. K. Multifunctional theranostic applications of biocompatible green-synthesized colloidal nanoparticles. Appl. Microbiol. Biotechnol. 2018, 102, 4393–4408.

[212]

Asghar, M.; Sajjad, A.; Hanif, S.; Ali, J. S.; Ali, Z.; Zia, M. Comparative analysis of synthesis, characterization, antimicrobial, antioxidant, and enzyme inhibition potential of roses petal based synthesized copper oxide nanoparticles. Mater. Chem. Phys. 2022, 278, 125724.

[213]

Iqbal, J.; Andleeb, A.; Ashraf, H.; Meer, B.; Mehmood, A.; Jan, H.; Zaman, G.; Nadeem, M.; Drouet, S.; Fazal, H. et al. Potential antimicrobial, antidiabetic, catalytic, antioxidant and ROS/RNS inhibitory activities of Silybum marianum mediated biosynthesized copper oxide nanoparticles. RSC Adv. 2022, 12, 14069–14083.

[214]

Lim, J.; Majetich, S. A. Composite magnetic-plasmonic nanoparticles for biomedicine: Manipulation and imaging. Nano Today 2013, 8, 98–113.

[215]

Ansari, S. M.; Bhor, R. D.; Pai, K. R.; Sen, D.; Mazumder, S.; Ghosh, K.; Kolekar, Y. D.; Ramana, C. V. Cobalt nanoparticles for biomedical applications: Facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl. Surf. Sci. 2017, 414, 171–187.

[216]

Shi, J. C.; Shu, R.; Shi, X. Y.; Li, Y. F.; Li, J. G.; Deng, Y.; Yang, W. Z. Multi-activity cobalt ferrite/MXene nanoenzymes for drug-free phototherapy in bacterial infection treatment. RSC Adv. 2022, 12, 11090–11099.

[217]

He, S. Y.; Huang, J. Q.; Zhang, Q.; Zhao, W.; Xu, Z. A.; Zhang, W. Bamboo-like nanozyme based on nitrogen-doped carbon nanotubes encapsulating cobalt nanoparticles for wound antibacterial applications. Adv. Funct. Mater. 2021, 31, 2105198.

[218]

Zhan, Y. J.; Yu, Y.; Wu, P.; Ding, P. Study on the synthesis and antibacterial activity of cobalt-metal organic framework. J. Phys.: Conf. Ser. 2022, 2393, 012034.

[219]

Lombardo Lupano, L. V.; Lázaro Martínez, J. M.; Piehl, L. L.; Rubin de Celis, E.; Campo Dall’ Orto, V. Activation of H2O2 and superoxide production using a novel cobalt complex based on a polyampholyte. Appl. Catal. A: Gen. 2013, 467, 342–354.

[220]

Mirhosseini, M.; Shekari-Far, A.; Hakimian, F.; Haghiralsadat, B. F.; Fatemi, S. K.; Dashtestani, F. Core–shell Au@Co-Fe hybrid nanoparticles as peroxidase mimetic nanozyme for antibacterial application. Process Biochem. 2020, 95, 131–138.

[221]

Wang, Y.; Chen, C.; Zhang, D.; Wang, J. Bifunctionalized novel Co-V MMO nanowires: Intrinsic oxidase and peroxidase like catalytic activities for antibacterial application. Appl. Catal. B: Environ. 2020, 261, 118256.

[222]

Liu, J. L.; Wang, Y. H.; Shen, J. H.; Liu, H.; Li, J. Q.; Wang, A. Q.; Hui, A. P.; Munir, H. A. Superoxide anion: Critical source of high performance antibacterial activity in Co-doped ZnO QDs. Ceram. Int. 2020, 46, 15822–15830.

[223]

Li, D. D.; Guo, Q. Q.; Ding, L. M.; Zhang, W.; Cheng, L.; Wang, Y. Q.; Xu, Z. B.; Wang, H. H.; Gao, L. Z. Bimetallic CuCo2S4 nanozymes with enhanced peroxidase activity at neutral ph for combating burn infections. ChemBioChem 2020, 21, 2620–2627.

[224]

Chen, Z. W.; Yin, J. J.; Zhou, Y. T.; Zhang, Y.; Song, L. N.; Song, M. J.; Hu, S. L.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012, 6, 4001–4012.

[225]

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

[226]

Dong, H. J.; Du, W.; Dong, J.; Che, R. C.; Kong, F.; Cheng, W. L.; Ma, M.; Gu, N.; Zhang, Y. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun. 2022, 13, 5365.

[227]

Kumar, R.; Sahoo, G. C.; Chawla-Sarkar, M.; Nayak, M. K.; Trivedi, K.; Rana, S.; Pandey, K.; Das, V.; Topno, R.; Das, P. Antiviral effect of glycine coated iron oxide nanoparticles iron against H1N1 influenza A virus. Int. J. Infect. Dis. 2016, 45, 281–282.

[228]

Kumar, R.; Nayak, M.; Sahoo, G. C.; Pandey, K.; Sarkar, M. C.; Ansari, Y.; Das, V. N. R.; Topno, R. K.; Bhawna; Madhukar, M. et al. Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. J. Infect. Chemother. 2019, 25, 325–329.

[229]

Qin, T.; Ma, R. N.; Yin, Y. Y.; Miao, X. Y.; Chen, S. J.; Fan, K. L.; Xi, J. Q.; Liu, Q.; Gu, Y. H.; Yin, Y. C. et al. Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics 2019, 9, 6920–6935.

[230]

Naha, P. C.; Liu, Y.; Hwang, G.; Huang, Y.; Gubara, S.; Jonnakuti, V.; Simon-Soro, A.; Kim, D.; Gao, L. Z.; Koo, H. et al. Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption. ACS Nano 2019, 13, 4960–4971.

[231]

Wang, Y. Q.; Shen, X. Y.; Ma, S.; Guo, Q. Q.; Zhang, W.; Cheng, L.; Ding, L. M.; Xu, Z. B.; Jiang, J.; Gao, L. Z. Oral biofilm elimination by combining iron-based nanozymes and hydrogen peroxide-producing bacteria. Biomater. Sci. 2020, 8, 2447–2458.

[232]

Vallabani, N. V. S.; Vinu, A.; Singh, S.; Karakoti, A. Tuning the ATP-triggered pro-oxidant activity of iron oxide-based nanozyme towards an efficient antibacterial strategy. J. Colloid Interface Sci. 2020, 567, 154–164.

[233]

Vallabani, N. V. S.; Karakoti, A. S.; Singh, S. ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: One step detection of blood glucose at physiological pH. Colloids Surf. B: Biointerfaces 2017, 153, 52–60.

[234]

Liu, Z. W.; Zhao, X. Y.; Yu, B. R.; Zhao, N. N.; Zhang, C.; Xu, F. J. Rough carbon-iron oxide nanohybrids for near-infrared-II light-responsive synergistic antibacterial therapy. ACS Nano 2021, 15, 7482–7490.

[235]

Zhang, W.; Hu, S. L.; Yin, J. J.; He, W. W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865.

[236]

Dacarro, G.; Taglietti, A.; Pallavicini, P. Prussian blue nanoparticles as a versatile photothermal tool. Molecules 2018, 23, 1414.

[237]

Maaoui, H.; Jijie, R.; Pan, G. H.; Drider, D.; Caly, D.; Bouckaert, J.; Dumitrascu, N.; Chtourou, R.; Szunerits, S.; Boukherroub, R. A 980 nm driven photothermal ablation of virulent and antibiotic resistant Gram-positive and Gram-negative bacteria strains using Prussian blue nanoparticles. J. Colloid Interface Sci. 2016, 480, 63–68.

[238]

Chakraborty, N.; Jha, D.; Gautam, H. K.; Roy, I. Peroxidase-like behavior and photothermal effect of chitosan-coated Prussian-blue nanoparticles: Dual-modality antibacterial action with enhanced bioaffinity. Mater. Adv. 2020, 1, 774–782.

[239]

Li, Y. T.; Zhu, Y.; Wang, C.; Shen, Y.; Liu, L.; Zhou, S. W.; Cui, P. F.; Hu, H. A. Z.; Jiang, P. J.; Ni, X. Y. et al. Mild hyperthermia induced by hollow mesoporous prussian blue nanoparticles in alliance with a low concentration of hydrogen peroxide shows powerful antibacterial effect. Mol. Pharm. 2022, 19, 819–830.

[240]

Gao, F.; Li, X. L.; Zhang, T. B.; Ghosal, A.; Zhang, G. F.; Fan, H. M.; Zhao, L. Y. Iron nanoparticles augmented chemodynamic effect by alternative magnetic field for wound disinfection and healing. J. Control. Release 2020, 324, 598–609.

[241]

Le, T. N.; Tran, T. D.; Kim, M. I. A convenient colorimetric bacteria detection method utilizing chitosan-coated magnetic nanoparticles. Nanomaterials 2020, 10, 92.

[242]

Zakharzhevskii, M.; Drozdov, A. S.; Kolchanov, D. S.; Shkodenko, L.; Vinogradov, V. V. Test-system for bacteria sensing based on peroxidase-like activity of inkjet-printed magnetite nanoparticles. Nanomaterials 2020, 10, 313.

[243]

Park, J. Y.; Jeong, H. Y.; Kim, M. I.; Park, T. J. Colorimetric detection system for Salmonella typhimurium based on peroxidase-like activity of magnetic nanoparticles with DNA aptamers. J. Nanomater. 2015, 2015, 527126.

[244]

Heckert, E. G.; Karakoti, A. S.; Seal, S.; Self, W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008, 29, 2705–2709.

[245]

Pirmohamed, T.; Dowding, J. M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A. S.; King, J. E. S.; Seal, S.; Self, W. T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738.

[246]

Frerichs, H.; Pütz, E.; Pfitzner, F.; Reich, T.; Gazanis, A.; Panthöfer, M.; Hartmann, J.; Jegel, O.; Heermann, R.; Tremel, W. Nanocomposite antimicrobials prevent bacterial growth through the enzyme-like activity of Bi-doped cerium dioxide (Ce1− x Bi x O2− δ ). Nanoscale 2020, 12, 21344–21358.

[247]

Xie, J. X.; Zhang, X. D.; Wang, H.; Zheng, H. Z.; Huang, Y. M.; Xie, J. X. Analytical and environmental applications of nanoparticles as enzyme mimetics. TrAC Trends Anal. Chem. 2012, 39, 114–129.

[248]

Chishti, B.; Fouad, H.; Seo, H. K.; Alothman, O. Y.; Ansari, Z. A.; Ansari, S. G. ATP fosters the tuning of nanostructured CeO2 peroxidase-like activity for promising antibacterial performance. New J. Chem. 2020, 44, 11291–11303.

[249]

Herget, K.; Hubach, P.; Pusch, S.; Deglmann, P.; Götz, H.; Gorelik, T. E.; Gural’skiy, I. A.; Pfitzner, F.; Link, T.; Schenk, S. et al. Haloperoxidase mimicry by CeO2− x nanorods combats biofouling. Adv. Mater. 2017, 29, 1603823.

[250]

Zeng, X. L.; Wang, H. R.; Ma, Y. T.; Xu, X.; Lu, X. X.; Hu, Y. J.; Xie, J. H.; Wang, X.; Wang, Y. S.; Guo, X. L. et al. Vanadium oxide nanozymes with multiple enzyme-mimic activities for tumor catalytic therapy. ACS Appl. Mater. Interfaces 2023, 15, 13941–13955.

[251]

Ma, W. S.; Zhang, T. T.; Li, R. G.; Niu, Y. S.; Yang, X. C.; Liu, J.; Xu, Y. H.; Li, C. M. Bienzymatic synergism of vanadium oxide nanodots to efficiently eradicate drug-resistant bacteria during wound healing in vivo. J. Colloid Interface Sci. 2020, 559, 313–323.

[252]

Wever, R.; Tromp, M. G. M.; Krenn, B. E.; Marjani, A.; Van Tol, M. Brominating activity of the seaweed ascophyllum nodosum: Impact on the biosphere. Environ. Sci. Technol. 1991, 25, 446–449.

[253]

Natalio, F.; André, R.; Hartog, A. F.; Stoll, B.; Jochum, K. P.; Wever, R.; Tremel, W. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 2012, 7, 530–535.

[254]

Sun, X. S.; He, X. J.; Zhu, Y.; Obeng, E.; Zeng, B. R.; Deng, H.; Shen, J. L.; Hu, R. D. Valence-switchable and biocatalytic vanadium-based MXene nanoplatform with photothermal-enhanced dual enzyme-like activities for anti-infective therapy. Chem. Eng. J. 2023, 451, 138985.

[255]

Haque, S.; Tripathy, S.; Patra, C. R. Manganese-based advanced nanoparticles for biomedical applications: Future opportunity and challenges. Nanoscale 2021, 13, 16405–16426.

[256]

Wang, P.; Yang, J.; Zhou, B. Q.; Hu, Y.; Xing, L. X.; Xu, F. L.; Shen, M. W.; Zhang, G. X.; Shi, X. Y. Antifouling manganese oxide nanoparticles: Synthesis, characterization, and applications for enhanced MR imaging of tumors. ACS Appl. Mater. Interfaces 2017, 9, 47–53.

[257]

Chen, F.; Bai, M.; Cao, K.; Zhao, Y.; Wei, J.; Zhao, Y. X. Fabricating MnO2 nanozymes as intracellular catalytic DNA circuit generators for versatile imaging of base-excision repair in living cells. Adv. Funct. Mater. 2017, 27, 1702748.

[258]

Han, L.; Zhang, H. J.; Chen, D. Y.; Li, F. Protein-directed metal oxide nanoflakes with tandem enzyme-like characteristics: Colorimetric glucose sensing based on one-pot enzyme-free cascade catalysis. Adv. Funct. Mater. 2018, 28, 1800018.

[259]

Zhang, J. Y.; Wu, S. H.; Lu, X. M.; Wu, P.; Liu, J. W. Manganese as a catalytic mediator for photo-oxidation and breaking the pH limitation of nanozymes. Nano Lett. 2019, 19, 3214–3220.

[260]

Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S. C.; Wang, X. Y.; Wu, J. J. X.; Li, S. R.; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018, 9, 2927–2933.

[261]

Su, J.; Lyu, T.; Cooper, M.; Mortimer, R. J. G.; Pan, G. Efficient arsenic removal by a bifunctional heterogeneous catalyst through simultaneous hydrogen peroxide (H2O2) catalytic oxidation and adsorption. J. Clean. Prod. 2021, 325, 129329.

[262]

Xu, W.; Sun, B. H.; Wu, F.; Mohammadniaei, M.; Song, Q. X.; Han, X.; Wang, W. T.; Zhang, M.; Zhou, N. L.; Shen, J. Manganese single-atom catalysts for catalytic-photothermal synergistic anti-infected therapy. Chem. Eng. J. 2022, 438, 135636.

[263]

Liu, L.; Wang, C.; Li, Y. T.; Qiu, L.; Zhou, S. W.; Cui, P. F.; Jiang, P. J.; Ni, X. Y.; Liu, R. H.; Du, X. C. et al. Manganese dioxide nanozyme for reactive oxygen therapy of bacterial infection and wound healing. Biomater. Sci. 2021, 9, 5965–5976.

[264]

Zu, Y.; Yao, H. Q.; Wang, Y. F.; Yan, L.; Gu, Z. J.; Chen, C. Y.; Gao, L. Z.; Yin, W. Y. The age of bioinspired molybdenum-involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications. View 2021, 2, 20200188.

[265]

Lin, T. R.; Jiang, G. Y.; Lin, D. X.; Lai, Y. P.; Hou, L.; Zhao, S. L. Bacitracin-functionalized dextran-MoSe2 with peroxidase-like and near-infrared photothermal activities for low-temperature and synergetic antibacterial applications. ACS Appl. Bio Mater. 2022, 5, 2347–2354.

[266]

Tan, J.; Wu, S. Y.; Cai, Q. Q.; Wang, Y.; Zhang, P. Reversible regulation of enzyme-like activity of molybdenum disulfide quantum dots for colorimetric pharmaceutical analysis. J. Pharm. Anal. 2022, 12, 113–121.

[267]

Cao, M. Y.; Chang, Z. S.; Tan, J. S.; Wang, X. N.; Zhang, P. F.; Lin, S.; Liu, J. Q.; Li, A. H. Superoxide radical-mediated self-synthesized Au/MoO3- x hybrids with enhanced peroxidase-like activity and photothermal effect for anti-MRSA therapy. ACS Appl. Mater. Interfaces 2022, 14, 13025–13037.

[268]

Liao, Z. Y.; Xia, Y. M.; Zuo, J. M.; Wang, T.; Hu, D. T.; Li, M. Z.; Shao, N. N.; Chen, D.; Song, K. X.; Yu, X. et al. Metal-organic framework modified MoS2 nanozyme for synergetic combating drug-resistant bacterial infections via photothermal effect and photodynamic modulated peroxidase-mimic activity. Adv. Healthc. Mater. 2022, 11, 2101698.

[269]

Sun, Y.; Xu, B. L.; Pan, X. T.; Wang, H. Y.; Wu, Q. Y.; Li, S. S.; Jiang, B. Y.; Liu, H. Y. Carbon-based nanozymes: Design, catalytic mechanism, and bioapplication. Coord. Chem. Rev. 2023, 475, 214896.

[270]

Wang, H.; Li, P. H.; Yu, D. Q.; Zhang, Y.; Wang, Z. Z.; Liu, C. Q.; Qiu, H.; Liu, Z.; Ren, J. S.; Qu, X. G. Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Lett. 2018, 18, 3344–3351.

[271]

Ren, C. X.; Hu, X. G.; Zhou, Q. X. Graphene oxide quantum dots reduce oxidative stress and inhibit neurotoxicity in vitro and in vivo through catalase-like activity and metabolic regulation. Adv. Sci. 2018, 5, 1700595.

[272]

Yu, M. Z.; Guo, X. Z.; Lu, H. J.; Li, P. L.; Huang, R. B.; Xu, C. N.; Gong, X. D.; Xiao, Y. H.; Xing, X. D. Carbon dots derived from folic acid as an ultra-succinct smart antimicrobial nanosystem for selective killing of S. aureus and biofilm eradication. Carbon 2022, 199, 395–406.

[273]

Wu, G.; Berka, V.; Derry, P. J.; Mendoza, K.; Kakadiaris, E.; Roy, T.; Kent, T. A.; Tour, J. M.; Tsai, A. L. Critical comparison of the superoxide dismutase-like activity of carbon antioxidant nanozymes by direct superoxide consumption kinetic measurements. ACS Nano 2019, 13, 11203–11213.

[274]

Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41–60.

[275]

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

[276]

Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

[277]

Li, Y.; Ma, W. S.; Sun, J.; Lin, M.; Niu, Y. S.; Yang, X. C.; Xu, Y. H. Electrochemical generation of Fe3C/N-doped graphitic carbon nanozyme for efficient wound healing in vivo. Carbon 2020, 159, 149–160.

[278]

Liu, Y. H.; Xu, B. L.; Lu, M. Z.; Li, S. S.; Guo, J.; Chen, F. Z.; Xiong, X. L.; Yin, Z.; Liu, H. Y.; Zhou, D. S. Ultrasmall Fe-doped carbon dots nanozymes for photoenhanced antibacterial therapy and wound healing. Bioact. Mater. 2022, 12, 246–256.

[279]

Wang, Y. H.; Yao, J. C.; Cao, Z. L.; Fu, P.; Deng, C.; Yan, S. F.; Shi, S.; Zheng, J. P. Peroxidase-mimetic copper-doped carbon-dots for oxidative stress-mediated broad-spectrum and efficient antibacterial activity. Chem. -Eur. J. 2022, 28, e202104174.

[280]

Liu, M.; Huang, L.; Xu, X. Y.; Wei, X. M.; Yang, X. F.; Li, X. L.; Wang, B. N.; Xu, Y.; Li, L. H.; Yang, Z. M. Copper doped carbon dots for addressing bacterial biofilm formation, wound infection, and tooth staining. ACS Nano 2022, 16, 9479–9497.

[281]

Wang, X. L.; Lu, Y. G.; Hua, K. W.; Yang, D. Z.; Yang, Y. L. Iodine-doped carbon dots with inherent peroxidase catalytic activity for photocatalytic antibacterial and wound disinfection. Anal. Bioanal. Chem. 2021, 413, 1373–1382.

[282]

Zou, X. F.; Zhang, L.; Wang, Z. J.; Luo, Y. Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 2016, 138, 2064–2077.

[283]

Sun, H. J.; Gao, N.; Dong, K.; Ren, J. S.; Qu, X. G. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 2014, 8, 6202–6210.

[284]

Chen, S.; Quan, Y.; Yu, Y. L.; Wang, J. H. Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomater. Sci. Eng. 2017, 3, 313–321.

[285]

Tripathi, K. M.; Ahn, H. T.; Chung, M.; Le, X. A.; Saini, D.; Bhati, A.; Sonkar, S. K.; Kim, M. I.; Kim, T. N, S, and P-Co-doped carbon quantum dots: Intrinsic peroxidase activity in a wide pH range and its antibacterial applications. ACS Biomater. Sci. Eng. 2020, 6, 5527–5537.

[286]
Ge, Y. G.; MacDonald, D. L.; Holroyd, K. J.; Thornsberry, C.; Wexler, H.; Zasloff, M. In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob. Agents Chemother. 1999 , 43, 782–788.
DOI
[287]

Patch, J. A.; Barron, A. E. Helical peptoid mimics of magainin-2 amide. J. Am. Chem. Soc. 2003, 125, 12092–12093.

[288]

Tew, G. N.; Scott, R. W.; Klein, M. L.; DeGrado, W. F. De novo design of antimicrobial polymers, foldamers, and small molecules: From discovery to practical applications. Acc. Chem. Res. 2010, 43, 30–39.

[289]

Liu, D. H.; Choi, S.; Chen, B.; Doerksen, R. J.; Clements, D. J.; Winkler, J. D.; Klein, M. L.; DeGrado, W. F. Nontoxic membrane-active antimicrobial arylamide oligomers. Angew. Chem. 2004, 116, 1178–1182.

[290]

Thoma, L. M.; Boles, B. R.; Kuroda, K. Cationic methacrylate polymers as topical antimicrobial agents against Staphylococcus aureus nasal colonization. Biomacromolecules 2014, 15, 2933–2943.

[291]

Cheng, J. C.; Chin, W.; Dong, H. H.; Xu, L.; Zhong, G. S.; Huang, Y.; Li, L. J.; Xu, K. J.; Wu, M.; Hedrick, J. L. et al. Biodegradable antimicrobial polycarbonates with in vivo efficacy against multidrug-resistant MRSA systemic infection. Adv. Healthc. Mater. 2015, 4, 2128–2136.

[292]

Uppu, D. S. S. M.; Samaddar, S.; Hoque, J.; Konai, M. M.; Krishnamoorthy, P.; Shome, B. R.; Haldar, J. Side chain degradable cationic-amphiphilic polymers with tunable hydrophobicity show in vivo activity. Biomacromolecules 2016, 17, 3094–3102.

[293]

Konai, M. M.; Haldar, J. Fatty acid comprising lysine conjugates: Anti-MRSA agents that display in vivo efficacy by disrupting biofilms with no resistance development. Bioconjug. Chem. 2017, 28, 1194–1204.

[294]

Gao, Q.; Yu, M.; Su, Y. J.; Xie, M. H.; Zhao, X.; Li, P.; Ma, P. X. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties. Acta Biomater. 2017, 51, 112–124.

[295]

Immordino, M. L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine 2006, 1, 297–315.

[296]

Mackay, M. E.; Tuteja, A.; Duxbury, P. M.; Hawker, C. J.; Van Horn, B.; Guan, Z. B.; Chen, G. H.; Krishnan, R. S. General strategies for nanoparticle dispersion. Science 2006, 311, 1740–1743.

[297]

Noble, G. T.; Stefanick, J. F.; Ashley, J. D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol. 2014, 32, 32–45.

[298]

Ishida, T.; Kiwada, H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm. 2008, 354, 56–62.

[299]

Li, L. L.; Xu, J. H.; Qi, G. B.; Zhao, X. Z.; Yu, F. Q.; Wang, H. Core–shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery. ACS Nano 2014, 8, 4975–4983.

[300]

Kim, J. K.; Uchiyama, S.; Gong, H.; Stream, A.; Zhang, L. F.; Nizet, V. Engineered biomimetic platelet membrane-coated nanoparticles block Staphylococcus aureus cytotoxicity and protect against lethal systemic infection. Engineering 2021, 7, 1149–1156.

[301]

Wu, S.; Huang, Y.; Yan, J. C.; Li, Y. Z.; Wang, J. F.; Yang, Y. Y.; Yuan, P. Y.; Ding, X. Bacterial outer membrane-coated mesoporous silica nanoparticles for targeted delivery of antibiotic rifampicin against Gram-negative bacterial infection in vivo. Adv. Funct. Mater. 2021, 31, 2103442.

[302]

Gao, W. W.; Fang, R. H.; Thamphiwatana, S.; Luk, B. T.; Li, J. M.; Angsantikul, P.; Zhang, Q. Z.; Hu, C. M. J.; Zhang, L. F. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett. 2015, 15, 1403–1409.

[303]
Tackling drug-resistant infections globally: Final report and recommendations. The review on antimicrobial resistance; chaired by Jim O'Neill; Wellcome Trust and UK Government: London, UK, 2016.
[304]
Harikrishnan, S., Jeemon, P., Mini, G. K., Thankappan, K. R., & Sylaja, P. G. B. D. (2018). GBD 2017 causes of death collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the global burden of disease study 2017. Lancet 2018 , 392, 1736–1788.
[305]

Yahav, D.; Tau, N.; Shepshelovich, D. Assessment of data supporting the efficacy of new antibiotics for treating infections caused by multidrug-resistant bacteria. Clin. Infect. Dis. 2021, 72, 1968–1974.

[306]

Blair, J. M. A.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51.

[307]

Qadri, H.; Shah, A. H.; Alkhanani, M.; Almilaibary, A.; Mir, M. A. Immunotherapies against human bacterial and fungal infectious diseases: A review. Front. Med. 2023, 10, 1135541.

[308]

Hamad, M. Antifungal immunotherapy and immunomodulation: A double-hitter approach to deal with invasive fungal infections. Scand. J. Immunol. 2008, 67, 533–543.

[309]

Din, F. U.; Aman, W.; Ullah, I.; Qureshi, O. S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine 2017, 12, 7291–7309.

[310]

Zan, G. T.; Wu, Q. S. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv. Mater. 2016, 28, 2099–2147.

[311]

Papahadjopoulos, D.; Allen, T. M.; Gabizon, A.; Mayhew, E.; Matthay, K.; Huang, S. K.; Lee, K. D.; Woodle, M. C.; Lasic, D. D.; Redemann, C. Sterically stabilized liposomes: Improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl. Acad. Sci. USA 1991, 88, 11460–11464.

[312]

Gubernator, J.; Drulis-Kawa, Z.; Dorotkiewicz-Jach, A.; Doroszkiewicz, W.; Kozubek, A. In vitro antimicrobial activity of liposomes containing ciprofloxacin, meropenem and gentamicin against gram-negative clinical bacterial strains. Lett. Drug Des. Discov. 2007, 4, 297–304.

[313]

Nicolosi, D.; Scalia, M.; Nicolosi, V. M.; Pignatello, R. Encapsulation in fusogenic liposomes broadens the spectrum of action of vancomycin against Gram-negative bacteria. Int. J. Antimicrob. Agents 2010, 35, 553–558.

[314]

Sachetelli, S.; Khalil, H.; Chen, T.; Beaulac, C.; Sénéchal, S.; Lagacé, J. Demonstration of a fusion mechanism between a fluid bactericidal liposomal formulation and bacterial cells. Biochim. Biophys. Acta Biomembr. 2000, 1463, 254–266.

[315]

De Jong, W. H.; Borm, P. J. A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 2008, 3, 133–149.

[316]

Yaraki, M. T.; Zahed Nasab, S.; Zare, I.; Dahri, M.; Moein Sadeghi, M.; Koohi, M.; Tan, Y. N. Biomimetic metallic nanostructures for biomedical applications, catalysis, and beyond. Ind. Eng. Chem. Res. 2022, 61, 7547–7593.

[317]

Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 2006, 114, 343–347.

[318]

Wang, X. Y.; Wang, H.; Zhou, S. Q. Progress and perspective on carbon-based nanozymes for peroxidase-like applications. J. Phys. Chem. Lett. 2021, 12, 11751–11760.

[319]

Singh, R.; Umapathi, A.; Patel, G.; Patra, C.; Malik, U.; Bhargava, S. K.; Daima, H. K. Nanozyme-based pollutant sensing and environmental treatment: Trends, challenges, and perspectives. Sci. Total Environ. 2023, 854, 158771.

[320]

Shan, X. T.; Gong, X.; Li, J.; Wen, J. Y.; Li, Y. P.; Zhang, Z. W. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm. Sin. B 2022, 12, 3028–3048.

[321]

Liu, C.; Luo, L. J.; Zeng, L. Y.; Xing, J.; Xia, Y. Z.; Sun, S.; Zhang, L. Y.; Yu, Z.; Yao, J. L.; Yu, Z. S. et al. Porous gold nanoshells on functional NH2-MOFs: Facile synthesis and designable platforms for cancer multiple therapy. Small 2018, 14, 1801851.

[322]

Zhang, K.; Loong, S. L. E.; Connor, S.; Yu, S. W. K.; Tan, S. Y.; Ng, R. T. H.; Lee, K. M.; Canham, L.; Chow, P. K. H. Complete tumor response following intratumoral 32P BioSilicon on human hepatocellular and pancreatic carcinoma xenografts in nude mice. Clin. Cancer Res. 2005, 11, 7532–7537.

[323]

Bonvalot, S.; Rutkowski, P. L.; Thariat, J.; Carrère, S.; Ducassou, A.; Sunyach, M. P.; Agoston, P.; Hong, A.; Mervoyer, A.; Rastrelli, M. et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act. In. Sarc): A multicentre, phase 2-3, randomised, controlled trial. Lancet Oncol. 2019, 20, 1148–1159.

[324]

Hu, J.; Tang, F.; Wang, L. H.; Tang, M.; Jiang, Y. Z.; Liu, C. Nanozyme sensor based-on platinum-decorated polymer nanosphere for rapid and sensitive detection of Salmonella typhimurium with the naked eye. Sens. Actuators B: Chem. 2021, 346, 130560.

[325]

Li, J. N.; Liu, W. Q.; Wu, X. C.; Gao, X. F. Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 2015, 48, 37–44.

[326]
Liu, Y. F.; Zhang, Y. H.; Liu, Q. Y.; Wang, Q.; Lin, A. Q.; Luo, J.; Du, Y.; Lin, Y. W.; Wei, H. In vitro measurement of superoxide dismutase-like nanozyme activity: A comparative study. Analyst 2021 , 146, 1872–1879.
DOI
[327]

Jin, J.; Li, L. L.; Zhang, L. H.; Luan, Z. H.; Xin, S. Q.; Song, K. Progress in the application of carbon dots-based nanozymes. Front. Chem. 2021, 9, 748044.

[328]

Deng, S. Q.; Tu, Y. W.; Fu, L.; Liu, J.; Jia, L. A label-free biosensor for selective detection of Gram-negative bacteria based on the oxidase-like activity of cupric oxide nanoparticles. Microchim. Acta 2022, 189, 471.

[329]

Hao, C. L.; Qu, A. H.; Xu, L. G.; Sun, M. Z.; Zhang, H. Y.; Xu, C. L.; Kuang, H. Chiral molecule-mediated porous Cu x O nanoparticle clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 2019, 141, 1091–1099.

[330]

Liu, T. F.; Xiao, B. W.; Xiang, F.; Tan, J. L.; Chen, Z.; Zhang, X. R.; Wu, C. Z.; Mao, Z. W.; Luo, G. X.; Chen, X. Y. et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 2020, 11, 2788.

[331]

Waldmeier, P.; Sigel, H. Metal ions and hydrogen peroxide. XXVI. Kinetics and mechanism of the catalase-like activity of cobalt(III) hematoporphyrin. Inorg. Chem. 1972, 11, 2174–2180.

[332]

Waldmeier, P.; Sigel, H. Inhibition of the catalase-like activity of cobalt(III)-hematoporphyrin by amino acids, adenine and related ligands stability of the inhibitor adducts. J. Inorg. Nucl. Chem. 1973, 35, 1741–1748.

[333]

Bellot, F.; Hardré, R.; Pelosi, G.; Thérisod, M.; Policar, C. Superoxide dismutase-like activity of cobalt(II) complexes based on a sugar platform. Chem. Commun. 2005, 5414–5416

[334]

Gao, L. Z.; Fan, K. L.; Yan, X. Y. Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics 2017, 7, 3207–3227.

[335]

Li, S. J.; Pang, E. N.; Gao, C.; Chang, Q.; Hu, S. L.; Li, N. Cerium-mediated photooxidation for tuning pH-dependent oxidase-like activity. Chem. Eng. J. 2020, 397, 125471.

[336]

Romero, I.; Dubois, L.; Collomb, M. N.; Deronzier, A.; Latour, J. M.; Pécaut, J. A dinuclear manganese(II) complex with the {Mn2(μ-O2CCH3)3}+ core: Synthesis, structure, characterization, electroinduced transformation, and catalase-like activity. Inorg. Chem. 2002, 41, 1795–1806.

[337]

Kaizer, J.; Kripli, B.; Speier, G.; Párkányi, L. Synthesis, structure, and catalase-like activity of a novel manganese(II) complex: Dichloro[1,3-bis(2′-benzimidazolylimino)isoindoline]manganese(II). Polyhedron 2009, 28, 933–936.

[338]

Liao, Z. R.; Zheng, X. F.; Luo, B. S.; Shen, L. R.; Li, D. F.; Liu, H. L.; Zhao, W. Synthesis, characterization and SOD-like activities of manganese-containing complexes with N,N,N′, N′-tetrakis(2′-benzimidazolyl methyl)-1,2-ethanediamine (EDTB). Polyhedron 2001, 20, 2813–2821.

[339]

DeFreitas-Silva, G.; Rebouças, J. S.; Spasojević, I.; Benov, L.; Idemori, Y. M.; Batinić-Haberle, I. SOD-like activity of Mn(II) β-octabromo- meso-tetrakis( N-methylpyridinium-3-yl)porphyrin equals that of the enzyme itself. Arch. Biochem. Biophys. 2008, 477, 105–112.

[340]

Ragg, R.; Natalio, F.; Tahir, M. N.; Janssen, H.; Kashyap, A.; Strand, D.; Strand, S.; Tremel, W. Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity. ACS Nano 2014, 8, 5182–5189.

[341]

Niculescu, A. G.; Grumezescu, A. M. Polymer-based nanosystems—A versatile delivery approach. Materials 2021, 14, 6812.

[342]

Chen, T. M.; Zou, H.; Wu, X. J.; Liu, C. C.; Situ, B.; Zheng, L.; Yang, G. W. Nanozymatic antioxidant system based on MoS2 nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 12453–12462.

Publication history
Copyright
Acknowledgements

Publication history

Received: 15 July 2023
Revised: 18 October 2023
Accepted: 23 October 2023
Published: 07 December 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Department of Defense, Office of Naval Research (ONR award N00014-20-1-2418); National Institutes of Health, National Institute on Deafness and Other Communication Disorders (NIHDC016644).

Return