Journal Home > Volume 17 , Issue 5

Bismuth vanadate (BiVO4) is a promising photoanode material for efficient photoelectrochemical (PEC) water splitting, whereas its performance is inhibited by detrimental surface states. To solve the problem, herein, a low-cost organic molecule 1,3,5-benzenetricarboxylic acid (BTC) is selected for surface passivation of BiVO4 photoanodes (BVOs), which also provides bonding sites for Co2+ to anchor, resulting in a Co-BTC-BVO photoanode. Owing to its strong coordination with metal ions, BTC not only passivates surface states of BVO, but also provides bonding between BVO and catalytic active sites (Co2+) to form a molecular cocatalyst. Computational study and interfacial charge kinetic investigation reveal that chemical bonding formed at the interface greatly suppresses charge recombination and accelerates charge transfer. The obtained Co-BTC-BVO photoanode exhibits a photocurrent density of 4.82 mA/cm2 at 1.23 V vs. reversible hydrogen electrode (RHE) and a low onset potential of 0.22 VRHE under AM 1.5 G illumination, which ranks among the best photoanodes coupled with Co-based cocatalysts. This work presents a novel selection of passivation layers and emphasizes the significance of interfacial chemical bonding for the construction of efficient photoanodes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Organic ligand nanoarchitectonics for BiVO4 photoanodes surface passivation and cocatalyst grafting

Show Author's information Jingyi Lin1,2Xin Li3Zhiliang Wang2Runlu Liu1Hui Pan1,4Yixin Zhao3Lingti Kong1Yao Li1Shenmin Zhu1( )Lianzhou Wang2( )
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, QLD 4072, Australia
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China

Abstract

Bismuth vanadate (BiVO4) is a promising photoanode material for efficient photoelectrochemical (PEC) water splitting, whereas its performance is inhibited by detrimental surface states. To solve the problem, herein, a low-cost organic molecule 1,3,5-benzenetricarboxylic acid (BTC) is selected for surface passivation of BiVO4 photoanodes (BVOs), which also provides bonding sites for Co2+ to anchor, resulting in a Co-BTC-BVO photoanode. Owing to its strong coordination with metal ions, BTC not only passivates surface states of BVO, but also provides bonding between BVO and catalytic active sites (Co2+) to form a molecular cocatalyst. Computational study and interfacial charge kinetic investigation reveal that chemical bonding formed at the interface greatly suppresses charge recombination and accelerates charge transfer. The obtained Co-BTC-BVO photoanode exhibits a photocurrent density of 4.82 mA/cm2 at 1.23 V vs. reversible hydrogen electrode (RHE) and a low onset potential of 0.22 VRHE under AM 1.5 G illumination, which ranks among the best photoanodes coupled with Co-based cocatalysts. This work presents a novel selection of passivation layers and emphasizes the significance of interfacial chemical bonding for the construction of efficient photoanodes.

Keywords: water splitting, photoanode, bismuth vanadate, surface passivation, bridging ligands

References(44)

[1]

Sivula, K.; van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 1, 15010.

[2]

Jiang, C. R.; Moniz, S. J. A.; Wang, A. Q.; Zhang, T.; Tang, J. W. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem. Soc. Rev. 2017, 46, 4645–4660.

[3]

Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.

[4]

Trześniewski, B. J.; Smith, W. A. Photocharged BiVO4 photoanodes for improved solar water splitting. J. Mater. Chem. A 2016, 4, 2919–2926.

[5]

Kan, M.; Xue, D. Q.; Jia, A. H.; Qian, X. F.; Yue, D. T.; Jia, J. P.; Zhao, Y. X. A highly efficient nanoporous BiVO4 photoelectrode with enhanced interface charge transfer Co-catalyzed by molecular catalyst. Appl. Catal. B 2018, 225, 504–511.

[6]

Li, X.; Liu, S. W.; Fan, K.; Liu, Z. Q.; Song, B.; Yu, J. G. MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting. Adv. Energy Mater. 2018, 8, 1800101.

[7]

Li, D. Y.; Huang, Y. L.; Ma, R. J.; Liu, H.; Liang, Q.; Han, Y.; Ren, Z. W.; Liu, K.; Fong, P. W. K.; Zhang, Z. Q. et al. Surface regulation with polymerized small molecular acceptor towards efficient inverted perovskite solar cells. Adv. Energy Mater. 2023, 13, 2204247.

[8]

Mao, L. L.; Huang, Y. C.; Deng, H.; Meng, F. Q.; Fu, Y. M.; Wang, Y. Q.; Li, M. T.; Zhang, Q. H.; Dong, C. L.; Gu, L. et al. Synergy of ultrathin CoO x overlayer and nickel single atoms on hematite nanorods for efficient photo-electrochemical water splitting. Small 2023, 19, 2203838.

[9]

Zhang, S. C.; Liu, Z. F.; Chen, D.; Yan, W. G. An efficient hole transfer pathway on hematite integrated by ultrathin Al2O3 interlayer and novel CuCoO x cocatalyst for efficient photoelectrochemical water oxidation. Appl. Catal. B 2020, 277, 119197.

[10]

Fu, S. R.; Hu, H. Y.; Feng, C. C.; Zhang, Y. J.; Bi, Y. P. Epitaxial growth of ZnWO4 hole-storage nanolayers on ZnO photoanodes for efficient solar water splitting. J. Mater. Chem. A 2019, 7, 2513–2517.

[11]

Ning, X. M.; Du, P. Y.; Han, Z. G.; Chen, J.; Lu, X. Q. Insight into the transition-metal hydroxide cover layer for enhancing photoelectrochemical water oxidation. Angew. Chem., Int. Edit. 2021, 60, 3504–3509.

[12]

Usman, E.; Vishlaghi, M. B.; Kahraman, A.; Solati, N.; Kaya, S. Modifying the electron-trapping process at the BiVO4 surface states via the TiO2 overlayer for enhanced water oxidation. ACS Appl. Mater. Interfaces 2021, 13, 60602–60611.

[13]

Varadhan, P.; Fu, H. C.; Priante, D.; Retamal, J. R. D.; Zhao, C.; Ebaid, M.; Ng, T. K.; Ajia, I.; Mitra, S.; Roqan, I. S. et al. Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting. Nano Lett. 2017, 17, 1520–1528.

[14]

Li, F.; Jian, J.; Xu, Y. X.; Liu, W.; Ye, Q.; Feng, F.; Li, C.; Jia, L. C.; Wang, H. Q. Surface defect passivation of Ta3N5 photoanode via pyridine grafting for enhanced photoelectrochemical performance. J. Chem. Phys. 2020, 153, 024705.

[15]

Firet, N. J.; Venugopal, A.; Blommaert, M. A.; Cavallari, C.; Sahle, C. J.; Longo, A.; Smith, W. A. Chemisorption of anionic species from the electrolyte alters the surface electronic structure and composition of photocharged BiVO4. Chem. Mater. 2019, 31, 7453–7462.

[16]

Köppen, M.; Dhakshinamoorthy, A.; Inge, A. K.; Cheung, O.; Ångström, J.; Mayer, P.; Stock, N. Synthesis, transformation, catalysis, and gas sorption investigations on the bismuth metal-organic framework CAU-17. Eur. J. Inorg. Chem. 2018, 2018, 3496–3503.

[17]

Zhang, R. Q.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Selective photocatalytic conversion of alcohol to aldehydes by singlet oxygen over Bi-based metal-organic frameworks under UV–vis light irradiation. Appl. Catal. B 2019, 254, 463–470.

[18]

Ying, Y. L.; Khezri, B.; Kosina, J.; Pumera, M. Reconstructed bismuth-based metal-organic framework nanofibers for selective CO2-to-formate conversion: Morphology engineering. ChemSusChem 2021, 14, 3402–3412.

[19]

Zhang, Y. J.; Xu, L. C.; Liu, B. Y.; Wang, X.; Wang, T. S.; Xiao, X.; Wang, S. C.; Huang, W. Engineering BiVO4 and oxygen evolution cocatalyst interfaces with rapid hole extraction for photoelectrochemical water splitting. ACS Catal. 2023, 13, 5938–5948.

[20]

Li, F. S.; Yang, H.; Zhuo, Q. M.; Zhou, D. H.; Wu, X. J.; Zhang, P. L.; Yao, Z. Y.; Sun, L. C. A cobalt@cucurbit[5]uril complex as a highly efficient supramolecular catalyst for electrochemical and photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2021, 60, 1976–1985.

[21]

Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.

[22]

Yao, D. Z.; Tang, C.; Vasileff, A.; Zhi, X.; Jiao, Y.; Qiao, S. Z. The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem., Int. Ed. 2021, 60, 18178–18184.

[23]

Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H. Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L. et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew. Chem., Int. Ed. 2021, 60, 1433–1440.

[24]

Lin, J. Y.; Han, X. J.; Liu, S. Y.; Lv, Y.; Li, X.; Zhao, Y. X.; Li, Y.; Wang, L. Z.; Zhu, S. M. Nitrogen-doped cobalt-iron oxide cocatalyst boosting photoelectrochemical water splitting of BiVO4 photoanodes. Appl. Catal. B 2023, 320, 121947.

[25]

Zhu, S. M.; Yan, D. Y. Atom transfer radical polymerization of methyl methacrylate catalyzed by IronII chloride/isophthalic acid system. Macromolecules 2000, 33, 8233–8238.

[26]

Xie, J. L.; Guo, C. X.; Yang, P. P.; Wang, X. D.; Liu, D. Y.; Li, C. M. Bi-functional ferroelectric BiFeO3 passivated BiVO4 photoanode for efficient and stable solar water oxidation. Nano Energy 2017, 31, 28–36.

[27]

Lu, Y. M.; Su, J. Z.; Shi, J. W.; Zhou, D. Surface recombination passivation of the BiVO4 photoanode by the synergistic effect of the cobalt/nickel sulfide cocatalyst. ACS Appl. Energy Mater. 2020, 3, 9089–9097.

[28]
Wang, S. C.; He, T. W.; Chen, P.; Du, A. J.; Ostrikov, K.; Huang, W.; Wang, L. Z. In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes. Adv. Mater. 2020 , 32, 2001385.
[29]

Prabhakar, R. R.; Moehl, T.; Friedrich, D.; Kunst, M.; Shukla, S.; Adeleye, D.; Damle, V. H.; Siol, S.; Cui, W.; Gouda, L. et al. Sulfur treatment passivates bulk defects in Sb2Se3 photocathodes for water splitting. Adv. Funct. Mater. 2022, 32, 2112184.

[30]

Zhang, M. Y.; Antony, R. P.; Chiam, S. Y.; Abdi, F. F.; Wong, L. H. Understanding the roles of NiO x in enhancing the photoelectrochemical performance of BiVO4 photoanodes for solar water splitting. ChemSusChem 2019, 12, 2022–2028.

[31]

Sun, Q.; Cheng, T.; Liu, Z. R.; Qi, L. M. A cobalt silicate modified BiVO4 photoanode for efficient solar water oxidation. Appl. Catal. B 2020, 277, 119189.

[32]

Dai, Y. W.; Cheng, P.; Xie, G. C.; Li, C. C.; Akram, M. Z.; Guo, B. D.; Boddula, R.; Shi, X. H.; Gong, J. L.; Gong, J. R. Modulating photoelectrochemical water-splitting activity by charge-storage capacity of electrocatalysts. J. Phys. Chem. C 2019, 123, 28753–28762.

[33]

Li, Y.; Dai, X. Y.; Bu, Y. Y.; Zhang, H. Z.; Liu, J.; Yuan, W. Y.; Guo, X. H.; Ao, J. P. Photoelectrochemical performance improving mechanism: Hybridization appearing at the energy band of BiVO4 photoanode by doped quantum layers modification. Small 2022, 18, 2200454.

[34]

Liu, Z. Y.; Wu, X. F.; Zheng, B. N.; Sun, Y.; Hou, C. M.; Wu, J.; Huang, K. K.; Feng, S. H. Cobalt-plasma treatment enables structural reconstruction of a CoO x /BiVO4 composite for efficient photoelectrochemical water splitting. Chem. Commun. 2022, 58, 9890–9893.

[35]

Wang, S. C.; Chen, P.; Yun, J. H.; Hu, Y. X.; Wang, L. Z. An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2017, 56, 8500–8504.

[36]

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

[37]

Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. Water oxidation at hematite photoelectrodes: The role of surface states. J. Am. Chem. Soc. 2012, 134, 4294–4302.

[38]

Lopes, T.; Andrade, L.; Le Formal, F.; Gratzel, M.; Sivula, K.; Mendes, A. Hematite photoelectrodes for water splitting: Evaluation of the role of film thickness by impedance spectroscopy. Phys. Chem. Chem. Phys. 2014, 16, 16515–16523.

[39]

Agarwal, P.; Orazem, M. E.; Garcia-Rubio, L. H. Measurement models for electrochemical impedance spectroscopy: I. Demonstration of applicability. J. Electrochem. Soc. 1992, 139, 1917–1927.

[40]

Abouzari, M. R. S.; Berkemeier, F.; Schmitz, G.; Wilmer, D. On the physical interpretation of constant phase elements. Solid State Ionics 2009, 180, 922–927.

[41]

Chang, S. H.; Liou, J. S.; Liu, J. L.; Chiu, Y. F.; Xu, C. H.; Chen, B. Y.; Chen, J. Z. Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells. J. Power Sources 2016, 336, 99–106.

[42]

Wang, S. C.; He, T. W.; Yun, J. H.; Hu, Y. X.; Xiao, M.; Du, A. J.; Wang, L. Z. New iron-cobalt oxide catalysts promoting BiVO4 films for photoelectrochemical water splitting. Adv. Funct. Mater. 2018, 28, 1802685.

[43]

Kresse, G.; Furthmuller, J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[44]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

File
12274_2023_6262_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 September 2023
Revised: 09 October 2023
Accepted: 11 October 2023
Published: 11 November 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors kindly acknowledge the financial support from the National Natural Science Foundation of China (No. 51672173, U1733130); Shanghai Science and Technology Committee (Nos. 21ZR1435700, 18520744700, and 18JC1410500); and Shanghai Jiao Tong University Medical Engineering Cross Research Program (No. YG2023ZD18). The computations in this paper were run on the Siyuan-1 cluster supported by the Center for High Performance Computing at Shanghai Jiao Tong University.

Return