Journal Home > Volume 17 , Issue 5

Sustainable, environmentally friendly and low-energy desalination materials have important research value for the increasing demand of freshwater year by year. However, it is a huge challenge to maintain high heat energy transfer efficiency without reducing the heat conversion capacity of specific solar photothermal conversion materials. Moreover, their efficiency and durability are greatly limited by the problems of seawater corrosion, oil, and bacteria pollutions. Till now, no related work has been reported to solve all the aforementioned problems via a simple four-birds-with-one-stone strategy. Herein, a class of multifunctional porous photothermal silver (Ag) modified Ti foams (Tf-TA/Ag series materials) is prepared for the development of advanced solar water evaporation devices, and provides alternative materials for alleviating freshwater crisis and treating sewage. The oil contact angle (OCA) changes from 41° to 180°, which significantly reduces the adhesion of oil. In addition, Tf-TA2/Ag sample also shows an excellent and sustained antibacterial effect, which maintains above 99.9% of antibacterial rate after repeated 5 times. The surface temperature of the Tf-TA2/Ag sample reaches 52.5 °C after simulated sun irradiation for 20 min, which is significantly higher than that of the contact groups (water: 36.4 °C, Ti foam: 38.2 °C and Tf-TA2: 40.9 °C). The capacity of seawater evaporation and salt removal is enhanced due to the excellent photothermal properties, low reflectance, and uniform heat dissipation pores. The water production efficiency of Tf-TA2/Ag sample is 1.41 kg·m−2·h−1 in artificial seawater and 0.76 kg·m−2·h−1 in oily sewage under simulated sun irradiation. Furthermore, the hydrophilic and oleophobic properties of Tf-TA2/Ag are critical to extracting water from oil/water mixture in diverse water environments. Ultimately, this four-birds-with-one-stone approach provides a new perspective for the improvement of solar seawater desalination performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Four-birds-with-one-stone: A multifunctional Ti-based material for solar-driven water evaporation

Show Author's information Yannan Li,§Yaning Sun,§Dan ZhangYu XueJie WangNan ZhangJun WangJiangwei ZhangYan Zhao( )Jun-Jie Liu( )
School of Physical Science and Technology, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China

§ Yannan Li and Yaning Sun contributed equally to this work.

Abstract

Sustainable, environmentally friendly and low-energy desalination materials have important research value for the increasing demand of freshwater year by year. However, it is a huge challenge to maintain high heat energy transfer efficiency without reducing the heat conversion capacity of specific solar photothermal conversion materials. Moreover, their efficiency and durability are greatly limited by the problems of seawater corrosion, oil, and bacteria pollutions. Till now, no related work has been reported to solve all the aforementioned problems via a simple four-birds-with-one-stone strategy. Herein, a class of multifunctional porous photothermal silver (Ag) modified Ti foams (Tf-TA/Ag series materials) is prepared for the development of advanced solar water evaporation devices, and provides alternative materials for alleviating freshwater crisis and treating sewage. The oil contact angle (OCA) changes from 41° to 180°, which significantly reduces the adhesion of oil. In addition, Tf-TA2/Ag sample also shows an excellent and sustained antibacterial effect, which maintains above 99.9% of antibacterial rate after repeated 5 times. The surface temperature of the Tf-TA2/Ag sample reaches 52.5 °C after simulated sun irradiation for 20 min, which is significantly higher than that of the contact groups (water: 36.4 °C, Ti foam: 38.2 °C and Tf-TA2: 40.9 °C). The capacity of seawater evaporation and salt removal is enhanced due to the excellent photothermal properties, low reflectance, and uniform heat dissipation pores. The water production efficiency of Tf-TA2/Ag sample is 1.41 kg·m−2·h−1 in artificial seawater and 0.76 kg·m−2·h−1 in oily sewage under simulated sun irradiation. Furthermore, the hydrophilic and oleophobic properties of Tf-TA2/Ag are critical to extracting water from oil/water mixture in diverse water environments. Ultimately, this four-birds-with-one-stone approach provides a new perspective for the improvement of solar seawater desalination performance.

Keywords: four-birds-with-one-stone, photothermal material, antibacterial material, antifouling property

References(51)

[1]

Ai, C.; Zhao, L.; Han, M. Y.; Liu, S. Y.; Wang, Z. Y. Mitigating water imbalance between coastal and inland areas through seawater desalination within China. J. Cleaner Prod. 2022, 371, 133418.

[2]

Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717.

[3]

Zhu, Z. F.; Peng, D. Z.; Wang, H. R. Seawater desalination in China: An overview. J. Water Reuse Desalin. 2019, 9, 115–132.

[4]

Lopez, A. M.; Williams, M.; Paiva, M.; Demydov, D.; Do, T. D.; Fairey, J. L.; Lin, Y. J.; Hestekin, J. A. Potential of electrodialytic techniques in brackish desalination and recovery of industrial process water for reuse. Desalination 2017, 409, 108–114.

[5]

Mir, N.; Bicer, Y. Integration of electrodialysis with renewable energy sources for sustainable freshwater production: A review. J. Environ. Manag. 2021, 289, 112496.

[6]

Shah, K. M.; Billinge, I. H.; Chen, X.; Fan, H. Q.; Huang, Y. X.; Winton, R. K.; Yip, N. Y. Drivers, challenges, and emerging technologies for desalination of high-salinity brines: A critical review. Desalination 2022, 538, 115827.

[7]

Xu, H. Y.; Ji, X.; Wang, L. L.; Huang, J. X.; Han, J. Y.; Wang, Y. Performance study on a small-scale photovoltaic electrodialysis system for desalination. Renew. Energy 2020, 154, 1008–1013.

[8]

Ahmed, F. E.; Hashaikeh, R.; Hilal, N. Solar powered desalination—Technology, energy and future outlook. Desalination 2019, 453, 54–76.

[9]

Alnaimat, F.; Ziauddin, M.; Mathew, B. A review of recent advances in humidification and dehumidification desalination technologies using solar energy. Desalination 2021, 499, 114860.

[10]

Anand, B.; Shankar, R.; Murugavelh, S.; Rivera, W.; Prasad, K. M.; Nagarajan, R. A review on solar photovoltaic thermal integrated desalination technologies. Renew. Sustainable Energy Rev. 2021, 141, 110787.

[11]

Ghaffour, N.; Reddy, V. K.; Abu-Arabi, M. Technology development and application of solar energy in desalination: MEDRC contribution. Renew. Sustainable. Energy Rev. 2011, 15, 4410–4415.

[12]

Li, C. N.; Goswami, Y.; Stefanakos, E. Solar assisted sea water desalination: A review. Renew. Sustainable Energy Rev. 2013, 19, 136–163.

[13]

Guo, X. X.; Gao, H.; Wang, S. Y.; Yin, L. F.; Dai, Y. R. Scalable, flexible and reusable graphene oxide-functionalized electrospun nanofibrous membrane for solar photothermal desalination. Desalination 2020, 488, 114535.

[14]

Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29, 1603730.

[15]

Xia, W. T.; Cheng, H. Y.; Zhou, S. Q.; Yu, N. N.; Hu, H. Synergy of copper selenide/MXenes composite with enhanced solar-driven water evaporation and seawater desalination. J. Colloid Interface Sci. 2022, 625, 289–296.

[16]

Zhang, Q.; Xu, W. L.; Wang, X. B. Carbon nanocomposites with high photothermal conversion efficiency. Sci. China Mater. 2018, 61, 905–914.

[17]

Cheng, P. F.; Wang, H. L.; Mueller, B.; Müller, J.; Wang, D.; Schaaf, P. Photo-thermoelectric conversion using black silicon with enhanced light trapping performance far beyond the band edge absorption. ACS Appl. Mater. Interfaces 2021, 13, 1818–1826.

[18]

Cheng, P. F.; Wang, H. L.; Wang, H. G.; van Aken, P. A.; Wang, D.; Schaaf, P. High-efficiency photothermal water evaporation using broadband solar energy harvesting by ultrablack silicon structures. Adv. Energy Sustain. Res. 2021, 2, 2000083.

[19]

Cui, R. R.; Wei, J. L.; Du, C.; Sun, S. S.; Zhou, C.; Xue, H. G.; Yang, S. Y. Engineering trace AuNPs on monodispersed carbonized organosilica microspheres drives highly efficient and low-cost solar water purification. J. Mater. Chem. A 2020, 8, 13311–13319.

[20]

Ding, S. P.; Zhang, T. H.; Wu, M. M.; Wang, X. F. Photothermal dual-layer hydrophilic/hydrophobic composite nanofibrous membrane for efficient solar-driven membrane distillation. J. Membr. Sci. 2023, 680, 121740.

[21]

Li, L.; Zang, L. L.; Zhang, S. C.; Dou, T. W.; Han, X. N.; Zhao, D. M.; Zhang, Y.; Sun, L. G.; Zhang, Y. H. GO/CNT-silica Janus nanofibrous membrane for solar-driven interfacial steam generation and desalination. J. Taiwan Inst. Chem. Eng. 2020, 111, 191–197.

[22]

Mu, P.; Zhang, Z.; Bai, W.; He, J. X.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation. Adv. Energy Mater. 2019, 9, 1802158.

[23]

Wang, X. Z.; He, Y. R.; Liu, X.; Shi, L.; Zhu, J. Q. Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Solar Energy 2017, 157, 35–46.

[24]

Wang, Z. F.; Niu, J.; Wang, J. X.; Zhang, Y. C.; Wu, G. Q.; Liu, X. Y.; Liu, Q. Rational design of photothermal and anti-bacterial foam with macroporous structure for efficient desalination of water. Front. Chem. 2022, 10, 912489.

[25]

Zhou, Q. X.; Li, H.; Li, D. D.; Wang, B. B.; Wang, H.; Bai, J. B.; Ma, S. H.; Wang, G. A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation. J. Colloid Interface Sci. 2021, 592, 77–86.

[26]

Liu, J. Y.; Wang, S. P.; Yang, J. M.; Liao, J. J.; Lu, M.; Pan, H. J.; An, L. ZnCl2 activated electrospun carbon nanofiber for capacitive desalination. Desalination 2014, 344, 446–453.

[27]

Suss, M. E.; Baumann, T. F.; Bourcier, W. L.; Spadaccini, C. M.; Rose, K. A.; Santiago, J. G.; Stadermann, M. Capacitive desalination with flow-through electrodes. Energy Environ. Sci. 2012, 5, 9511–9519.

[28]

Yi, L. C.; Qi, D. P.; Shao, P.; Lei, C. J.; Hou, Y.; Cai, P. W.; Wang, G. X.; Chen, X. D.; Wen, Z. H. Hollow black TiAlO x nanocomposites for solar thermal desalination. Nanoscale 2019, 11, 9958–9968.

[29]

Zhang, B. P.; Gu, Q. F.; Wang, C.; Gao, Q. L.; Guo, J. X.; Wong, P. W.; Liu, C. T.; An, A. K. Self-assembled hydrophobic/hydrophilic porphyrin-Ti3C2T x MXene Janus membrane for dual-functional enabled photothermal desalination. ACS Appl. Mater. Interfaces 2021, 13, 3762–3770.

[30]

Liu, X. J.; Tian, Y. P.; Chen, F. Q.; Mu, Y.; Caratenuto, A.; Minus, M. L.; Zheng, Y. A waterbomb origami tower for convertible photothermal evaporation. J. Mater. Chem. A 2022, 10, 18657–18670.

[31]

Liu, H. J.; Gu, J. T.; Liu, Y.; Yang, L.; Wang, L. M.; Yu, J. Y.; Qin, X. H. Reconfiguration and self-healing integrated Janus electrospinning nanofiber membranes for durable seawater desalination. Nano Res. 2023, 16, 489–495.

[32]

Zhang, M. R.; Xu, F.; Liu, W. J.; Hou, Y. Q.; Su, L. Y.; Zhang, X.; Zhang, R. H.; Zhou, L. J.; Yan, X. M.; Wang, M. et al. Antibacterial evaporator based on reduced graphene oxide/polypyrrole aerogel for solar-driven desalination. Nano Res. 2023, 16, 4219–4224.

[33]

Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2T x MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

[34]

Kalogirou, O.; Angelakeris, M.; Dendrinou-Samara, C.; Mourdikoudis, S.; Simeonidis, K.; Gloystein, K.; Vilalta-Clemente, A.; Tsiaoussis, I. The effect of composition and structural ordering on the magnetism of FePt nanoparticles. J. Nanosci. Nanotechnol. 2010, 10, 6017–6023.

[35]

Chumanov, I. V.; Matveeva, M. A. Simulation of phase composition of Fe-Cr-Ni-Ti alloy using the example of ZI 130 steel for enhancing corrosion resistance. Prot. Met. Phys. Chem. Surf. 2018, 54, 1233–1235.

[36]

Kaplan, M. A.; Ivannikov, A. Y.; Konushkin, S. V.; Nasakina, E. O.; Baikin, A. S.; Kartabaeva, B. B.; Gorbenko, A. D.; Kolmakov, A. G.; Sevostyanov, M. A. Study of the structure, mechanical characteristics, and antibacterial properties of corrosion-resistant steel alloyed with silver and titanium. Dokl. Chem. 2022, 502, 37–44.

[37]

Sukuroglu, E. E.; Sukuroglu, S.; Akar, K.; Totik, Y.; Efeoglu, I.; Arslan, E. The effect of TiO2 coating on biological NiTi alloys after micro-arc oxidation treatment for corrosion resistance. Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 2017, 231, 699–704.

[38]

Hou, J. W.; Liu, S. Y.; Ning, Y. B.; Wang, Y. F.; Yang, Y.; Wang, Q. Y. Rational design of Au-H2Ti2O5 nanowires on Ti foam for solar-driven seawater evaporation enhancement. J. Alloys Compd. 2021, 851, 156879.

[39]

Wang, Q. Y.; Qiu, L. Y.; Jia, Y.; Chang, Y.; Tan, X. Y.; Yang, L. X.; Chen, H. Design of carbon loaded porous TiO2 foams by the hydrothermal-assisted annealing carbonization of fruit residue for solar-driven water evaporation. Solar Energy Mater. Solar Cells 2019, 202, 110116.

[40]

Chen, N.; Chen, S. A.; Yin, H.; Zhu, B. F.; Liu, M. Y.; Yang, Y. M.; Zhang, Z.; Wei, G. Y. Durable underwater super-oleophobic/super-hydrophilic conductive polymer membrane for oil–water separation. Water Res. 2023, 243, 120333.

[41]

Qi, H. Y.; Hu, J.; Ju, Y. Y.; Jiang, H. Y.; Liu, M. An experimental study on the influence of the fractal characteristics of X80 steel surface morphology on water ring stability. Processes 2023, 11, 2150.

[42]

Ross, H.; Nguyen, H.; Nguyen, B.; Foster, A.; Salud, J.; Patino, M.; Gan, Y. X.; Li, M. H. Filter modified with hydrophilic and oleophobic coating for efficient and affordable oil/water separation. Separations 2022, 9, 269.

[43]

Fujiwara, M.; Yamauchi, S. Energy-efficient compact multi-stage solar desalination by heat recovery with siphon mechanism for seawater feeding. Desalin. Water Treat. 2022, 266, 1–12.

[44]

Kim, J.; Hong, S. Pilot study of emerging low-energy seawater reverse osmosis desalination technologies for high-salinity, high-temperature, and high-turbidity seawater. Desalination 2023, 565, 116871.

[45]

López, Á. H.; Camacho-Espino, J.; Peñate Suárez, B.; Plasencia, G. N. M. Energy efficiency optimization in onboard SWRO desalination plants based on a genetic neuro-fuzzy system. Appl. Sci. 2023, 13, 3392.

[46]

Zhang, X. Y.; Zhou, H. J.; He, Z.; Zhang, H. M.; Zhao, H. J. Flow-electrode capacitive deionization utilizing three-dimensional foam current collector for real seawater desalination. Water Res. 2022, 220, 118642.

[47]

Yu, B.; Wang, Y.; Zhang, Y.; Zhang, Z. H. Nanoporous black silver film with high porosity for efficient solar steam generation. Nano Res. 2023, 16, 5610–5618.

[48]

Gao, T.; Wu, X.; Owens, G.; Xu, H.-L. A cobalt oxide@polydopamine-reduced graphene oxide-based 3D photothermal evaporator for highly efficient solar steam generation. Tungsten 2020, 2, 423–432

[49]

Chen, H.; Xie, X.; Wang, Y.; Wang, Y.; Ye, Y. Understanding corrosion and tribology behaviors of VN and VCN coatings in seawater. Tungsten 2019, 1, 110–119

[50]

Xie, Z. J.; Duo, Y. H.; Lin, Z. T.; Fan, T. J.; Xing, C. Y.; Yu, L.; Wang, R. H.; Qiu, M.; Zhang, Y. P.; Zhao, Y. H. et al. The rise of 2D photothermal materials beyond graphene for clean water production. Adv. Sci. 2020, 7, 1902236.

[51]

Xin, Y.; Yu, K. F.; Zhang, L. T.; Yang, Y. R.; Yuan, H. B.; Li, H. L.; Wang, L. B.; Zeng, J. Copper-based plasmonic catalysis: Recent advances and future perspectives. Adv. Mater. 2021, 33, 2008145.

Video
12274_2023_6259_MOESM1_ESM.mp4
12274_2023_6259_MOESM2_ESM.mp4
12274_2023_6259_MOESM3_ESM.mp4
12274_2023_6259_MOESM4_ESM.mp4
12274_2023_6259_MOESM5_ESM.mp4
12274_2023_6259_MOESM6_ESM.mp4
File
12274_2023_6259_MOESM7_ESM.pdf (730.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 August 2023
Revised: 29 September 2023
Accepted: 10 October 2023
Published: 24 November 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 52263032, 62062053, 22375109, and 52061034), the Natural Science Foundation of Inner Mongolia Province (Nos. 2020BS01004 and 2022QN03012), Young Science and Technology Talent Program of Inner Mongolia Province (No. NJYT23001) and a Talent Development Fund of Inner Mongolia Province.

Return