Journal Home > Volume 17 , Issue 3

Currently, as the electromagnetic (EM) environment becomes increasingly complex, single-function EM materials can hardly resist the increasing electromagnetic interference (EMI), and there is an urgent need to develop multifunctional EM materials. In this work, multifunctional WSe2/Co3C was prepared by simple hydrothermal methods. Its dielectric performance and EM response were investigated. Efficient absorption, shielding performance, and energy conversion devices were customized. By tailoring the loading content, WSe2/Co3C can switch between EM absorption and EMI shielding. The maximum shielding effectiveness (SE) of WSe2/Co3C reached 36 dB, and high reflection loss (RL) of −60.28 dB and wide effective absorption bandwidth (EAB) of 6.16 GHz can be obtained at low thickness. The multiple EM attenuation mechanisms brought by the combination of two-dimensional (2D) WSe2 and magnetic Co3C are considered to be the main reason for the enhanced EM attenuation ability. The WSe2/Co3C composite provides a viable candidate for developing multifunctional EM materials in 2–18 GHz.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multifunctional WSe2/Co3C composite for efficient electromagnetic absorption, EMI shielding, and energy conversion

Show Author's information Yuhang Zhu1Tingting Liu1Lin Li2( )Maosheng Cao1( )
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics & Electron Engineering, Harbin Normal University, Harbin 150025, China

Abstract

Currently, as the electromagnetic (EM) environment becomes increasingly complex, single-function EM materials can hardly resist the increasing electromagnetic interference (EMI), and there is an urgent need to develop multifunctional EM materials. In this work, multifunctional WSe2/Co3C was prepared by simple hydrothermal methods. Its dielectric performance and EM response were investigated. Efficient absorption, shielding performance, and energy conversion devices were customized. By tailoring the loading content, WSe2/Co3C can switch between EM absorption and EMI shielding. The maximum shielding effectiveness (SE) of WSe2/Co3C reached 36 dB, and high reflection loss (RL) of −60.28 dB and wide effective absorption bandwidth (EAB) of 6.16 GHz can be obtained at low thickness. The multiple EM attenuation mechanisms brought by the combination of two-dimensional (2D) WSe2 and magnetic Co3C are considered to be the main reason for the enhanced EM attenuation ability. The WSe2/Co3C composite provides a viable candidate for developing multifunctional EM materials in 2–18 GHz.

Keywords: microwave absorption, energy conversion, WSe2, electromagnetic interference shielding, Co3C, electromagnetic property

References(54)

[1]

Liu, T. T.; Cao, W. Q.; Yuan, Q.; Zhang, M.; Cao, M. S. Engineering multi-relaxation interfaces in Ti3C2T x for reducing wideband radar cross section. 2D Mater. 2023, 10, 035017.

[2]

Yuan, M. Y.; Zhao, B.; Yang, C. D.; Pei, K.; Wang, L. Y.; Zhang, R. X.; You, W. B.; Liu, X. H.; Zhang, X. F.; Che, R. C. Remarkable magnetic exchange coupling via constructing bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. 2022, 32, 2203161.

[3]

Wang, F.; Gu, W. H.; Chen, J. B.; Wu, Y.; Zhou, M.; Tang, S. L.; Cao, X. Z.; Zhang, P.; Ji, G. B. The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res. 2022, 15, 3720–3728.

[4]

Mu, Z. G.; Wei, G. K.; Zhang, H.; Gao, L.; Zhao, Y.; Tang, S. L.; Ji, G. B. The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res. 2022, 15, 7731–7741.

[5]

Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704–716.

[6]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[7]

Wei, C. H.; Shi, L. Z.; Li, M. Q.; He, M. K.; Li, M. J.; Jing, X. R.; Liu, P. B.; Gu, J. W. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194–203.

[8]

Xie, P. T.; Liu, Y.; Feng, M.; Niu, M.; Liu, C. Z.; Wu, N. N.; Sui, K. Y.; Patil, R. R.; Pan, D.; Guo, Z. H. et al. Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv. Compos. Hybrid Mater. 2021, 4, 173–185.

[9]

Zhou, M. F.; Xu, X. F.; Wan, G. P.; Mou, P. P.; Teng, S. J.; Wang, G. Z. Rationally tailoring interface characteristics of ZnO/amorphous carbon/graphene for heat-conduction microwave absorbers. Nano Res. 2022, 15, 8677–8687.

[10]

Sun, M. X.; Xu, C.; Li, J. L.; Xing, L. Q.; Zhou, T.; Wu, F.; Shang, Y. F.; Xie, A. M. Protonic doping brings tuneable dielectric and electromagnetic attenuated properties for polypyrrole nanofibers. Chem. Eng. J. 2020, 381, 122615.

[11]

Wu, Y. L.; Lan, D.; Ren, J. W.; Zhang, S. J. A mini review of MOFs derived multifunctional absorbents: From perspective of components regulation. Mater. Today Phys. 2023, 36, 101178.

[12]

Sun, L. F.; Zhu, Q. Q.; Jia, Z. R.; Guo, Z. Q.; Zhao, W. R.; Wu, G. L. CrN attached multi-component carbon nanotube composites with superior electromagnetic wave absorption performance. Carbon 2023, 208, 1–9.

[13]

Pan, Y. L.; Zhu, Q. Q.; Zhu, J. H.; Cheng, Y. H.; Yu, B. W.; Jia, Z. R.; Wu, G. L. Macroscopic electromagnetic synergy network-enhanced N-doped Ni/C gigahertz microwave absorber with regulable microtopography. Nano Res. 2023, 16, 10666–10677.

[14]

Lan, D.; Wang, Y.; Wang, Y. Y.; Zhu, X. F.; Li, H. F.; Guo, X. M.; Ren, J. N.; Guo, Z. H.; Wu, G. L. Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 2023, 651, 494–503.

[15]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[16]

Zhao, B.; Bai, Z. Y.; Lv, H. L.; Yan, Z. K.; Du, Y. Q.; Guo, X. Q.; Zhang, J. C.; Wu, L. M.; Deng, J. S.; Zhang, D. W. et al. Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 2023, 15, 79.

[17]

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

[18]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[19]

Xue, T. T.; Yang, Y.; Yu, D. Y.; Wali, Q.; Wang, Z. Y.; Cao, X. S.; Fan, W.; Liu, T. X. 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 2023, 15, 45

[20]

Zhu, Y. H.; Wang, Q. Q.; Han, Y. H.; Li, L.; Cao, M. S. Constructing WSe2@CNTs heterojunction to tune attenuation capability for efficient microwave absorbing and green EMI shielding. Appl. Surf. Sci. 2022, 592, 153253.

[21]

Wang, Q. Q.; Niu, B.; Han, Y. H.; Zheng, Q.; Li, L.; Cao, M. S. Nature-inspired 3D hierarchical structured “vine” for efficient microwave attenuation and electromagnetic energy conversion device. Chem. Eng. J. 2023, 452, 139042.

[22]
Wang, M. Q.; Shu, J. C.; Wan, X.; Cao, W. Q.; Cao, M. S. Thermally derived hierarchical nanoplates for electromagnetic protection and waste energy recovery device. Small, in press, https://doi.org/10.1002/smll.202303186.
DOI
[23]

Wang, Y. C.; Wang, Y. Z.; Shu, J. C.; Cao, W. Q.; Li, C. S.; Cao, M. S. Graphene implanted shape memory polymers with dielectric gene dominated highly efficient microwave drive. Adv. Funct. Mater. 2023, 33, 2303560.

[24]

Shu, J. C.; Zhang, Y. L.; Qin, Y.; Cao, M. S. Oxidative molecular layer deposition tailoring eco-mimetic nanoarchitecture to manipulate electromagnetic attenuation and self-powered energy conversion. Nano-Micro Lett. 2023, 15, 142.

[25]

Shu, J. C.; Cao, M. S.; Zhang, Y. L.; Cao, W. Q. Heterodimensional structure switching multispectral stealth and multimedia interaction devices. Adv. Sci. 2023, 10, 2302361.

[26]

Shu, J. C.; Cao, M. S.; Zhang, M.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Cao, M. Q. Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 2020, 30, 1908299.

[27]

Xu, J.; Liu, L. N.; Zhang, X. C.; Li, B.; Zhu, C. L.; Chou, S. L.; Chen, Y. J. Tailoring electronic properties and polarization relaxation behavior of MoS2 monolayers for electromagnetic energy dissipation and wireless pressure micro-sensor. Chem. Eng. J. 2021, 425, 131700.

[28]

Zhao, B.; Shen, D. Y.; Zhang, Z. C.; Lu, P.; Hossain, M.; Li, J.; Li, B.; Duan, X. D. 2D metallic transition-metal dichalcogenides: Structures, synthesis, properties, and applications. Adv. Funct. Mater. 2021, 31, 2105132.

[29]

Han, Y. H.; Yuan, J.; Zhu, Y. H.; Wang, Q. Q.; Li, L.; Cao, M. S. Implantation of WSe2 nanosheets into multi-walled carbon nanotubes for enhanced microwave absorption. J. Colloid Interface Sci. 2022, 609, 746–754.

[30]

Zhang, Y. J.; Chaubey, G. S.; Rong, C. B.; Ding, Y.; Poudyal, N.; Tsai, P. C.; Zhang, Q. M.; Liu, J. P. Controlled synthesis and magnetic properties of hard magnetic Co x C ( x = 2, 3) nanocrystals. J. Magn. Magn. Mater. 2011, 323, 1495–1500.

[31]

Carroll, K. J.; Huba, Z. J.; Spurgeon, S. R.; Qian, M. C.; Khanna, S. N.; Hudgins, D. M.; Taheri, M. L.; Carpenter, E. E. Magnetic properties of Co2C and Co3C nanoparticles and their assemblies. Appl. Phys. Lett. 2012, 101, 012409.

[32]

Wang, S.; Lin, X.; Ashfaq, M. Z.; Zhang, X. F.; Zhao, C. C.; Sheng, M. M.; Yang, R. K.; Pei, Y. R.; Gong, H. Y.; Zhang, Y. J. Microwave absorption properties of SiCN ceramics doped with cobalt nanoparticles. J. Mater. Sci. Mater. Electron. 2020, 31, 3803–3816.

[33]

Liu, Y. N.; Yin, H.; Xu, C. C.; Zhuge, X. C.; Wan, J. Polythiophene-tungsten selenide/nitrogen-doped graphene oxide nanocomposite for visible light-driven photocatalysis. J. Nanopart. Res. 2019, 21, 210.

[34]

Zhang, H. W.; Xiong, D. P.; Xie, Y. D.; Wu, K. D.; Feng, Z. Y.; Wen, K. H.; Li, Z. Y.; He, M. Co3C/MXene composites wrapped in N-rich carbon as stable-performance anodes for potassium/sodium-ion batteries. Colloids Surf. A 2023, 656, 130332.

[35]

Wang, X. Q.; Chen, Y. F.; Qi, F.; Zheng, B. J.; He, J. R.; Li, Q.; Li, P. J.; Zhang, W. L.; Li, Y. R. Interwoven WSe2/CNTs hybrid network: A highly efficient and stable electrocatalyst for hydrogen evolution. Electrochem. Commun. 2016, 72, 74–78.

[36]

Shu, J. C.; Huang, X. Y.; Cao, M. S. Assembling 3D flower-like Co3O4-MWCNT architecture for optimizing low-frequency microwave absorption. Carbon 2021, 174, 638–646.

[37]

Zou, M. L.; Zhang, J. F.; Zhu, H.; Du, M. L.; Wang, Q. F.; Zhang, M.; Zhang, X. W. A 3D dendritic WSe2 catalyst grown on carbon nanofiber mats for efficient hydrogen evolution. J. Mater. Chem. A 2015, 3, 12149–12153.

[38]

Fan, X. J.; Zhou, H. Q.; Guo, X. WC nanocrystals grown on vertically aligned carbon nanotubes: An efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Nano 2015, 9, 5125–5134.

[39]

Li, J. B.; Yan, D.; Lu, T.; Yao, Y. F.; Pan, L. K. An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem. Eng. J. 2017, 325, 14–24.

[40]

Wang, G.; Yang, S.; Lu, M. X.; Hua, B. Y.; Zhang, Z. Y.; Kang, J. Q.; Tang, W. S.; Wei, H. L.; Cui, L. F.; Chen, X. D. Sulfonated polybenzimidazole engineering defect-induced N, S-codoped carbon-supported Co3C hybrid composite as high-efficiency electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2023, 443, 141939.

[41]

Irfan, R. M.; Tahir, M. H.; Iqbal, S.; Nadeem, M.; Bashir, T.; Maqsood, M.; Zhao, J. Q.; Gao, L. J. Co3C as a promising cocatalyst for superior photocatalytic H2 production based on swift electron transfer processes. J. Mater. Chem. C 2021, 9, 3145–3154.

[42]

Liu, D. W.; Du, Y. C.; Li, Z. N.; Wang, Y. H.; Xu, P.; Zhao, H. H.; Wang, F. Y.; Li, C. L.; Han, X. J. Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties. J. Mater. Chem. C 2018, 6, 9615–9623.

[43]

Wang, Y. C.; Yao, L. H.; Zheng, Q.; Cao, M. S. Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res. 2022, 15, 6751–6760.

[44]

Wu, Z. C.; Pei, K.; Xing, L. S.; Yu, X. F.; You, W. B.; Che, R. C. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 2019, 29, 1901448.

[45]

Wu, G. L.; Zhang, H. X.; Luo, X. X.; Yang, L. J.; Lv, H. L. Investigation and optimization of Fe/ZnFe2O4 as a wide-band electromagnetic absorber. J. Colloid Interface Sci. 2019, 536, 548–555.

[46]

Zhao, B.; Li, Y.; Liu, J. W.; Fan, L.; Gao, K.; Bai, Z. Y.; Liang, L. Y.; Guo, X. Q.; Zhang, R. Symmetrical polyhedron-bowl Co/CoO with hexagonal plate to forward electromagnetic wave absorption ability. CrystEngComm 2019, 21, 816–826.

[47]

Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013, 65, 124–139.

[48]

Yao, L. H.; Cao, W. Q.; Cao, M. S. Doping effect on the adsorption of Na atom onto graphenes. Curr. Appl. Phys. 2016, 16, 574–580.

[49]

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

[50]

Zhang, X. F.; Rao, Y.; Guo, J. J.; Qin, G. W. Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption. Carbon 2016, 96, 972–979.

[51]

Lv, H. L.; Zhang, H. Q.; Zhao, J.; Ji, G. B.; Du, Y. W. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 2016, 9, 1813–1822.

[52]

Song, W. L.; Cao, M. S.; Wen, B.; Hou, Z. L.; Cheng, J.; Yuan, J. Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: Dielectric properties, electromagnetic interference shielding, and microwave absorption. Mater. Res. Bull. 2012, 47, 1747–1754.

[53]

Tao, J. Q.; Zhou, J. T.; Yao, Z. J.; Jiao, Z. B.; Wei, B.; Tan, R. Y.; Li, Z. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon 2021, 172, 542–555.

[54]

Xu, J.; Shi, Y. N.; Zhang, X. C.; Yuan, H. R.; Li, B.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. General strategy for fabrication of N-doped carbon nanotube/reduced graphene oxide aerogels for dissipation and conversion of electromagnetic energy. J. Mater. Chem. C 2020, 8, 7847–7857.

File
12274_2023_6272_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 August 2023
Revised: 14 October 2023
Accepted: 16 October 2023
Published: 01 December 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The financial supports come from the National Natural Science Foundation of China (Nos. 52373280, 52177014, 51977009, and 12074095), the Heilongjiang Provincial Science Foundation for Distinguished Young Scholars (No. JQ2022A002), and the 2020 Central Government’s plan to support the Talent Training Project of the Reform and Development Fund of Local Universities (No. 2020YQ02).

Return