Journal Home > Volume 17 , Issue 5

Metal-organic frameworks (MOFs) have shown significant potential as photocatalysts. It has been widely assumed that all catalytic active sites within MOFs are functional in photocatalytic reactions but for a three-dimensional MOF, whether the internal catalytic active sites can effectively absorb light and actively contribute to photocatalytic reactions remains to be explored. In this context, we synthesized a two-dimensional nanosheet MOF (2D-MOF) and a three-dimensional bulk MOF (3D-MOF) composed of Zr6 clusters and tetracarboxylic porphyrin (TCPP) by the approach described in the literature. Re(bpy)(CO)3Cl (bpy = 2,2’-bipyridine), which has remarkable CO2 photoreduction ability, was introduced to the two MOFs to create two new photocatalysts 2D-MOF-Re and 3D-MOF-Re, respectively. Photocatalytic CO2 reduction experiments show that based on the equal number of catalytic active sites, the CO turnover number (TON) of 2D-MOF-Re reaches 27.8 in 6 h, which is 50 times that of 3D-MOF-Re. The result shows that certain catalytic active sites inside the bulk MOF are inactive due to the inability to absorb light. This study illuminates the potential of the dimensional reduction approach in the design of photocatalysts to exploit the capabilities fully.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dimensional reduction enhances photocatalytic carbon dioxide reduction performance of metal-organic frameworks

Show Author's information Kaiyue MaJixin LiJinlu LiuChunguang LiZhan Shi( )Shouhua Feng
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China

Abstract

Metal-organic frameworks (MOFs) have shown significant potential as photocatalysts. It has been widely assumed that all catalytic active sites within MOFs are functional in photocatalytic reactions but for a three-dimensional MOF, whether the internal catalytic active sites can effectively absorb light and actively contribute to photocatalytic reactions remains to be explored. In this context, we synthesized a two-dimensional nanosheet MOF (2D-MOF) and a three-dimensional bulk MOF (3D-MOF) composed of Zr6 clusters and tetracarboxylic porphyrin (TCPP) by the approach described in the literature. Re(bpy)(CO)3Cl (bpy = 2,2’-bipyridine), which has remarkable CO2 photoreduction ability, was introduced to the two MOFs to create two new photocatalysts 2D-MOF-Re and 3D-MOF-Re, respectively. Photocatalytic CO2 reduction experiments show that based on the equal number of catalytic active sites, the CO turnover number (TON) of 2D-MOF-Re reaches 27.8 in 6 h, which is 50 times that of 3D-MOF-Re. The result shows that certain catalytic active sites inside the bulk MOF are inactive due to the inability to absorb light. This study illuminates the potential of the dimensional reduction approach in the design of photocatalysts to exploit the capabilities fully.

Keywords: nanosheets, photocatalysis, CO2 reduction, light absorption, metal-organic frameworks (MOFs)

References(57)

[1]

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

[2]

Wei, Y. M.; Chen, K. Y.; Kang, J. N.; Chen, W. M.; Wang, X. Y.; Zhang, X. Y. Policy and management of carbon peaking and carbon neutrality: A literature review. Engineering 2022, 14, 52–63.

[3]

Yang, Y.; Chu, X. Y.; Zhang, H. Y.; Zhang, R.; Liu, Y. H.; Zhang, F. M.; Lu, M.; Yang, Z. D.; Lan, Y. Q. Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting. Nat. Commun. 2023, 14, 593.

[4]

Marshall, J. Solar energy: Springtime for the artificial leaf. Nature 2014, 510, 22–24.

[5]

Zhang, J. Z.; Reisner, E. Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nat. Rev. Chem. 2019, 4, 6–21.

[6]

Yang, Y.; Lu, Y.; Zhang, H. Y.; Wang, Y.; Tang, H. L.; Sun, X. J.; Zhang, G. L.; Zhang, F. M. Decoration of active sites in covalent-organic framework: An effective strategy of building efficient photocatalysis for CO2 reduction. ACS Sustainable Chem. Eng. 2021, 9, 13376–13384.

[7]

Yang, Y.; Zhang, H. Y.; Wang, Y.; Shao, L. H.; Fang, L.; Dong, H.; Lu, M.; Dong, L. Z.; Lan, Y. Q.; Zhang, F. M. Integrating enrichment, reduction, and oxidation sites in one system for artificial photosynthetic diluted CO2 reduction. Adv. Mater. 2023, 35, 2304170.

[8]

Sun, K.; Qian, Y. Y.; Jiang, H. L. Metal-organic frameworks for photocatalytic water splitting and CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202217565.

[9]

Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828.

[10]

Li, X. F.; Zhu, Q. L. MOF-based materials for photo- and electrocatalytic CO2 reduction. EnergyChem 2020, 2, 100033.

[11]

Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

[12]

Dao, X. Y.; Sun, W. Y. Single- and mixed-metal-organic framework photocatalysts for carbon dioxide reduction. Inorg. Chem. Front. 2021, 8, 3178–3204.

[13]

Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2020, 14, 2037–2052.

[14]

Wang, D. K.; Huang, R. K.; Liu, W. J.; Sun, D. R.; Li, Z. H. Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 2014, 4, 4254–4260.

[15]

Xu, H. Q.; Hu, J. H.; Wang, D. K.; Li, Z. H.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron–hole separation via electron trap states. J. Am. Chem. Soc. 2015, 137, 13440–13443.

[16]

Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310–14314.

[17]

Wang, H. N.; Sun, H. X.; Fu, Y. M.; Meng, X.; Zou, Y. H.; He, Y. O.; Yang, R. G. Varied proton conductivity and photoreduction CO2 performance of isostructural heterometallic cluster based metal-organic frameworks. Inorg. Chem. Front. 2021, 8, 4062–4071.

[18]

Dong, H.; Zhang, X.; Lu, Y.; Yang, Y.; Zhang, Y. P.; Tang, H. L.; Zhang, F. M.; Yang, Z. D.; Sun, X. J.; Feng, Y. J. Regulation of metal ions in smart metal-cluster nodes of metal-organic frameworks with open metal sites for improved photocatalytic CO2 reduction reaction. Appl. Catal. B Environ. 2020, 276, 119173.

[19]

Dong, L. Z.; Zhang, L.; Liu, J.; Huang, Q.; Lu, M.; Ji, W. X.; Lan, Y. Q. Stable heterometallic cluster-based organic framework catalysts for artificial photosynthesis. Angew. Chem., Int. Ed. 2020, 59, 2659–2663.

[20]

Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.; Fu, X. Z.; Li, Z. H. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem., Int. Ed. 2012, 51, 3364–3367.

[21]

Das, S.; Pérez-Ramírez, J.; Gong, J. L.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937–3004.

[22]

Wu, Q. J.; Liang, J.; Huang, Y. B.; Cao, R. Thermo-, electro-, and photocatalytic CO2 conversion to value-added products over porous metal/covalent organic frameworks. Acc. Chem. Res. 2022, 55, 2978–2997.

[23]

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

[24]

Zhang, K.; Fang, Z. B.; Huang, Q. Q.; Zhang, A. A.; Li, J. L.; Li, J. Y.; Zhang, Y.; Zhang, T.; Cao, R. Exfoliation of a two-dimensional metal-organic framework for enhanced photocatalytic CO2 reduction. Inorg. Chem. 2023, 62, 8472–8477.

[25]

Luo, T. K.; Fan, Y. J.; Mao, J. M.; Yuan, E.; You, E.; Xu, Z. W.; Lin, W. B. Dimensional reduction enhances photodynamic therapy of metal-organic nanophotosensitizers. J. Am. Chem. Soc. 2022, 144, 5241–5246.

[26]

Fei, H. H.; Sampson, M. D.; Lee, Y.; Kubiak, C. P.; Cohen, S. M. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal-organic framework. Inorg. Chem. 2015, 54, 6821–6828.

[27]

Huang, N. Y.; He, H.; Liu, S. J.; Zhu, H. L.; Li, Y. J.; Xu, J.; Huang, J. R.; Wang, X.; Liao, P. Q.; Chen, X. M. Electrostatic attraction-driven assembly of a metal-organic framework with a photosensitizer boosts photocatalytic CO2 reduction to CO. J. Am. Chem. Soc. 2021, 143, 17424–17430.

[28]

Zhuo, T. C.; Song, Y.; Zhuang, G. L.; Chang, L. P.; Yao, S.; Zhang, W.; Wang, Y.; Wang, P.; Lin, W. B.; Lu, T. B. et al. H-bond-mediated selectivity control of formate versus CO during CO2 photoreduction with two cooperative Cu/X sites. J. Am. Chem. Soc. 2021, 143, 6114–6122.

[29]

Dong, M.; Tian, Y.; Gu, J. X.; Wang, X. H.; Wang, L. X.; Hou, B. S.; Yousuf, A.; Sun, C. Y.; Wu, J.; Kang, Z. H. et al. Direct CO2 photoreduction from flue gas by synergistic catalysis of a nickel metal-organic framework and a ruthenium polypyridyl complex. Inorg. Chem. Front. 2023, 10, 1279–1285.

[30]

Chang, Q.; Meng, X. Y.; Ruan, W. J.; Feng, Y. Q.; Li, R.; Zhu, J. Y.; Ding, Y.; Lv, H. J.; Wang, W.; Chen, G. Y. et al. Metal-organic cages with {SiW9Ni4} polyoxotungstate nodes. Angew. Chem., Int. Ed. 2022, 61, e202117637.

[31]

Lee, H. S.; Jee, S.; Kim, R.; Bui, H. T.; Kim, B.; Kim, J. K.; Park, K. S.; Choi, W.; Kim, W.; Choi, K. M. A highly active, robust photocatalyst heterogenized in discrete cages of metal-organic polyhedra for CO2 reduction. Energy Environ. Sci. 2020, 13, 519–526.

[32]

Ghosh, A. C.; Legrand, A.; Rajapaksha, R.; Craig, G. A.; Sassoye, C.; Balázs, G.; Farrusseng, D.; Furukawa, S.; Canivet, J.; Wisser, F. M. Rhodium-based metal-organic polyhedra assemblies for selective CO2 photoreduction. J. Am. Chem. Soc. 2022, 144, 3626–3636.

[33]

Cao, L. Y.; Wang, C. Metal-organic layers for electrocatalysis and photocatalysis. ACS Cent. Sci. 2020, 6, 2149–2158.

[34]

Guo, F.; Yang, M.; Li, R. X.; He, Z. Z.; Wang, Y.; Sun, W. Y. Nanosheet-engineered NH2-MIL-125 with highly active facets for enhanced solar CO2 reduction. ACS Catal. 2022, 12, 9486–9493.

[35]

Huang, N. Y.; Chen, Z. Y.; Hu, F. L.; Shang, C. Y.; Wang, W. J.; Huang, J. R.; Zhou, C.; Li, L.; Xu, Q. Large-scale synthesis of low-cost 2D metal-organic frameworks for highly selective photocatalytic CO2 reduction. Nano Res. 2023, 16, 7756–7760.

[36]

Li, T.; Huang, H. W.; Wang, S. B.; Mi, Y.; Zhang, Y. H. Recent advances in 2D semiconductor nanomaterials for photocatalytic CO2 reduction. Nano Res. 2023, 16, 8542–8569.

[37]

Kent, C. A.; Liu, D. M.; Ma, L. Q.; Papanikolas, J. M.; Meyer, T. J.; Lin, W. B. Light harvesting in microscale metal-organic frameworks by energy migration and interfacial electron transfer quenching. J. Am. Chem. Soc. 2011, 133, 12940–12943.

[38]

Lan, G. X.; Li, Z.; Veroneau, S. S.; Zhu, Y. Y.; Xu, Z. W.; Wang, C.; Lin, W. B. Photosensitizing metal-organic layers for efficient sunlight-driven carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 12369–12373.

[39]

Feng, X. Y.; Pi, Y. H.; Song, Y.; Brzezinski, C.; Xu, Z. W.; Li, Z.; Lin, W. B. Metal-organic frameworks significantly enhance photocatalytic hydrogen evolution and CO2 reduction with earth-abundant copper photosensitizers. J. Am. Chem. Soc. 2020, 142, 690–695.

[40]

Wang, C.; Xie, Z. G.; deKrafft, K. E.; Lin, W. B. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 2011, 133, 13445–13454.

[41]
Song, D. M.; Xu, W. H.; Li, J.; Zhao, J. L.; Shi, Q.; Li, F.; Sun, X. Z.; Wang, N. “All-in-one” covalent organic framework for photocatalytic CO2 reduction. Chin. J. Catal. 2022 , 43, 2425–2433.
[42]

Jiang, Y. L.; Fei, H. H. N-heterocyclic carbene-ligated metal complexes and clusters for photocatalytic CO2 reduction. Inorg. Chem. Front. 2023, 10, 4313–4321.

[43]

Cai, P. Y.; Xu, M.; Meng, S. S.; Lin, Z. F.; Yan, T. H.; Drake, H. F.; Zhang, P.; Pang, J. D.; Gu, Z. Y.; Zhou, H. C. Precise spatial-designed metal-organic-framework nanosheets for efficient energy transfer and photocatalysis. Angew. Chem., Int. Ed. 2021, 60, 27258–27263.

[44]

Feng, D. W.; Chung, W. C.; Wei, Z. W.; Gu, Z. Y.; Jiang, H. L.; Chen, Y. P.; Darensbourg, D. J.; Zhou, H. C. Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. J. Am. Chem. Soc. 2013, 135, 17105–17110.

[45]

Deria, P.; Gómez-Gualdrón, D. A.; Hod, I.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. Framework-topology-dependent catalytic activity of zirconium-based (porphinato)zinc(II) MOFs. J. Am. Chem. Soc. 2016, 138, 14449–14457.

[46]

Holder, C. F.; Schaak, R. E. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 2019, 13, 7359–7365.

[47]

Xu, M.; Meng, S. S.; Cai, P. Y.; Tang, W. Q.; Yin, Y. D.; Powell, J. A.; Zhou, H. C.; Gu, Z. Y. Modulating the stacking modes of nanosized metal-organic frameworks by morphology engineering for isomer separation. Chem. Sci. 2021, 12, 4104–4110.

[48]

Li, J. X.; Ma, K. Y.; He, Y. Q.; Ren, S. Y.; Li, C. G.; Chen, X. B.; Shi, Z.; Feng, S. H. Porous organic polymer enriched in Re functional units and Lewis base sites for efficient CO2 photoreduction. Catal. Sci. Technol. 2021, 11, 7300–7306.

[49]

Yang, S. Z.; Hu, W. H.; Zhang, X.; He, P. L.; Pattengale, B.; Liu, C. M.; Cendejas, M.; Hermans, I.; Zhang, X. Y.; Zhang, J. et al. 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction. J. Am. Chem. Soc. 2018, 140, 14614–14618.

[50]

Yu, B. Q.; Li, L. J.; Liu, S. S.; Wang, H. L.; Liu, H. Y.; Lin, C. X.; Liu, C.; Wu, H.; Zhou, W.; Li, X. Y. et al. Robust biological hydrogen-bonded organic framework with post-functionalized rhenium(I) sites for efficient heterogeneous visible-light-driven CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 8983–8989.

[51]

Cheng, Y. Z.; Ji, W. Y.; Hao, P. Y.; Qi, X. H.; Wu, X. X.; Dou, X. M.; Bian, X. Y.; Jiang, D.; Li, F. T.; Liu, X. F. et al. A fully conjugated covalent organic framework with oxidative and reductive sites for photocatalytic carbon dioxide reduction with water. Angew. Chem., Int. Ed. 2023, 62, e202308523.

[52]

Fu, Z. W.; Wang, X. Y.; Gardner, A. M.; Wang, X.; Chong, S. Y.; Neri, G.; Cowan, A. J.; Liu, L. J.; Li, X. B.; Vogel, A. et al. A stable covalent organic framework for photocatalytic carbon dioxide reduction. Chem. Sci. 2020, 11, 543–550.

[53]

Li, N.; Liu, J. J.; Sun, J. W.; Dong, B. X.; Dong, L. Z.; Yao, S. J.; Xin, Z. F.; Li, S. L.; Lan, Y. Q. Calix[8]arene-constructed stable polyoxo-titanium clusters for efficient CO2 photoreduction. Green Chem. 2020, 22, 5325–5332.

[54]

Liu, C.; Dubois, K. D.; Louis, M. E.; Vorushilov, A. S.; Li, G. H. Photocatalytic CO2 reduction and surface immobilization of a tricarbonyl Re(i) compound modified with amide groups. ACS Catal. 2013, 3, 655–662.

[55]

Machan, C. W.; Sampson, M. D.; Chabolla, S. A.; Dang, T.; Kubiak, C. P. Developing a mechanistic understanding of molecular electrocatalysts for CO2 reduction using infrared spectroelectrochemistry. Organometallics 2014, 33, 4550–4559.

[56]

Stanley, P. M.; Haimerl, J.; Thomas, C.; Urstoeger, A.; Schuster, M.; Shustova, N. B.; Casini, A.; Rieger, B.; Warnan, J.; Fischer, R. A. Host–guest interactions in a metal-organic framework isoreticular series for molecular photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 17854–17860.

[57]

Stanley, P. M.; Thomas, C.; Thyrhaug, E.; Urstoeger, A.; Schuster, M.; Hauer, J.; Rieger, B.; Warnan, J.; Fischer, R. A. Entrapped molecular photocatalyst and photosensitizer in metal-organic framework nanoreactors for enhanced solar CO2 reduction. ACS Catal. 2021, 11, 871–882.

File
12274_2023_6258_MOESM1_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 September 2023
Revised: 01 October 2023
Accepted: 09 October 2023
Published: 24 November 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22271114 and 21621001), the Foundation of Science and Technology Development of Jilin Province, China (No. 20200801004GH) and 111 Project (No. B17020). The authors also gratefully acknowledge the financial support by the program for JLU Science and Technology Innovative Research Team (JLUSTIRT).

Return