Journal Home > Volume 17 , Issue 5

The exploration of new heterojunction materials is of great significance in reducing the cost of existing noble metal catalysts and thus realizing the large-scale application of electrocatalytic hydrolysis technology. Herein, a novel CoP/CoMoP2 heterojunction was synthesized and served as a hydrogen evolution reaction (HER) electrocatalyst. The heterojunction has morphology of nanoporous structure, which is conducive to exposing more active sites and facilitating bubbles transport. The charge distribution is optimized by a strong interface interaction between CoP and CoMoP2. The catalyst’s conductivity and the adsorption properties of the intermediates have both been enhanced. CoP/CoMoP2 demonstrates excellent HER activity with an overpotential of 93.6 mV at 10 mA∙cm−2, which is competitive with the reported performance of analogous electrocatalysts. This work provides insights into the development of innovative phosphide-based heterojunction electrocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Novel CoP/CoMoP2 heterojunction with nanoporous structure as an efficient electrocatalyst for hydrogen evolution

Show Author's information Lili ZhangXinxing ShiAijiao XuWenwu ZhongJitang Zhang( )Shijie Shen( )
Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 318000, China

Abstract

The exploration of new heterojunction materials is of great significance in reducing the cost of existing noble metal catalysts and thus realizing the large-scale application of electrocatalytic hydrolysis technology. Herein, a novel CoP/CoMoP2 heterojunction was synthesized and served as a hydrogen evolution reaction (HER) electrocatalyst. The heterojunction has morphology of nanoporous structure, which is conducive to exposing more active sites and facilitating bubbles transport. The charge distribution is optimized by a strong interface interaction between CoP and CoMoP2. The catalyst’s conductivity and the adsorption properties of the intermediates have both been enhanced. CoP/CoMoP2 demonstrates excellent HER activity with an overpotential of 93.6 mV at 10 mA∙cm−2, which is competitive with the reported performance of analogous electrocatalysts. This work provides insights into the development of innovative phosphide-based heterojunction electrocatalysts.

Keywords: nanoporous, heterojunction, hydrogen evolution reaction, CoP, CoMoP2

References(58)

[1]

Liu, S. Y.; Shui, J. L. Mechanism and properties of emerging nanostructured hydrogen storage materials. Battery Energy 2022, 1, 20220033.

[2]

Osman, A. I.; Mehta, N.; Elgarahy, A. M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, A. H.; Rooney, D. W. Hydrogen production, storage, utilisation, and environmental impacts: A review. Environ. Chem. Lett. 2022, 20, 153–188.

[3]

Shen, S. J.; Hu, Z. Y.; Zhang, H. H.; Song, K.; Wang, Z. P.; Lin, Z. P.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Highly active Si sites enabled by negative valent Ru for electrocatalytic hydrogen evolution in LaRuSi. Angew. Chem., Int. Ed. 2022, 61, e202206460.

[4]
Lin, Z. P.; Wang, Z. P.; Gong, J. J.; Jin, T. C.; Shen, S. J.; Zhang, Q. H.; Wang, J. C.; Zhong, W. W. Reversed spillover effect activated by Pt atom dimers boosts alkaline hydrogen evolution reaction. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202307510.
[5]

Fu, Q.; Han, J. C.; Wang, X. J.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W. W.; Liu, S. W.; Gao, T. L.; Zhang, Z. H. et al. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater. 2021, 33, 1907818

[6]

Zhang, L. L.; Wang, Z. P.; Zhang, J. T.; Lin, Z. P.; Zhang, Q. H.; Zhong, W. W.; Wu, G. F. High activity and stability in Ni2P/(Co,Ni)OOH heterointerface with a multiple-hierarchy structure for alkaline hydrogen evolution reaction. Nano Res. 2023, 16, 6552–6559.

[7]

Shen, S. J.; Wang, Z. P.; Lin, Z. P.; Song, K.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Crystalline–amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2110631.

[8]

Li, J. Y.; Mao, X.; Gong, W. B.; Wang, X. Y.; Jiang, Y. W.; Long, R.; Du, A. J.; Xiong, Y. J. Engineering active Ni-doped Co2P catalyst for efficient electrooxidation coupled with hydrogen evolution. Nano Res. 2023, 16, 6728–6735.

[9]

Liu, D.; Xu, G. Y.; Yang, H.; Wang, H. T.; Xia, B. Y. Rational design of transition metal phosphide-based electrocatalysts for hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2208358.

[10]

Lv, Y.; Wu, X. Y.; Li, H.; Zhang, H. B.; Li, J. X.; Zhou, Z. Y.; Guo, J. X.; Jia, D. Z. Ultrathin oxygen-containing graphdiyne wrapping CoP for enhanced electrocatalytic hydrogen generation. Nano Res. 2023, 16, 5073–5079.

[11]

Song, H. Q.; Wu, M.; Tang, Z. Y.; Tse, J. S.; Yang, B.; Lu, S. Y. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 7234–7244.

[12]

Li, J. Y.; Hu, J.; Zhang, M. K.; Gou, W. Y.; Zhang, S.; Chen, Z.; Qu, Y. Q.; Ma, Y. Y. A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nat. Commun. 2021, 12, 3502.

[13]

Xue, H. Y.; Meng, A. L.; Zhang, H. Q.; Lin, Y. S.; Li, Z. J.; Wang, C. S. 3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting. Nano Res. 2021, 14, 4173–4181

[14]

Wang, M. D.; Liu, X. Y.; Wu, X. Realizing efficient electrochemical overall water electrolysis through hierarchical CoP@NiCo-LDH nanohybrids. Nano Energy 2023, 114, 108681.

[15]

Cao, X. F.; Xing, S. Q.; Ma, D.; Tan, Y.; Zhu, Y. C.; Hu, J.; Wang, Y.; Chen, X.; Chen, Z. Design of high-performance ion-doped CoP systems for hydrogen evolution: From multi-level screening calculations to experiment. J. Energy Chem. 2023, 82, 307–316.

[16]

Song, J. H.; Zhu, C. Z.; Xu, B. Z.; Fu, S. F.; Engelhard, M. H.; Ye, R. F.; Du, D.; Beckman, S. P.; Lin, Y. H. Bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoP x phase-dependent electrical conductivity and hydrogen atom adsorption energy for efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1601555.

[17]

Li, J. W.; Hu, Y. Z.; Huang, X.; Zhu, Y.; Wang, D. L. Bimetallic phosphide heterostructure coupled with ultrathin carbon layer boosting overall alkaline water and seawater splitting. Small 2023, 19, 2206533.

[18]

Zhang, X. R.; Sun, C. Y.; Xu, S. S.; Huang, M. R.; Wen, Y.; Shi, X. R. DFT-assisted rational design of CoM x P/CC (M = Fe, Mn, and Ni) as efficient electrocatalyst for wide pH range hydrogen evolution and oxygen evolution. Nano Res. 2022, 15, 8897–8907.

[19]

Huang, H. W.; Cho, A.; Kim, S.; Jun, H.; Lee, A.; Han, J. W.; Lee, J. Structural design of amorphous CoMoP x with abundant active sites and synergistic catalysis effect for effective water splitting. Adv. Funct. Mater. 2020, 30, 2003889.

[20]

El-Refaei, S. M.; Russo, P. A.; Amsalem, P.; Koch, N.; Pinna, N. The importance of ligand selection on the formation of metal phosphonate-derived CoMoP and CoMoP2 nanoparticles for catalytic hydrogen evolution. ACS Appl. Nano Mater. 2020, 3, 4147–4156.

[21]

Fang, S. L.; Chou, T. C.; Samireddi, S.; Chen, K. H.; Chen, L. C.; Chen, W. F. Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide. Roy. Soc. Open Sci. 2017, 4, 161016.

[22]

Cao, W. J.; Zhao, R. H.; Liu, G. H.; Wu, L. L.; Li, J. D. Three-dimensional ordered macroporous design of heterogeneous nickel-iron phosphide as bifunctional electrocatalyst for enhanced overall water splitting. Appl. Surf. Sci. 2023, 607, 154905.

[23]

Qiao, F.; Sun, K. Y.; Chu, H. Q.; Wang, J. F.; Xie, Y.; Chen, L. P.; Yan, T. T. Design strategies of ZnO heterojunction arrays towards effective photovoltaic applications. Battery Energy 2022, 1, 20210008.

[24]
Feng, Y. H.; Ran, N.; Wang, X. L.; Liu, Q. N.; Wang, J. C.; Liu, L. J.; Suenaga, K.; Zhong, W. W.; Ma, R. G.; Liu, J. J. Nanoparticulate WN/Ni3C coupling in ceramic coatings for boosted urea electro-oxidation. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202302452.
[25]

Sun, B. J.; Xu, D.; Wang, Z. B.; Zhan, Y. F.; Zhang, K. Interfacial structure design for triboelectric nanogenerators. Battery Energy 2022, 1, 20220001.

[26]

Zheng, Z. B.; Liang, W. Z.; Lin, R. Z.; Hu, Z.; Wang, Y. C.; Lu, H. S.; Zhong, W. W.; Shen, S. J.; Pan, Y. Facile synthesis of zinc indium oxide nanofibers distributed with low content of silver for superior antibacterial activity. Small Struct. 2023, 4, 2200291.

[27]

Jeghan, S. M. N.; Kim, J.; Lee, G. Hierarchically designed CoMo marigold flower-like 3D nano-heterostructure as an efficient electrocatalyst for oxygen and hydrogen evolution reactions. Appl. Surf. Sci. 2021, 546, 149072.

[28]

Zhou, W.; Wu, M. M.; Li, G. R. Rambutan-like CoP@Mo-Co-O hollow microspheres for efficient hydrogen evolution reaction in alkaline solution. Chin. J. Catal. 2020, 41, 691–697.

[29]

Li, G. W.; Fu, C. G.; Wu, J. Q.; Rao, J. C.; Liou, S. C.; Xu, X. J.; Shao, B. Q.; Liu, K.; Liu, E. K.; Kumar, N. et al. Synergistically creating sulfur vacancies in semimetal-supported amorphous MoS2 for efficient hydrogen evolution. Appl. Catal. B Environ. 2019, 254, 1–6.

[30]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[31]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[32]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[33]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[34]

Shen, S. J.; Lin, Z. P.; Song, K.; Wang, Z. P.; Huang, L. G.; Yan, L. H.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Reversed active sites boost the intrinsic activity of graphene-like cobalt selenide for hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 12360–12365.

[35]

Zhang, Y. M.; Liu, L. Y.; Zhao, L. L.; Hou, C. X.; Huang, M. N.; Algadi, H.; Li, D. Y.; Xia, Q.; Wang, J.; Zhou, Z. R. et al. Sandwich-like CoMoP2/MoP heterostructures coupling N, P co-doped carbon nanosheets as advanced anodes for high-performance lithium-ion batteries. Adv. Compos. Hybrid Mater. 2022, 5, 2601–2610.

[36]
Chen, Z. X.; Jing, F.; Luo, M. H.; Wu, X. H.; Fu, H. C.; Xiao, S. W.; Yu, B. B.; Chen, D.; Xiong, X. Q.; Jin, Y. X. Local coordination and electronic interactions of Pd/MXene via dual-atom codoping with superior durability for efficient electrocatalytic ethanol oxidation. Carbon Energy, in press, https://doi.org/10.1002/cey2.443.
[37]

Chen, T.; Ma, J.; Chen, S. Y.; Wei, Y. M.; Deng, C. S.; Chen, J. C.; Hu, J. Q.; Ding, W. P. Construction of heterostructured CoP/CN/Ni: Electron redistribution towards effective hydrogen generation and oxygen reduction. Chem. Eng. J. 2021, 415, 129031.

[38]

Jin, H.; Liu, S.; Pei, L.; Li, G.; Ma, Z. F.; Bai, W. F.; Wu, S. T.; Yuan, Y. J.; Zhong, J. S. Construction of hierarchical CoP@Ni2P core–shell nanoarrays for efficient electrocatalytic hydrogen evolution in alkaline solution. RSC Adv. 2021, 11, 22467–22472.

[39]

Zhang, Y. Y.; Qiu, Y. F.; Ma, Z.; Wang, Y. P.; Zhang, Y. X.; Ying, Y. X.; Jiang, Y. N.; Zhu, Y. X.; Liu, S. Q. Core–corona Co/CoP clusters strung on carbon nanotubes as a Schottky catalyst for glucose oxidation assisted H2 production. J. Mater. Chem. A 2021, 9, 10893–10908.

[40]

Yu, R.; Du, Y. X.; Zhao, H. F.; Cao, F. F.; Lu, W. T.; Zhang, G. Crystalline/amorphous CoP/MnO x heterostructure derived from phase separation for electrochemical catalysis of alkaline hydrogen evolution reaction. Int. J. Hydrogen. Energy 2023, 48, 2593–2604.

[41]

Yang, Y. Y.; Zhu, C. M.; Zhou, Y.; Zhang, Y.; Xie, Y. D.; Lv, L. W.; Chen, W. L.; He, Y. Y.; Hu, Z. A. Design and synthesis Zn doped CoP/Co2P nanowire arrays for boosting hydrogen generation reaction. J. Solid State Chem. 2020, 285, 121231.

[42]

Liu, S. S.; Ma, L. J.; Li, J. S. Dual-metal-organic-framework derived CoP/MoP hybrid as an efficient electrocatalyst for acidic and alkaline hydrogen evolution reaction. J. Colloid Interf. Sci. 2023, 631, 147–153.

[43]

Liu, S. S.; Li, J. S. The facile synthesis of FeP/CoP confined in N, P co-doped carbon derived from MOFs for an efficient pH-universal hydrogen evolution reaction. Dalton Trans. 2022, 51, 12307–12313.

[44]

Song, X. Z.; Su, Q. F.; Li, S. J.; Liu, G. C.; Zhang, N.; Zhu, W. Y.; Wang, Z. H.; Tan, Z. Q. Heterostructural Co/CeO2/Co2P/CoP@NC dodecahedrons derived from CeO2-inserted zeolitic imidazolate framework-67 as efficient bifunctional electrocatalysts for overall water splitting. Int. J. Hydrogen. Energy 2020, 45, 30559–30570.

[45]

Liang, T. T.; Liu, Y. D.; Zhang, P. F.; Liu, C. T.; Ma, F.; Yan, Q. Y.; Dai, Z. F. Interface and valence modulation on scalable phosphorene/phosphide lamellae for efficient water electrolysis. Chem. Eng. J. 2020, 395, 124976.

[46]

Wang, Z. H.; Niu, Z. Y.; Meng, Y. L.; Wang, X. F.; Zhu, W. Y.; Zhang, N.; Song, X. Z.; Tan, Z. Q. Interface engineering in CoP/CePO4 derived from a Prussian blue analogue as a highly efficient electrocatalyst for alkaline hydrogen evolution reaction. ChemElectroChem 2021, 8, 3762–3766.

[47]

Sun, S. C.; Wang, Z. H.; Meng, S. C.; Yu, R.; Jiang, D. L.; Chen, M. Iron and chromium co-doped cobalt phosphide porous nanosheets as robust bifunctional electrocatalyst for efficient water splitting. Nanotechnology 2022, 33, 075204.

[48]

Guo, L.; Bai, X.; Xue, H.; Sun, J.; Song, T. S.; Zhang, S.; Qin, L.; Huang, K. K.; He, F.; Wang, Q. MOF-derived hierarchical 3D bi-doped CoP nanoflower eletrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Chem. Commun. 2020, 56, 7702–7705.

[49]

Jiao, Y. Q.; Yan, H. J.; Wang, D. X.; Wang, X. W.; Xu, S. W.; Xie, Y.; Wu, A. P.; Jiang, L.; Tian, C. G.; Wang, R. H. et al. Multi-touch cobalt phosphide–tungsten phosphide heterojunctions anchored on reduced graphene oxide boosting wide pH hydrogen evolution. Sci. China Mater. 2022, 65, 1225–1236.

[50]

Yu, H. B.; Qi, L. L.; Hu, Y.; Qu, Y.; Yan, P. X.; Isimjan, T. T.; Yang, X. L. Nanowire-structured FeP-CoP arrays as highly active and stable bifunctional electrocatalyst synergistically promoting high-current overall water splitting. J. Colloid Interf. Sci. 2021, 600, 811–819.

[51]

Zeng, Y. X.; Zhu, X. S.; Zhang, Y. H.; Chen, S. Q.; Zhang, W.; Wang, L. One-step novel synthesis of Co2P/CoP and its hydrogen evolution reaction performance in alkaline media. Mater. Chem. Phys. 2022, 277, 125419.

[52]

Zhan, J.; Cao, X.; Zhou, J. M.; Xu, G.; Lei, B.; Wu, M. H. Porous array with CoP nanoparticle modification derived from MOF grown on carbon cloth for effective alkaline hydrogen evolution. Chem. Eng. J. 2021, 416, 128943.

[53]

Liu, G. B.; Wang, M.; Xu, Y. S.; Wang, X. Y.; Li, X. K.; Liu, J.; Cui, X. J.; Jiang, L. H. Porous CoP/Co2P heterostructure for efficient hydrogen evolution and application in magnesium/seawater battery. J. Power Sources, 2021, 486, 229351.

[54]

Choi, G. H.; Moon, J.; Song, E.; Cho, S.; Park, K. W.; Park, J. T. Rational design of hierarchical MOF-derived CoP@Co-Fe LDH bifunctional electrocatalyst: An approach toward efficient overall water splitting in alkaline media. Int. J. Energy Res. 2022, 46, 24633–24644.

[55]

Chai, L. L.; Hu, Z. Y.; Wang, X.; Xu, Y. W.; Zhang, L. J.; Li, T. T.; Hu, Y.; Qian, J. J.; Huang, S. M. Stringing bimetallic metal-organic framework-derived cobalt phosphide composite for high-efficiency overall water splitting. Adv. Sci. 2020, 7, 1903195.

[56]

Li, X. T.; Liu, Y. Z.; Sun, Q. D.; Huang, W. H.; Wang, Z. L.; Chueh, C. C.; Chen, C. L.; Zhu, Z. L. Surface engineered CoP/Co3O4 heterojunction for high-performance bi-functional water splitting electro-catalysis. Nanoscale 2021, 13, 20281–20288.

[57]

Sun, Y. Q.; Li, X. L.; Zhang, T.; Xu, K.; Yang, Y. S.; Chen, G. Z.; Li, C. C.; Xie, Y. Nitrogen-doped cobalt diselenide with cubic phase maintained for enhanced alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 21575–21582.

[58]

Xu, J. Y.; Liu, T. F.; Li, J. J.; Li, B.; Liu, Y. F.; Zhang, B. S.; Xiong, D. H.; Amorim, I.; Li, W.; Liu, L. F. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy Environ. Sci. 2018, 11, 1819–1827.

File
12274_2023_6270_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 September 2023
Revised: 05 October 2023
Accepted: 15 October 2023
Published: 18 November 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52271184 and 52072255) and the Natural Science Foundation of Zhejiang Province, China (Nos. LY23E020001 and LTY20E020001).

Return