Journal Home > Volume 17 , Issue 5

The coexistence of multi-component active sites like single-atom sites, diatomic sites (DAS) and nanoclusters is shown to result in superior performances in the hydrogen evolution reaction (HER). Metal diatomic sites are more complex than single-atom sites but their unique electronic structures can lead to significant enhancement of the HER kinetics. Although the synthesis and identification of DAS is usually challenging, we report a simple access to a diatomic catalyst by anchoring Co-Ru DAS on nitrogen-doped carbon supports along with Ru nanoparticles (NPs). Experimental and theoretical results revealed the atomic-level characteristics of Co-Ru sites, their strong electronic coupling and their synergy with Ru NPs within the catalyst. The unique electronic structure of the catalyst resulted in an excellent HER activity and stability in alkaline media. This work provides a valuable insight into a widely applicable design of diatomic catalysts with multi-component active sites for highly efficient HER electrocatalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electronic engineering of Co-Ru diatomic sites and Ru nanoparticles for synergistic promotion of hydrogen evolution

Show Author's information Wei Zhang1,2Cong Li1Yongyong Cao3( )Jun-Yang Ji1Zhao-Chen Li1Zheng Niu1Hongwei Gu1Pierre Braunstein4Jian-Ping Lang1,2( )
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
Université de Strasbourg - CNRS, Institut de Chimie (UMR 7177 CNRS), 4 rue Blaise Pascal-CS 90032, 67081 Strasbourg, France

Abstract

The coexistence of multi-component active sites like single-atom sites, diatomic sites (DAS) and nanoclusters is shown to result in superior performances in the hydrogen evolution reaction (HER). Metal diatomic sites are more complex than single-atom sites but their unique electronic structures can lead to significant enhancement of the HER kinetics. Although the synthesis and identification of DAS is usually challenging, we report a simple access to a diatomic catalyst by anchoring Co-Ru DAS on nitrogen-doped carbon supports along with Ru nanoparticles (NPs). Experimental and theoretical results revealed the atomic-level characteristics of Co-Ru sites, their strong electronic coupling and their synergy with Ru NPs within the catalyst. The unique electronic structure of the catalyst resulted in an excellent HER activity and stability in alkaline media. This work provides a valuable insight into a widely applicable design of diatomic catalysts with multi-component active sites for highly efficient HER electrocatalysis.

Keywords: hydrogen evolution reaction, Ru nanoparticles, synergistic effect, Co-Ru diatomic sites, multiple active sites

References(60)

[1]

Zhang, Q. N.; Dong, S. D.; Shao, P. P.; Zhu, Y. H.; Mu, Z. J.; Sheng, D. F.; Zhang, T.; Jiang, X.; Shao, R. W.; Ren, Z. X. et al. Covalent organic framework-based porous ionomers for high-performance fuel cells. Science 2022, 378, 181–186.

[2]

Lv, Z. P.; Ma, W. S.; Wang, M.; Dang, J.; Jian, K. L.; Liu, D.; Huang D. J. Co-constructing interfaces of multiheterostructure on MXene (Ti3C2T x )-modified 3D self-supporting electrode for ultraefficient electrocatalytic HER in alkaline media. Adv. Funct. Mater. 2021, 31, 2102576.

[3]

Li, T.; Ren, S. Y.; Zhang, C.; Qiao, L. X.; Wu, J.; He, P.; Lin, J.; Liu, Y. S.; Fu, Z. G.; Zhu, Q. Z. et al. Cobalt single atom anchored on N-doped carbon nanoboxes as typical single-atom catalysts (SACs) for boosting the overall water splitting. Chem. Eng. J. 2023, 458, 141435.

[4]

Tsounis, C.; Subhash, B.; Kumar, P. V.; Bedford, N. M.; Zhao, Y. F.; Shenoy, J.; Ma, Z. P.; Zhang, D.; Toe, C. Y.; Cheong, S. et al. Pt single atom electrocatalysts at graphene edges for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2203067.

[5]

Lee, J.; Kumar, A.; Kim, M. G.; Yang, T.; Shao, X. D.; Liu, X. H.; Liu, Y.; Hong, Y.; Jadhav, A. R.; Liang, M. F. et al. Single-metal-atom dopants increase the lewis acidity of metal oxides and promote nitrogen fixation. ACS Energy Lett. 2021, 6, 4299–4308.

[6]

Kumar, A.; Liu, X. H.; Lee, J.; Debnath, B.; Jadhav, A. R.; Shao, X. D.; Bui, V. Q.; Hwang, Y.; Liu, Y.; Kim, M. G. et al. Discovering ultrahigh loading of single-metal-atoms via surface tensile-strain for unprecedented urea electrolysis. Energy Environ. Sci. 2021, 14, 6494–6505.

[7]

Shan, J. J.; Li, M. W.; Allard, L. F.; Lee, S.; Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 2017, 551, 605–608.

[8]

Rocha, G. F. S. R.; da Silva, M. A. R.; Rogolino, A.; Diab, G. A. A.; Noleto, L. F. G.; Antonietti, M.; Teixeira, I. F. Carbon nitride based materials: More than just a support for single-atom catalysis. Chem. Soc. Rev. 2023, 52, 4878–4932.

[9]

Lim, J.; Back, S.; Choi, C.; Jung, Y. Ultralow overpotential of hydrogen evolution reaction using Fe-doped defective graphene: A density functional study. ChemCatChem 2018, 10, 4450–4455.

[10]

He, H.; Wang, H. H.; Liu, J. J.; Liu, X. J.; Li, W. Z.; Wang, Y. N. Research progress and application of single-atom catalysts: A review. Molecules 2021, 26, 6501.

[11]

Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y. E.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

[12]

Jiao, J. Q.; Lin, R.; Liu, S. J.; Cheong, W. C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J. G.; Wu, K. L.; Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228.

[13]

Leverett, J.; Daiyan, R.; Gong, L. L.; Iputera, K.; Tong, Z. Z.; Qu, J. T.; Ma, Z. P.; Zhang, Q. R.; Cheong, S.; Cairney, J. et al. Designing undercoordinated Ni–N x and Fe–N x on holey graphene for electrochemical CO2 conversion to syngas. ACS Nano 2021, 15, 12006–12018.

[14]

Li, Y. Z.; Wei, B.; Zhu, M. H.; Chen, J. C.; Jiang, Q. K.; Yang, B.; Hou, Y.; Lei, L. C.; Li, Z. J.; Zhang, R. F. et al. Synergistic effect of atomically dispersed Ni-Zn pair sites for enhanced CO2 electroreduction. Adv. Mater. 2021, 33, 2102212.

[15]

Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao, C. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976.

[16]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[17]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

[18]

Liu, D. B.; Zhao, Y.; Wu, C. Q.; Xu, W. J.; Xi, S. B.; Chen, M. X.; Yang, L.; Zhou, Y. Z.; He, Q.; Li, X. Y. et al. Triggering electronic coupling between neighboring hetero-diatomic metal sites promotes hydrogen evolution reaction kinetics. Nano Energy 2022, 98, 107296.

[19]

Buchwalter, P.; Rosé, J.; Braunstein, P. Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev. 2015, 115, 28–126.

[20]

Yan, Q. Q.; Wu, D. X.; Chu, S. Q.; Chen, Z. Q.; Lin, Y.; Chen, M. X.; Zhang, J.; Wu, X. J.; Liang, H. W. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun. 2019, 10, 4977.

[21]

Zhou, P.; Li, N.; Chao, Y. G.; Zhang, W. Y.; Lv, F.; Wang, K.; Yang, W. X.; Gao, P.; Guo, S. J. Thermolysis of noble metal nanoparticles into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew. Chem., Int. Ed. 2019, 58, 14184–14188.

[22]

Han, X. P.; Ling, X. F.; Yu, D. S.; Xie, D. Y.; Li, L. L.; Peng, S. J.; Zhong, C.; Zhao, N. Q.; Deng, Y. D.; Hu, W. B. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 2019, 31, 1905622.

[23]

Kumar, A.; Bui, V. Q.; Lee, J.; Wang, L. L.; Jadhav, A. R.; Liu, X. H.; Shao, X. D.; Liu, Y.; Yu, J. M.; Hwang, Y. et al. Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution. Nat. Commun. 2021, 12, 6766.

[24]

Wang, J.; Liu, W.; Luo, G.; Li, Z. J.; Zhao, C.; Zhang, H. R.; Zhu, M. Z.; Xu, Q.; Wang, X. Q.; Zhao, C. M. et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 3375–3379.

[25]

Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622–2626.

[26]

Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao, C. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976

[27]

Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 2021, 6, 1054–1066.

[28]

Gong, Y. N.; Cao, C. Y.; Shi, W. J.; Zhang, J. H.; Deng, J. H.; Lu, T. B.; Zhong, D. C. Modulating the electronic structures of dual-atom catalysts via coordination environment engineering for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202215187.

[29]

Tong, M. M.; Sun, F. F.; Xie, Y.; Wang, Y.; Yang, Y. Q.; Tian, C. G.; Wang, L.; Fu, H. G. Operando cooperated catalytic mechanism of atomically dispersed Cu–N4 and Zn–N4 for promoting oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 14005–14012.

[30]

Liu, B. W.; Feng, R. H.; Busch, M.; Wang, S. H.; Wu, H. F.; Liu, P.; Gu, J. J.; Bahadoran, A.; Matsumura, D.; Tsuji, T. et al. Synergistic hybrid electrocatalysts of platinum alloy and single-atom platinum for an efficient and durable oxygen reduction reaction. ACS Nano 2022, 16, 14121–14133.

[31]

Ma, W. S.; Qiu, Z. M.; Li, J. Z.; Hu, L. W.; Li, Q.; Lv, X. W.; Dang, J. Interfacial electronic coupling of V-doped Co2P with high-entropy MXene reduces kinetic energy barrier for efficient overall water splitting. J. Energy Chem. 2023, 85, 301–309.

[32]

Li, J. Z.; Chen, C.; Lv, Z. P.; Ma, W. S.; Wang, M.; Li, Q.; Dang, J. Constructing heterostructures of ZIF-67 derived C, N doped Co2P and Ti2VC2T x MXene for enhanced OER. J. Mater. Sci. Technol. 2023, 145, 74–82.

[33]

Shen, Q. K.; Jin, H. Q.; Li, P. P.; Yu, X. H.; Zheng, L. R.; Song, W. G.; Cao, C. Y. Breaking the activity limitation of iridium single-atom catalyst in hydrogenation of quinoline with synergistic nanoparticles catalysis. Nano Res. 2022, 15, 5024–5031.

[34]

Yang, X. L.; Wang, Y.; Wang, X.; Mei, B. B.; Luo, E. G.; Li, Y.; Meng, Q. L.; Jin, Z.; Jiang, Z.; Liu, C. P. et al. CO-tolerant PEMFC anodes enabled by synergistic catalysis between iridium single-atom sites and nanoparticles. Angew. Chem., Int. Ed. 2021, 60, 26177–26183.

[35]

Wang, Z.; Zhu, C.; Tan, H.; Liu, J.; Xu, L. L.; Zhang, Y. Q.; Liu, Y. P.; Zou, X. X.; Liu, Z.; Lu, X. H. Understanding the synergistic effects of cobalt single atoms and small nanoparticles: Enhancing oxygen reduction reaction catalytic activity and stability for zinc-air batteries. Adv. Funct. Mater. 2021, 31, 2104735.

[36]

Li, J. Z.; Hou, C. Z.; Chen, C.; Ma, W. S.; Li, Q.; Hu, L. W.; Lv, X. W.; Dang J. Collaborative interface optimization strategy guided ultrafine RuCo and MXene heterostructure electrocatalysts for efficient overall water splitting. ACS Nano 2023, 17, 10947–10957.

[37]

Chong, L. N.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281.

[38]

Dang, Y. L.; Wu, T. L.; Tan, H. Y.; Wang, J. L.; Cui, C.; Kerns, P.; Zhao, W.; Posada, L.; Wen, L. Y.; Suib, S. L. Partially reduced Ru/RuO2 composites as efficient and pH-universal electrocatalysts for hydrogen evolution. Energy Environ. Sci. 2021, 14, 5433–5443.

[39]

Zhang, J.; Wang, M.; Gao, Z. R.; Qin, X. T.; Xu, Y.; Wang, Z. H.; Zhou, W.; Ma, D. Importance of species heterogeneity in supported metal catalysts. J. Am. Chem. Soc. 2022, 144, 5108–5115.

[40]

Liu, Y.; Wu, J. H.; Zhang, Y. C.; Jin, X.; Li, J. M.; Xi, X. K.; Deng, Y.; Jiao, S. H.; Lei, Z. W.; Li, X. Y. et al. Ensemble effect of ruthenium single-atom and nanoparticle catalysts for efficient hydrogen evolution in neutral media. ACS Appl. Mater. Interfaces 2023, 15, 14240–14249.

[41]

Cao, D.; Wang, J. Y.; Xu, H. X.; Cheng, D. J. Construction of dual-site atomically dispersed electrocatalysts with Ru-C5 single atoms and Ru-O4 nanoclusters for accelerated alkali hydrogen evolution. Small 2021, 17, 2101163.

[42]

Zinin, P. V.; Ming, L. C.; Sharma, S. K.; Khabashesku, V. N.; Liu, X. R.; Hong, S. M.; Endo, S.; Acosta, T. Ultraviolet and near-infrared Raman spectroscopy of graphitic C3N4 phase. Chem. Phys. Lett. 2009, 472, 69–73.

[43]

You, M. Z.; Du, X.; Hou, X. H.; Wang, Z. Y.; Zhou, Y.; Ji, H. P.; Zhang, L. Y.; Zhang, Z. T.; Yi, S. S.; Chen, D. L. In-situ growth of ruthenium-based nanostructure on carbon cloth for superior electrocatalytic activity towards HER and OER. Appl. Catal. B: Environ. 2022, 317, 121729.

[44]

Yang, W. X.; Zhang, W. Y.; Liu, R.; Lv, F.; Chao, Y. G.; Wang, Z. C.; Guo, S. J. Amorphous Ru nanoclusters onto Co-doped 1D carbon nanocages enables efficient hydrogen evolution catalysis. Chin. J. Catal. 2022, 43, 110–115.

[45]

Chen, J.; Ha, Y.; Wang, R. R.; Liu, Y. X.; Xu, H. B.; Shang, B.; Wu, R. B.; Pan, H. G. Inner Co synergizing outer Ru supported on carbon nanotubes for efficient pH-universal hydrogen evolution catalysis. Nano-Micro Lett. 2022, 14, 186.

[46]

Chai, L. L.; Hu, Z. Y.; Wang, X.; Zhang, L. J.; Li, T. T.; Hu, Y.; Pan, J. Q.; Qian, J. J.; Huang, S. M. Fe7C3 nanoparticles with in situ grown CNT on nitrogen doped hollow carbon cube with greatly enhanced conductivity and ORR performance for alkaline fuel cell. Carbon 2021, 174, 531–539.

[47]

Qu, M. J.; Jiang, Y. M.; Yang, M.; Liu, S.; Guo, Q. F.; Shen, W.; Li, M.; He, R. X. Regulating electron density of NiFe-P nanosheets electrocatalysts by a trifle of Ru for high-efficient overall water splitting. Appl. Catal. B: Environ. 2020, 263, 118324.

[48]

Feng, T. T.; Cui, Z. J.; Guo, P. F.; Wang, X. H.; Li, J.; Liu, X. E.; Wang, W. P.; Li, Z. C. Engineering Ru nanoparticles embedded in 2D N-doped carbon nanosheets decorated with 2D Fe3O4-Fe3C heterostructures for efficient hydrogen evolution in alkaline and acidic media. Int. J. Hydrogen Energy 2023, 48, 15522–15532.

[49]

Shin, C. H.; Yu, T. H.; Lee, H. Y.; Lee, B. J.; Kwon, S.; Goddard III, W. A.; Yu, J. S. Ru-loaded pyrrolic-N-doped extensively graphitized porous carbon for high performance electrochemical hydrogen evolution. Appl. Catal. B: Environ. 2023, 334, 122829.

[50]

Yang, L.; Huang, N.; Luo, C.; Yu, H. H.; Sun, P. P.; Lv, X. W.; Sun, X. H. Atomically dispersed and nanoscaled Co species embedded in micro-/mesoporous carbon nanosheet/nanotube architecture with enhanced oxygen reduction and evolution bifunction for Zn-air batteries. Chem. Eng. J. 2021, 404, 127112.

[51]

Bao, X. B.; Chen, Y. Z.; Mao, S. J.; Wang, Y.; Yang, Y.; Gong, Y. T. Boosting the performance gain of Ru/C for hydrogen evolution reaction via surface engineering. Energy Environ. Mater. 2023, 6, e12418.

[52]

Su, J. W.; Yang, Y.; Xia, G. L.; Chen, J. T.; Jiang, P.; Chen, Q. W. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8, 14969.

[53]

Zhang, H.; Su, H.; Soldatov, M. A.; Li, Y. L.; Zhao, X.; Liu, M. H.; Zhou, W. L.; Zhang, X. X.; Sun, X.; Xu, Y. Z. et al. Dynamic Co–Ru bond shrinkage at atomically dispersed Ru sites for alkaline hydrogen evolution reaction. Small 2021, 17, 2105231.

[54]

Jiang, K.; Luo, M.; Liu, Z. X.; Peng, M.; Chen, D. C.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687.

[55]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[56]

Wang, J. Q.; Xi, C.; Wang, M.; Shang, L.; Mao, J.; Dong, C. K.; Liu, H.; Kulinich, S. A.; Du, X. W. Laser-generated grain boundaries in ruthenium nanoparticles for boosting oxygen evolution reaction. ACS Catal. 2020, 10, 12575–12581.

[57]

Su, K. Y.; Yang, S.; Yang, A. Z.; Guo, Y.; Liu, B.; Zhu, J. W.; Tang, Y. W.; Qiu, X. Y. Customizing the anisotropic electronic states of janus-distributive FeN4 and NiN4 dual-atom sites for reversible oxygen electrocatalysis. Appl. Catal. B: Environ. 2023, 331, 122694.

[58]

Liu, X. H.; Zhao, F.; Jiao, L.; Fang, T. W.; Zhao, Z. Y.; Xiao, X. F.; Li, D. Y.; Yi, K.; Wang, R. J.; Jia, X. Atomically dispersed Fe/N4 and Ni/N4 sites on separate-sides of porous carbon nanosheets with janus structure for selective oxygen electrocatalysis. Small 2023, 19, 2300289.

[59]

Chandrasekaran, S.; Hu, R.; Yao, L.; Sui, L. J.; Liu, Y. P.; Abdelkader, A.; Li, Y. L.; Ren, X. Z.; Deng, L. B. Mutual self-regulation of d -electrons of single atoms and adjacent nanoparticles for bifunctional oxygen electrocatalysis and rechargeable zinc-air batteries. Nano-Micro Lett. 2023, 15, 48.

[60]

Hassan, S.; Basera, P.; Gahlawat, S.; Ingole, P. P.; Bhattacharya, S.; Sapra, S. Understanding the efficient electrocatalytic activities of MoSe2-Cu2S nanoheterostructures. J. Mater. Chem. A 2021, 9, 9837–9848.

File
12274_2023_6281_MOESM1_ESM.pdf (5.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 September 2023
Revised: 15 October 2023
Accepted: 19 October 2023
Published: 20 November 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We thank the National Natural Science Foundation of China (No. 22271203), the State Key Laboratory of Organometallic Chemistry of Shanghai Institute of Organic Chemistry (No. KF2021005), the Collaborative Innovation Center of Suzhou Nano Science and Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Project of Scientific and Technologic Infrastructure of Suzhou (No. SZS201905).

Return