Journal Home > Volume 17 , Issue 3

Structural energy storage composites present advantages in simultaneously achieving structural strength and electrochemical properties. Adoption of carbon fiber electrodes and resin structural electrolytes in energy storage composite poses challenges in maintaining good mechanical and electrochemical properties at reasonable cost and effort. Here, we report a simple method to fabricate structural supercapacitor using carbon fiber electrodes (modified by Ni-layered double hydroxide (Ni-LDH) and in-situ growth of Co-metal-organic framework (Co-MOF) in a two-step process denoted as Co-MOF/Ni-LDH@CF) and bicontinuous-phase epoxy resin-based structural electrolyte. Co-MOF/Ni-LDH@CF as electrode material exhibits improved specific capacity (42.45 F·g−1) and cycle performance (93.3% capacity retention after 1000 cycles) in a three-electrode system. The bicontinuous-phase epoxy resin-based structural electrolyte exhibits an ionic conductivity of 3.27 × 10−4 S·cm−1. The fabricated Co-MOF/Ni-LDH@CF/SPE-50 structural supercapacitor has an energy density of 3.21 Wh·kg−1 at a power density of 42.25 W·kg−1, whilst maintaining tensile strength and modulus of 334.6 MPa and 25.2 GPa. These results show practical potential of employing modified commercial carbon fiber electrodes and epoxy resin-based structural electrolytes in structural energy storage applications.


menu
Abstract
Full text
Outline
About this article

Structural energy storage composites based on modified carbon fiber electrode with metal-organic frame enhancing layered double hydroxide

Show Author's information Jinrui Ye1,2Zhongbao Wang3Qin Lei1,2( )Lei Sun4( )Jinfeng Gu5
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, China
School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Department of Stomatology, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
Beijing Electromechanical Engineering Research Institute, Beijing 100074, China

Abstract

Structural energy storage composites present advantages in simultaneously achieving structural strength and electrochemical properties. Adoption of carbon fiber electrodes and resin structural electrolytes in energy storage composite poses challenges in maintaining good mechanical and electrochemical properties at reasonable cost and effort. Here, we report a simple method to fabricate structural supercapacitor using carbon fiber electrodes (modified by Ni-layered double hydroxide (Ni-LDH) and in-situ growth of Co-metal-organic framework (Co-MOF) in a two-step process denoted as Co-MOF/Ni-LDH@CF) and bicontinuous-phase epoxy resin-based structural electrolyte. Co-MOF/Ni-LDH@CF as electrode material exhibits improved specific capacity (42.45 F·g−1) and cycle performance (93.3% capacity retention after 1000 cycles) in a three-electrode system. The bicontinuous-phase epoxy resin-based structural electrolyte exhibits an ionic conductivity of 3.27 × 10−4 S·cm−1. The fabricated Co-MOF/Ni-LDH@CF/SPE-50 structural supercapacitor has an energy density of 3.21 Wh·kg−1 at a power density of 42.25 W·kg−1, whilst maintaining tensile strength and modulus of 334.6 MPa and 25.2 GPa. These results show practical potential of employing modified commercial carbon fiber electrodes and epoxy resin-based structural electrolytes in structural energy storage applications.

Keywords: supercapacitor, carbon fiber electrode, structural electrolyte, structural energy storage composites

References(68)

[1]

Han, Q. G.; Sheng, Y. L.; Liu, X.; Zhang, X.; Chen, X. H.; Li, B.; Han, Z. W. Carbon fiber reinforced epoxy composite combining superior electrochemical energy storage and mechanical performance. Chem. Eng. J. 2022, 437, 135228.

[2]

Zhou, H. M.; Li, H.; Li, L. Q.; Liu, T. C.; Chen, G.; Zhu, Y. P.; Zhou, L. M.; Huang, H. T. Structural composite energy storage devices—A review. Mater. Today Energy 2022, 24, 100924.

[3]

Liu, P.; Sherman, E.; Jacobsen, A. Design and fabrication of multifunctional structural batteries. J. Power Sources 2009, 189, 646–650.

[4]

Xu, Y. F.; Lu, W. B.; Xu, G. B.; Chou, T. W. Structural supercapacitor composites: A review. Compos. Sci. Technol. 2021, 204, 108636.

[5]

Asp, L. E.; Bouton, K.; Carlstedt, D.; Duan, S. H.; Harnden, R.; Johannisson, W.; Johansen, M.; Johansson, M. K. G.; Lindbergh, G.; Liu, F. et al. A structural battery and its multifunctional performance. Adv. Energy Sustain. Res. 2021, 2, 2000093.

[6]

Raza, W.; Ali, F.; Raza, N.; Luo, Y. W.; Kim, K. H.; Yang, J. H.; Kumar, S.; Mehmood, A.; Kwon, E. E. Recent advancements in supercapacitor technology. Nano Energy 2018, 52, 441–473.

[7]

Greenhalgh, E. S.; Nguyen, S.; Valkova, M.; Shirshova, N.; Shaffer, M. S. P.; Kucernak, A. R. J. A critical review of structural supercapacitors and outlook on future research challenges. Compos. Sci. Technol. 2023, 235, 109968.

[8]

Sha, Z.; Huang, F.; Zhou, Y.; Zhang, J.; Wu, S. Y.; Chen, J. Y.; Brown, S. A.; Peng, S. H.; Han, Z. J.; Wang, C. H. Synergies of vertical graphene and manganese dioxide in enhancing the energy density of carbon fibre-based structural supercapacitors. Compos. Sci. Technol. 2021, 201, 108568.

[9]

Deka, B. K.; Hazarika, A.; Lee, S.; Kim, D. Y.; Park, Y. B.; Park, H. W. Triboelectric-nanogenerator-integrated structural supercapacitor based on highly active P-doped branched Cu-Mn selenide nanowires for efficient energy harvesting and storage. Nano Energy 2020, 73, 104754.

[10]

Qian, H.; Kucernak, A. R.; Greenhalgh, E. S.; Bismarck, A.; Shaffer, M. S. P. Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric. ACS Appl. Mater. Interfaces 2013, 5, 6113–6122.

[11]

Shirshova, N.; Bismarck, A.; Carreyette, S.; Fontana, Q. P. V.; Greenhalgh, E. S.; Jacobsson, P.; Johansson, P.; Marczewski, M. J.; Kalinka, G.; Kucernak, A. R. J. et al. Structural supercapacitor electrolytes based on bicontinuous ionic liquid-epoxy resin systems. J. Mater. Chem. A 2013, 1, 15300–15309.

[12]

Chang, P.; Mei, H.; Tan, Y. F.; Zhao, Y.; Huang, W. Z.; Cheng, L. F. A 3D-printed stretchable structural supercapacitor with active stretchability/flexibility and remarkable volumetric capacitance. J. Mater. Chem. A 2020, 8, 13646–13658.

[13]

Sánchez-Romate, X. F.; Bosque, A. D.; Artigas-Arnaudas, J.; Muñoz, B. K.; Sánchez, M.; Ureña, A. A proof of concept of a structural supercapacitor made of graphene coated woven carbon fibers: EIS study and mechanical performance. Electrochim. Acta 2021, 370, 137746.

[14]

Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: A review. J. Mater. Chem. A 2017, 5, 12653–12672.

[15]

Yadav, S.; Kamble, Z.; Behera, B. K. Advances in multifunctional textile structural power composites: A review. J. Mater. Sci. 2022, 57, 17105–17138.

[16]

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

[17]

Zhu, J. X.; Yang, D.; Yin, Z. Y.; Yan, Q. Y.; Zhang, H. Graphene and graphene-based materials for energy storage applications. Small 2014, 10, 3480–3498.

[18]

Pumera, M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 2011, 4, 668–674.

[19]

Xu, C. H.; Xu, B. H.; Gu, Y.; Xiong, Z. G.; Sun, J.; Zhao, X. S. Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 2013, 6, 1388–1414.

[20]

Sarfraz, M.; Shakir, I. Recent advances in layered double hydroxides as electrode materials for high-performance electrochemical energy storage devices. J. Energy Storage 2017, 13, 103–122.

[21]

Hu, J.; Tang, X. M.; Dai, Q.; Liu, Z. Q.; Zhang, H. M.; Zheng, A. M.; Yuan, Z. Z.; Li, X. F. Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device. Nat. Commun. 2021, 12, 3409.

[22]

Zhao, J. W.; Chen, J. L.; Xu, S. M.; Shao, M. F.; Yan, D. P.; Wei, M.; Evans, D. G.; Duan, X. CoMn-layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energy storage devices. J. Mater. Chem. A 2013, 1, 8836–8843.

[23]

Guo, X. T.; Zhang, G. X.; Li, Q.; Xue, H. G.; Pang, H. Non-noble metal-transition metal oxide materials for electrochemical energy storage. Energy Storage Mater. 2018, 15, 171–201.

[24]

Peng, L. L.; Xiong, P.; Ma, L.; Yuan, Y. F.; Zhu, Y.; Chen, D. H.; Luo, X. Y.; Lu, J.; Amine, K.; Yu, G. H. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat. Commun. 2017, 8, 15139.

[25]

Jiang, K.; Xiong, P.; Ji, J. P.; Zhu, J. W.; Ma, R. Z.; Sasaki, T.; Geng, F. Two-dimensional molecular sheets of transition metal oxides toward wearable energy storage. Acc. Chem. Res. 2020, 53, 2443–2455.

[26]

Nan, J. X.; Guo, X.; Xiao, J.; Li, X.; Chen, W. H.; Wu, W. J.; Liu, H.; Wang, Y.; Wu, M. H.; Wang, G. X. Nanoengineering of 2D MXene-based materials for energy storage applications. Small 2021, 17, 1902085.

[27]

Li, X. L.; Huang, Z. D.; Shuck, C. E.; Liang, G. J.; Gogotsi, Y.; Zhi, C. Y. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 2022, 6, 389–404.

[28]

Lin, J. M.; Zhong, Y. R.; Tang, L. Y.; Wang, L. Q.; Yang, M.; Xia, H. Covalent organic frameworks: From materials design to electrochemical energy storage applications. Nano Sel. 2022, 3, 320–347.

[29]

Yang, Z. F.; Liu, J. J.; Li, Y. S.; Zhang, G.; Xing, G. L.; Chen, L. Arylamine-linked 2D covalent organic frameworks for efficient pseudocapacitive energy storage. Angew. Chem. 2021, 133, 20922–20927.

[30]

Li, J.; Jing, X. C.; Li, Q. Q.; Li, S. W.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 2020, 49, 3565–3604.

[31]

Ren, J. C.; Huang, Y. L.; Zhu, H.; Zhang, B. H.; Zhu, H. K.; Shen, S. H.; Tan, G. Q.; Wu, F.; He, H.; Lan, S. et al. Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy 2020, 2, 176–202.

[32]

Zhang, X.; Chen, A.; Zhong, M.; Zhang, Z. H.; Zhang, X.; Zhou, Z.; Bu, X. H. Metal-organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion. Electrochem. Energy Rev. 2019, 2, 29–104.

[33]

Peng, Y.; Xu, J. M.; Xu, J.; Ma, J.; Bai, Y.; Cao, S.; Zhang, S. T.; Pang, H. Metal-organic framework (MOF) composites as promising materials for energy storage applications. Adv. Colloid Interface Sci. 2022, 307, 102732.

[34]

Li, Y.; Xu, Y. X.; Yang, W. P.; Shen, W. X.; Xue, H. G.; Pang, H. MOF-derived metal oxide composites for advanced electrochemical energy storage. Small 2018, 14, 1704435.

[35]

Yang, Z.; Cheng, Q. H.; Li, W. W.; Li, Y. J.; Yang, C.; Tao, K.; Han, L. Construction of 2D ZIF-derived hierarchical and hollow NiCo-LDH “Nanosheet-on-Nanosheet” arrays on reduced graphene oxide/Ni foam for boosted electrochemical energy storage. J. Alloys Compd. 2021, 850, 156864.

[36]

Meng, X. Y.; Feng, M. G.; Zhang, H.; Ma, Z. G.; Zhang, C. M. Solvothermal synthesis of cobalt/nickel layered double hydroxides for energy storage devices. J. Alloys Compd. 2017, 695, 3522–3529.

[37]

Ray, P. K.; Mohanty, R.; Parida, K. Recent advancements of NiCo LDH and graphene based nanohybrids for supercapacitor application. J. Energy Storage 2023, 72, 108335.

[38]

Zhou, H. C.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.

[39]

Zhao, W. B.; Zeng, Y. T.; Zhao, Y. H.; Wu, X. L. Recent advances in metal-organic framework-based electrode materials for supercapacitors: A review. J. Energy Storage 2023, 62, 106934.

[40]

Gao, S. W.; Sui, Y.; Wei, F. X.; Qi, J. Q.; Meng, Q. K.; Ren, Y. J.; He, Y. Z. Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors. J. Colloid Interface Sci. 2018, 531, 83–90.

[41]

Zahir Iqbal, M.; Amjad, N.; Waqas Khan, M. Metal-organic-framework as novel electrode materials for hybrid battery-supercapacitor applications. ChemElectroChem 2022, 9, e202200036.

[42]

Xu, Y. X.; Li, Q.; Xue, H. G.; Pang, H. Metal-organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 2018, 376, 292–318.

[43]

Liu, W.; Yin, X. B. Metal-organic frameworks for electrochemical applications. TrAC Trends Anal. Chem. 2016, 75, 86–96.

[44]

Sheng, X. L.; Li, T.; Sun, M.; Liu, G. J.; Zhang, Q. Y.; Ling, Z. B.; Gao, S. W.; Diao, F. Y.; Zhang, J. Z.; Rosei, F. et al. Flexible electrospun iron compounds/carbon fibers: Phase transformation and electrochemical properties. Electrochim. Acta 2022, 407, 139892.

[45]

Lee, J. K.; An, K. W.; Ju, J. B.; Cho, B. W.; Cho, W. I.; Park, D.; Yun, K. S. Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries. Carbon 2001, 39, 1299–1305.

[46]

Mohd Abdah, M. A. A.; Mohammed Modawe Aldris Edris, N.; Kulandaivalu, S.; Abdul Rahman, N.; Sulaiman, Y. Supercapacitor with superior electrochemical properties derived from symmetrical manganese oxide-carbon fiber coated with polypyrrole. Int. J. Hydrogen Energy 2018, 43, 17328–17337.

[47]

Dong, G. H.; Guo, F. L.; Sun, Z.; Li, Y. Q.; Song, S. F.; Xu, C. H.; Huang, P.; Yan, C.; Hu, N.; Fu, S. Y. Short carbon fiber reinforced epoxy-ionic liquid electrolyte enabled structural battery via vacuum bagging process. Adv. Compos. Hybrid Mater. 2022, 5, 1799–1811.

[48]

Andrews, W. T.; Liebig, A.; Cook, J.; Marsh, P.; Ciocanel, C.; Lindberg, G. E.; Browder, C. C. Development of a PEO-based lithium ion conductive epoxy resin polymer electrolyte. Solid State Ionics 2018, 326, 150–158.

[49]

Yu, Y. L.; Zhang, B. M.; Feng, M. J.; Qi, G. C.; Tian, F. Y.; Feng, Q. H.; Yang, J. P.; Wang, S. B. Multifunctional structural lithium ion batteries based on carbon fiber reinforced plastic composites. Compos. Sci. Technol. 2017, 147, 62–70.

[50]

Quan, W. D.; Dent, J.; Arrighi, V.; Cavalcanti, L.; Shaffer, M. S. P.; Shirshova, N. Biphasic epoxy-ionic liquid structural electrolytes: Minimising feature size through cure cycle and multifunctional block-copolymer addition. Multifunct. Mater. 2021, 4, 035003.

[51]

Gienger, E. B.; Nguyen, P. A. T.; Chin, W.; Behler, K. D.; Snyder, J. F.; Wetzel, E. D. Microstructure and multifunctional properties of liquid + polymer bicomponent structural electrolytes: Epoxy gels and porous monoliths. J. Appl. Polym. Sci. 2015, 132, 42681.

[52]

Feng, Q. H.; Yang, J. P.; Yu, Y. L.; Tian, F. Y.; Zhang, B. M.; Feng, M. J.; Wang, S. B. The ionic conductivity, mechanical performance and morphology of two-phase structural electrolytes based on polyethylene glycol, epoxy resin and Nano-silica. Mater. Sci. Eng. B 2017, 219, 37–44.

[53]

Wang, Y. B.; Li, H.; Cui, B. W.; Xu, X. D.; Wang, Y. X. Simple mixed-acid-treated carbon fiber electrodes with oxygen-containing functional groups for flexible supercapacitors. J. Compos. Sci. 2023, 7, 231.

[54]

Zhao, C. J.; Zheng, J. X.; Wang, Y. X.; Rui, P. F.; Yang, G.; Zhao, C. H.; Xu, S. J. Vaporized hydrothermal functionalization of carbon fiber and its superior supercapacitor performance. Energy Fuels 2022, 36, 4052–4064.

[55]

Gallyamova, R.; Dokichev, V.; Musin, F. Acid treatment of carbon fiber surface. MATEC Web Conf. 2023, 376, 01002.

[56]

Zhang, M.; Ding, L.; Zheng, J.; Liu, L. B.; Alsulami, H.; Kutbi, M. A.; Xu, J. L. Surface modification of carbon fibers with hydrophilic Fe3O4 nanoparticles for nickel-based multifunctional composites. Appl. Surf. Sci. 2020, 509, 145348.

[57]

Chen, H.; Hu, L. F.; Chen, M.; Yan, Y.; Wu, L. M. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 2014, 24, 934–942.

[58]

Kishore, S. C.; Atchudan, R.; Jebakumar Immanuel Edison, T. N.; Perumal, S.; Alagan, M.; Vinodh, R.; Shanmugam, M.; Lee, Y. R. Solid waste-derived carbon fibers-trapped nickel oxide composite electrode for energy storage application. Energy Fuels 2020, 34, 14958–14967.

[59]

Shao, J. X.; Zhou, H.; Feng, J. H.; Zhu, M. Z.; Yuan, A. H. Facile synthesis of MOF-derived hollow NiO microspheres integrated with graphene foam for improved lithium-storage properties. J. Alloys Compd. 2019, 784, 869–876.

[60]

Antony, R. P.; Satpati, A. K.; Bhattacharyya, K.; Jagatap, B. N. MOF derived nonstoichiometric Ni x Co3− x O4− y nanocage for superior electrocatalytic oxygen evolution. Adv. Mater. Interfaces 2016, 3, 1600632.

[61]

Guan, C.; Liu, X. M.; Ren, W. N.; Li, X.; Cheng, C. W.; Wang, J. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 2017, 7, 1602391.

[62]

Zhang, S. L.; Pan, N. Supercapacitors performance evaluation. Adv. Energy Mater. 2015, 5, 1401401.

[63]

Prajapati, M.; Singh, V.; Jacob, M. V.; Ravi Kant, C. Recent advancement in metal-organic frameworks and composites for high-performance supercapatteries. Renew. Sustain. Energy Rev. 2023, 183, 113509.

[64]

Wang, T.; Chen, H. C.; Yu, F.; Zhao, X. S.; Wang, H. X. Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 2019, 16, 545–573.

[65]

Abraham, K. M.; Jiang, Z.; Carroll, B. Highly conductive PEO-like polymer electrolytes. Chem. Mater. 1997, 9, 1978–1988.

[66]

Polu, A. R.; Rhee, H. W.; Kim, D. K. New solid polymer electrolytes (PEO20-LiTDI-SN) for lithium batteries: Structural, thermal and ionic conductivity studies. J. Mater. Sci. Mater. Electron. 2015, 26, 8548–8554.

[67]

Borodin, O.; Smith, G. D.; Henderson, W. Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl- N-alkylpyrrolidinium+TFSI ionic liquids. J. Phys. Chem. B 2006, 110, 16879–16886.

[68]

Shi, C. J.; Du, Y. H.; Guo, L.; Yang, J. L.; Wang, Y. Z. Construction of interconnected NiCo layered double hydroxides/metal-organic frameworks hybrid nanosheets for high-performance supercapacitor. J. Energy Storage 2022, 48, 103961.

Publication history
Copyright
Acknowledgements

Publication history

Received: 21 September 2023
Revised: 11 October 2023
Accepted: 12 October 2023
Published: 20 November 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work is supported by fund of the National Natural Science Foundation of China (No. 12172024).

Return