Journal Home > Volume 17 , Issue 5

Vapor catalysis was recently found to play a crucial role in superclean graphene growth via chemical vapor decomposition (CVD). However, knowledge of vapor-phase catalysis is scarce, and several fundamental issues, including vapor compositions and their impact on graphene growth, are ambiguous. Here, by combining density functional theory (DFT) calculations, an ideal gas model, and a designed experiment, we found that the vapor was mainly composed of Cui clusters with tens of atoms. The vapor pressure was estimated to be ~ 10−12–10−11 bar under normal low-pressure CVD system (LPCVD) conditions for graphene growth, and the exposed surface area of Cui clusters in the vapor was 22–269 times that of the Cu substrate surface, highlighting the importance of vapor catalysis. DFT calculations show Cu clusters, represented by Cu17, have strong capabilities for adsorption, dehydrogenation, and decomposition of hydrocarbons. They exhibit an adsorption lifetime and reaction flux six orders of magnitude higher than those on the Cu surface, thus providing a sufficient supply of active C atoms for rapid graphene growth and improving the surface cleanliness of the synthesized graphene. Further experimental validation showed that increasing the amount of Cu vapor improved the as-synthesized graphene growth rate and surface cleanliness. This study provides a comprehensive understanding of vapor catalysis and the fundamental basis of vapor control for superclean graphene rapid growth.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Invisible vapor catalysis in graphene growth by chemical vapor deposition

Show Author's information Xiucai Sun1,2Xiaoting Liu1,3Zhongti Sun4Xintong Zhang2Yuzhu Wu1,2Yeshu Zhu1,3Yuqing Song2Kaicheng Jia2Jincan Zhang2,5Luzhao Sun2Wan-Jian Yin2,6( )Zhongfan Liu1,2( )
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Beijing Graphene Institute (BGI), Beijing 100095, China
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China

Abstract

Vapor catalysis was recently found to play a crucial role in superclean graphene growth via chemical vapor decomposition (CVD). However, knowledge of vapor-phase catalysis is scarce, and several fundamental issues, including vapor compositions and their impact on graphene growth, are ambiguous. Here, by combining density functional theory (DFT) calculations, an ideal gas model, and a designed experiment, we found that the vapor was mainly composed of Cui clusters with tens of atoms. The vapor pressure was estimated to be ~ 10−12–10−11 bar under normal low-pressure CVD system (LPCVD) conditions for graphene growth, and the exposed surface area of Cui clusters in the vapor was 22–269 times that of the Cu substrate surface, highlighting the importance of vapor catalysis. DFT calculations show Cu clusters, represented by Cu17, have strong capabilities for adsorption, dehydrogenation, and decomposition of hydrocarbons. They exhibit an adsorption lifetime and reaction flux six orders of magnitude higher than those on the Cu surface, thus providing a sufficient supply of active C atoms for rapid graphene growth and improving the surface cleanliness of the synthesized graphene. Further experimental validation showed that increasing the amount of Cu vapor improved the as-synthesized graphene growth rate and surface cleanliness. This study provides a comprehensive understanding of vapor catalysis and the fundamental basis of vapor control for superclean graphene rapid growth.

Keywords: chemical vapor deposition, first-principles calculation, graphene growth, vapor catalysis

References(52)

[1]

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

[2]

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

[3]

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

[4]

Zhang, J. C.; Lin, L.; Jia, K. C.; Sun, L. Z.; Peng, H. L.; Liu, Z. F. Controlled growth of single-crystal graphene films. Adv. Mater. 2020, 32, 1903266.

[5]

Lin, L.; Deng, B.; Sun, J. Y.; Peng, H. L.; Liu, Z. F. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 2018, 118, 9281–9343.

[6]

Sun, L. Z.; Yuan, G. W.; Gao, L. B.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z. F. Chemical vapour deposition. Nat. Rev. Methods Prim. 2021, 1, 5.

[7]

Zhang, L. N.; Dong, J. C.; Ding, F. Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem. Rev. 2021, 121, 6321–6372.

[8]

Wang, X. L.; Yuan, Q. H.; Li, J.; Ding, F. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth. Nanoscale 2017, 9, 11584–11589.

[9]

Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009–5015.

[10]

Artyukhov, V. I.; Hao, Y. F.; Ruoff, R. S.; Yakobson, B. I. Breaking of symmetry in graphene growth on metal substrates. Phys. Rev. Lett. 2015, 114, 115502.

[11]

Chen, Z. L.; Qi, Y.; Chen, X. D.; Zhang, Y. F.; Liu, Z. F. Direct CVD growth of graphene on traditional glass: Methods and mechanisms. Adv. Mater. 2019, 31, 1803639.

[12]

Rümmeli, M. H.; Gorantla, S.; Bachmatiuk, A.; Phieler, J.; Geißler, N.; Ibrahim, I.; Pang, J. B.; Eckert, J. On the role of vapor trapping for chemical vapor deposition (CVD) grown graphene over copper. Chem. Mater. 2013, 25, 4861–4866.

[13]

Teng, P. Y.; Lu, C. C.; Akiyama-Hasegawa, K.; Lin, Y. C.; Yeh, C. H.; Suenaga, K.; Chiu, P. W. Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett. 2012, 12, 1379–1384.

[14]

Lin, L.; Zhang, J. C.; Su, H. S.; Li, J. Y.; Sun, L. Z.; Wang, Z. H.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y. H. et al. Towards super-clean graphene. Nat. Commun. 2019, 10, 1912.

[15]

Jia, K. C.; Zhang, J. C.; Lin, L.; Li, Z. Z.; Gao, J.; Sun, L. Z.; Xue, R. W.; Li, J. Y.; Kang, N.; Luo, Z. T. et al. Copper-containing carbon feedstock for growing superclean graphene. J. Am. Chem. Soc. 2019, 141, 7670–7674.

[16]

Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.

[17]

Li, Q. C.; Zhao, Z. F.; Yan, B. M.; Song, X. J.; Zhang, Z. P.; Li, J.; Wu, X. S.; Bian, Z. Q.; Zou, X. L.; Zhang, Y. F. et al. Nickelocene-precursor-facilitated fast growth of graphene/h-BN vertical heterostructures and its applications in OLEDs. Adv. Mater. 2017, 29, 1701325.

[18]

Shan, J. Y.; Fang, S. M.; Wang, W. D.; Zhao, W.; Zhang, R.; Liu, B. Z.; Lin, L.; Jiang, B.; Ci, H. N.; Liu, R. J. et al. Copper acetate-facilitated transfer-free growth of high-quality graphene for hydrovoltaic generators. Natl. Sci. Rev. 2021, 9, nwab169.

[19]

Kim, H.; Song, I.; Park, C.; Son, M.; Hong, M. S.; Kim, Y.; Kim, J. S.; Shin, H. J.; Baik, J.; Choi, H. C. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 2013, 7, 6575–6582.

[20]

Sun, J. Y.; Chen, Z. L.; Yuan, L.; Chen, Y. B.; Ning, J.; Liu, S. W.; Ma, D. L.; Song, X. J.; Priydarshi, M. K.; Bachmatiuk, A. et al. Direct chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano 2016, 10, 11136–11144.

[21]

Xu, Z. W.; Zhao, G. H.; Qiu, L.; Zhang, X. Y.; Qiao, G. J.; Ding, F. Molecular dynamics simulation of graphene sinking during chemical vapor deposition growth on semi-molten Cu substrate. npj Computat. Mater. 2020, 6, 14.

[22]

Yamada, I.; Usui, H.; Takagi, T. Formation mechanism of large clusters from vaporized solid material. J. Phys. Chem. 1987, 91, 2463–2468.

[23]

Itoh, M.; Kumar, V.; Adschiri, T.; Kawazoe, Y. Comprehensive study of sodium, copper, and silver clusters over a wide range of sizes 2 ≤ N ≤ 75. J. Chem. Phys. 2009, 131, 174510.

[24]

Lecoultre, S.; Rydlo, A.; Félix, C.; Buttet, J.; Gilb, S.; Harbich, W. Optical absorption of small copper clusters in neon: Cu n , ( n = 1–9). J. Chem. Phys. 2011, 134, 074303.

[25]

Hammer, B.; Norskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.

[26]

Hammer, B.; Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220.

[27]

Hao, Y. F.; Wang, L.; Liu, Y. Y.; Chen, H.; Wang, X. H.; Tan, C.; Nie, S.; Suk, J. W.; Jiang, T. F.; Liang, T. F. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 2016, 11, 426–431.

[28]

Li, P.; Li, Z. Y.; Yang, J. L. Dominant kinetic pathways of graphene growth in chemical vapor deposition: The role of hydrogen. J. Phys. Chem. C 2017, 121, 25949–25955.

[29]

Popov, I.; Bügel, P.; Kozlowska, M.; Fink, K.; Studt, F.; Sharapa, D. I. Analytical model of CVD growth of graphene on Cu(111) surface. Nanomaterials (Basel) 2022, 12, 2963.

[30]

Niu, T. C.; Zhou, M.; Zhang, J. L.; Feng, Y. P.; Chen, W. Growth Intermediates for CVD Graphene on Cu(111): Carbon clusters and defective graphene. J. Am. Chem. Soc. 2013, 135, 8409–8414.

[31]

Cheng, T.; Liu, Z. R.; Liu, Z. F.; Ding, F. The mechanism of graphene vapor-solid growth on insulating substrates. ACS Nano 2021, 15, 7399–7408.

[32]

Li, Z. C.; Zhang, W. H.; Fan, X. D.; Wu, P.; Zeng, C. G.; Li, Z. Y.; Zhai, X. F.; Yang, J. L.; Hou, J. G. Graphene thickness control via gas-phase dynamics in chemical vapor deposition. J. Phys. Chem. C 2012, 116, 10557–10562.

[33]

Li, G.; Huang, S. H.; Li, Z. Y. Gas-phase dynamics in graphene growth by chemical vapour deposition. Phys. Chem. Chem. Phys. 2015, 17, 22832–22836.

[34]

Wang, M. H.; Luo, D.; Wang, B.; Ruoff, R. S. Synthesis of large-area single-crystal graphene. Trends Chem. 2021, 3, 15–33.

[35]

Jia, K. C.; Ci, H. N.; Zhang, J. C.; Sun, Z. T.; Ma, Z. T.; Zhu, Y. S.; Liu, S. N.; Liu, J. L.; Sun, L. Z.; Liu, X. T. et al. Superclean growth of graphene using a cold-wall chemical vapor deposition approach. Angew. Chem., Int. Ed. 2020, 59, 17214–17218.

[36]

Sun, L. Z.; Lin, L.; Wang, Z. H.; Rui, D. R.; Yu, Z. W.; Zhang, J. C.; Li, Y. L. Z.; Liu, X. T.; Jia, K. C.; Wang, K. X. et al. A force-engineered lint roller for superclean graphene. Adv. Mater. 2019, 31, 1902978.

[37]

Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 2011, 5, 6069–6076.

[38]

Gelb, A.; Cardillo, M. Classical trajectory studies of hydrogen dissociation on a Cu(100) surface. Surf. Sci. 1976, 59, 128–140.

[39]

Gelb, A.; Cardillo, M. J. Classical trajectory study of the dissociation of hydrogen on copper single crystals: II Cu(100) and Cu(110). Surf. Sci., 64, 197–208

[40]

Vlassiouk, I.; Smirnov, S.; Surwade, S. P.; Regmi, M.; Srivastava, N.; Feenstra, R.; Eres, G.; Parish, C.; Lavrik, N.; Datskos, P.et al. Graphene nucleation density on copper: Fundamental role of background pressure. J. Phys. Chem. C 2013, 117, 18919.

[41]

Vlassiouk, I.; Smirnov, S.; Ivanov, I.; Fulvio, P. F.; Dai, S.; Meyer, H.; Chi, M. F.; Hensley, D.; Datskos, P.; Lavrik, N. V. Electrical and thermal conductivity of low temperature CVD graphene: The effect of disorder. Nanotechnology 2011, 22, 275716.

[42]

Qi, M.; Ren, Z. Y.; Jiao, Y.; Zhou, Y. X.; Xu, X. L.; Li, W. L.; Li, J. Y.; Zheng, X. L.; Bai, J. T. Hydrogen kinetics on scalable graphene growth by atmospheric pressure chemical vapor deposition with acetylene. J. Phys. Chem. C 2013, 117, 14348–14353.

[43]

Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Jin, C. H.; Suenaga, K.; Chiu, P. W. Graphene annealing: How clean can it be. Nano Lett. 2012, 12, 414–419.

[44]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[45]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

[46]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[47]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[48]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[49]

Kühne, T. D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V. V.; Seewald, P.; Stein, F.; Laino, T.; Khaliullin, R. Z.; Schütt, O.; Schiffmann, F. et al. CP2K: An electronic structure and molecular dynamics software package-Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020, 152, 194103.

[50]

Mills, G.; Jónsson, H.; Schenter, G. K. Reversible work transition state theory: Application to dissociative adsorption of hydrogen. Surf. Sci. 1995, 324, 305–337.

[51]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[52]

Zhang, J. C.; Lin, L.; Sun, L. Z.; Huang, Y. C.; Koh, A. L.; Dang, W. H.; Yin, J. B.; Wang, M. Z.; Tan, C. W.; Li, T. R. et al. Clean transfer of large graphene single crystals for high-intactness suspended membranes and liquid cells. Adv. Mater. 2017, 29, 1700639.

File
12274_2023_6260_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 August 2023
Revised: 10 October 2023
Accepted: 11 October 2023
Published: 01 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. T2188101, 52021006, and 52072042), the National Natural Science Foundation of China Youth Scientist Fund (Nos. 22105006 and 52202033), Beijing National Laboratory for Molecular Science (No. BNLMS-CXTD-202001), the National Key R&D Program of China (Nos. 2016YFA0200101, 2016YFA0200103, and 2018YFA0703502), and the Beijing Municipal Science & Technology Commission (Nos. Z191100000819005, Z191100000819007, and Z201100008720005).

Return