Journal Home > Volume 17 , Issue 3

The proliferation of high-power, highly informationized, and highly integrated electronic devices and weapons equipment has given rise to increasingly conspicuous issues about electromagnetic (EM) pollution and thermal accumulation. These issues, in turn, impose constraints on the performance of such equipment and jeopardize personnel safety. Carbon materials, owing to their diverse and modifiable structures, offer adjustable thermal and electric conductivity, rendering them highly promising for applications in fields such as thermal management and EM protection which have garnered extensive research and review. The pursuit of integrated device and equipment development has elevated the demand for multifunctional materials, prompting significant research into carbon-based composite materials that include both thermal management and EM protection functionalities. Notably, there are no relevant reviews on this topic at present. Consequently, this work consolidates research findings from recent years on carbon matrix composites exhibiting dual attributes of thermal management and EM protection. These attributes include thermally conductive electromagnetic interference (EMI) shielding materials, thermally insulating EMI shielding materials, thermally conductive EM wave (EMW) absorbing materials, and thermally insulating EMW absorbing materials. The paper elucidates the fundamental principles underpinning thermal conduction, thermal insulation, EMW absorbing, and EMI shielding. Additionally, it engages in discussions surrounding areas of contention, design strategies, and the functional properties of various material designs. Ultimately, the paper concludes by presenting the challenges encountered and potential research strategies about composites endowed with both thermal management and EM protection functionalities, while also envisaging the development of novel multifunctional EM protection materials.


menu
Abstract
Full text
Outline
About this article

Carbon-based materials with combined functions of thermal management and electromagnetic protection: Preparation, mechanisms, properties, and applications

Show Author's information Junwei YueYiyu FengMengmeng Qin( )Wei Feng( )
School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China

Abstract

The proliferation of high-power, highly informationized, and highly integrated electronic devices and weapons equipment has given rise to increasingly conspicuous issues about electromagnetic (EM) pollution and thermal accumulation. These issues, in turn, impose constraints on the performance of such equipment and jeopardize personnel safety. Carbon materials, owing to their diverse and modifiable structures, offer adjustable thermal and electric conductivity, rendering them highly promising for applications in fields such as thermal management and EM protection which have garnered extensive research and review. The pursuit of integrated device and equipment development has elevated the demand for multifunctional materials, prompting significant research into carbon-based composite materials that include both thermal management and EM protection functionalities. Notably, there are no relevant reviews on this topic at present. Consequently, this work consolidates research findings from recent years on carbon matrix composites exhibiting dual attributes of thermal management and EM protection. These attributes include thermally conductive electromagnetic interference (EMI) shielding materials, thermally insulating EMI shielding materials, thermally conductive EM wave (EMW) absorbing materials, and thermally insulating EMW absorbing materials. The paper elucidates the fundamental principles underpinning thermal conduction, thermal insulation, EMW absorbing, and EMI shielding. Additionally, it engages in discussions surrounding areas of contention, design strategies, and the functional properties of various material designs. Ultimately, the paper concludes by presenting the challenges encountered and potential research strategies about composites endowed with both thermal management and EM protection functionalities, while also envisaging the development of novel multifunctional EM protection materials.

Keywords: microwave absorption, thermal insulation, carbon-based composites, electromagnetic interference shielding, thermal conduction

References(170)

[1]

Wang, Y. Y.; Sun, W. J.; Dai, K.; Yan, D. X.; Li, Z. M. Flexible and heat-resistant carbon nanotube/graphene/polyimide foam for broadband microwave absorption. Compos. Sci. Technol. 2021, 212, 108848.

[2]

Xu, Y. D.; Lin, Z. Q.; Yang, Y. Q.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q.; Hu, Y. G.; Sun, R.; Wong, C. P. Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horiz. 2022, 9, 708–719.

[3]

Xu, C. Y.; Wang, L.; Li, X.; Qian, X.; Wu, Z. C.; You, W. B.; Pei, K.; Qin, G.; Zeng, Q. W.; Yang, Z. Q. et al. Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 2021, 13, 47.

[4]

Duan, H. J.; He, P. Y.; Zhu, H. X.; Yang, Y. Q.; Zhao, G. Z.; Liu, Y. Q. Constructing 3D carbon-metal hybrid conductive network in polymer for ultra-efficient electromagnetic interference shielding. Compos. Part B. Eng. 2021, 212, 108690.

[5]

Yu, Z.; Dai, T. W.; Yuan, S. W.; Zou, H. W.; Liu, P. B. Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 2020, 12, 30990–31001.

[6]

Li, S. S.; Tang, X. W.; Zhang, Y. W.; Lan, Q. Q.; Hu, Z. W.; Li, L.; Zhang, N.; Ma, P. M.; Dong, W. F.; Tjiu, W. et al. Corrosion-resistant graphene-based magnetic composite foams for efficient electromagnetic absorption. ACS Appl. Mater. Interfaces 2022, 14, 8297–8310.

[7]

Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Zhang, Y. L.; Liu, C.; Wei, A. J.; Xiang, X. L.; Wei, L. F.; Gu, J. W. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2T x MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368–8382.

[8]

Ye, Z. W.; Wang, K. J.; Li, X. Q.; Yang, J. J. Preparation and characterization of ferrite/carbon aerogel composites for electromagnetic wave absorbing materials. J. Alloys Compd. 2022, 893, 162396.

[9]

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding, and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

[10]

Jia, L. C.; Zhang, G. Q.; Xu, L.; Sun, W. J.; Zhong, G. J.; Lei, J.; Yan, D. X.; Li, Z. M. Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2019, 11, 1680–1688.

[11]
Zhang, Y. L.; Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Recent advances of MXenes-based optical functional materials. Advanced Photonics Res., in press, https://doi.org/10.1002/adpr.202300224.
DOI
[12]

Cai, Y.; Yu, H. T.; Chen, C.; Feng, Y. Y.; Qin, M. M.; Feng, W. Improved thermal conductivities of vertically aligned carbon nanotube arrays using three-dimensional carbon nanotube networks. Carbon 2022, 196, 902–912.

[13]

Ma, T. B.; Zhao, Y. S.; Ruan, K. P.; Liu, X. R.; Zhang, J. L.; Guo, Y. Q.; Yang, X. T.; Kong, J.; Gu, J. W. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl. Mater. Interfaces 2020, 12, 1677–1686.

[14]

Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules 2021, 54, 4934–4944.

[15]

Li, M. K.; Sun, Y. Y.; Feng, D. Y.; Ruan, K. P.; Liu, X.; Gu, J. W. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 2023, 16, 7820–7828.

[16]

Zhang, H.; He, Q. X.; Yu, H. T.; Qin, M. M.; Feng, Y. Y.; Feng, W. A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity. Adv. Funct. Mater. 2023, 33, 2211985.

[17]

Kashfipour, M. A.; Dent, R. S.; Mehra, N.; Yang, X. T.; Gu, J. W.; Zhu, J. H. Directional xylitol crystal propagation in oriented micro-channels of boron nitride aerogel for isotropic heat conduction. Compos. Sci. Technol. 2019, 182, 107715.

[18]

Mehra, N.; Li, Y. F.; Yang, X. T.; Li, J.; Kashfipour, M. A.; Gu, J. W.; Zhu, J. H. Engineering molecular interaction in polymeric hybrids: Effect of thermal linker and polymer chain structure on thermal conduction. Compos. B: Eng. 2019, 166, 509–515.

[19]

Peng, L. Q.; Yu, H. T.; Chen, C.; He, Q. X.; Zhang, H.; Zhao, F. L.; Qin, M. M.; Feng, Y. Y.; Feng, W. Tailoring dense, orientation-tunable, and interleavedly structured carbon-based heat dissipation plates. Adv. Sci. 2023, 10, 2205962.

[20]

Huang, X. G.; Yu, G. Y.; Zhang, Y. K.; Zhang, M. J.; Shao, G. F. Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 2021, 426, 131894.

[21]

Li, L. H.; Li, M. H.; Zhang, Z. H.; Qin, Y.; Shui, X. X.; Xia, J. C.; Xiong, S. Y.; Wang, B.; Zhang, Z. B.; Wei, X. Z. et al. Robust composite film with high thermal conductivity and excellent mechanical properties by constructing a long-range ordered sandwich structure. J. Mater. Chem. A 2022, 10, 9922–9931.

[22]

Zhang, R. H.; Shi, X. T.; Tang, L.; Liu, Z.; Zhang, J. L.; Guo, Y. Q.; Gu, J. W. Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers. Chin. J. Polym. Sci. 2020, 38, 730–739.

[23]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[24]
Zhao, J.; Gu, Z.; Zhang, Q. G. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res., in press, https://doi.org/10.1007/s12274-023-6090-3.
DOI
[25]

Lou, Z. C.; Wang, Q. Y.; Kara, U. I.; Mamtani, R. S.; Zhou, X. D.; Bian, H. Y.; Yang, Z. H.; Li, Y. J.; Lv, H. L.; Adera, S. et al. Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 2022, 14, 11.

[26]

Cheng, Z.; Wang, R. F.; Cao, Y. S.; Cai, Z. H.; Zhang, Z. W.; Huang, Y. Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel. Adv. Funct. Mater. 2022, 32, 2205160.

[27]

Yin, W. D.; Qin, M. M.; Yu, H. T.; Sun, J. X.; Feng, W. Hyperelastic graphene aerogels reinforced by in-suit welding polyimide nano fiber with leaf skeleton structure and adjustable thermal conductivity for morphology and temperature sensing. Adv. Fiber Mater. 2023, 5, 1037–1049.

[28]
Kim, S. H.; Lee, S. Y.; Zhang, Y. L.; Park, S. J.; Gu, J. W. Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci., in press, https://doi.org/10.1002/advs.202303104.
DOI
[29]

Kang, S.; Qiao, S. Y.; Cao, Y. T.; Hu, Z. M.; Yu, J. R.; Wang, Y. Compression strain-dependent tubular carbon nanofibers/graphene aerogel absorber with ultrabroad absorption band. Chem. Eng. J. 2022, 433, 133619.

[30]

Ruan, K. P.; Shi, X. T.; Zhang, Y. L.; Guo, Y. Q.; Zhong, X.; Gu, J. W. Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem., Int. Ed. 2023, 62, e202309010.

[31]

Zhang, Z. W.; Cai, Z. H.; Wang, Z. Y.; Peng, Y. L.; Xia, L.; Ma, S. P.; Yin, Z. Z.; Huang, Y. A review on metal–organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 2021, 13, 56.

[32]

Wang, Y. Y.; Sun, W. J.; Yan, D. X.; Dai, K.; Li, Z. M. Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon 2021, 176, 118–125.

[33]

Sheng, A.; Yang, Y. Q.; Yan, D. X.; Dai, K.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q.; Li, Z. M. Self-assembled reduced graphene oxide/nickel nanofibers with hierarchical core–shell structure for enhanced electromagnetic wave absorption. Carbon 2020, 167, 530–540.

[34]

Miao, B. J.; Cao, Y. G.; Zhu, Q. S.; Nawaz, M. A.; Ordiozola, J. A.; Reina, T. R.; Bai, Z. M.; Ren, J. N.; Wei, F. C. Scalable synthesis of 2D Ti2CT x MXene and molybdenum disulfide composites with excellent microwave absorbing performance. Adv. Compos. Hybrid Mater. 2023, 6, 61.

[35]

Chen, H. H.; Huang, Z. Y.; Huang, Y.; Zhang, Y.; Ge, Z.; Qin, B.; Liu, Z. F.; Shi, Q.; Xiao, P. S.; Yang, Y. et al. Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 2017, 124, 506–514.

[36]

Li, B. B.; Mao, B. X.; He, T.; Huang, H. Q.; Wang, X. B. Preparation and microwave absorption properties of double-layer hollow reticulated SiC foam. ACS Appl. Electron. Mater. 2019, 1, 2140–2149.

[37]

Yu, M.; Liang, C. Y.; Liu, M. M.; Liu, X. L.; Yuan, K. P.; Cao, H.; Che, R. C. Yolk–shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol-gel method for high temperature stable microwave absorption. J. Mater. Chem. C 2014, 2, 7275–7283.

[38]

Wu, G. L.; Jia, Z. R.; Zhou, X. F.; Nie, G. Z.; Lv, H. L. Interlayer controllable of hierarchical MWCNTs@C@Fe x O y cross-linked composite with wideband electromagnetic absorption performance. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105687.

[39]

Sledzinska, M.; Quey, R.; Mortazavi, B.; Graczykowski, B.; Placidi, M.; Reig, D. S.; Navarro-Urrios, D.; Alzina, F.; Colombo, L.; Roche, S. et al. Record low thermal conductivity of polycrystalline MoS2 films: Tuning the thermal conductivity by grain orientation. ACS Appl. Mater. Interfaces 2017, 9, 37905–37911.

[40]

Ruan, K. P.; Gu, J. W. Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 2022, 55, 4134–4145.

[41]

Ruan, K. P.; Zhong, X.; Shi, X. T.; Dang, J. J.; Gu, J. W. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review. Mater. Today Phys. 2021, 20, 100456.

[42]

Huang, X. Y.; Zhi, C. Y.; Lin, Y.; Bao, H.; Wu, G. N.; Jiang, P. K.; Mai, Y. W. Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng. R Rep. 2020, 142, 100577.

[43]

Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

[44]

Wang, H.; Li, S. N.; Liu, M. Y.; Li, J. H.; Zhou, X. Review on shielding mechanism and structural design of electromagnetic interference shielding composites. Macromol. Mater. Eng. 2021, 306, 2100032.

[45]

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

[46]

Zhang, F.; Feng, Y. Y.; Feng, W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Mater. Sci. Eng. R Rep. 2020, 142, 100580.

[47]

Liang, C. B.; Qiu, H.; Zhang, Y. L.; Liu, Y. Q.; Gu, J. W. External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull. 2023, 68, 1938–1953.

[48]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[49]

Tan, X.; Yuan, Q. L.; Qiu, M. T.; Yu, J. H.; Jiang, N.; Lin, C. T.; Dai, W. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: A mini review. J. Mater. Sci. Technol. 2022, 117, 238–250.

[50]

Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

[51]

Li, L.; Yuan, X.; Zhai, H. X.; Zhang, Y.; Ma, L. L.; Wei, Q. Y.; Xu, Y.; Wang, G. Z. Flexible and ultrathin graphene/aramid nanofiber carbonizing films with nacre-like structures for heat-conducting electromagnetic wave shielding/absorption. ACS Appl. Mater. Interfaces 2023, 15, 15872–15883.

[52]

Zong, Z.; Ren, P. G.; Guo, Z. Z.; Wang, J.; Chen, Z. Y.; Jin, Y. L.; Ren, F. Three-dimensional macroporous hybrid carbon aerogel with heterogeneous structure derived from MXene/cellulose aerogel for absorption-dominant electromagnetic interference shielding and excellent thermal insulation performance. J. Colloid Interface Sci. 2022, 619, 96–105.

[53]

Chen, Q. G.; Huang, L.; Wang, X. H.; Yuan, Y. Transparent and flexible composite films with excellent electromagnetic interference shielding and thermal insulating performance. ACS Appl. Mater. Interfaces 2023, 15, 24901–24912.

[54]

Zhang, Y. F.; Zhang, L.; Zhou, B. Q.; Ahmad, M.; Zhang, Q. Y.; Zhang, B. L. Microwave absorption and thermal conductivity properties in NPC@MoSe2/PDMS composites. Carbon 2023, 209, 117997.

[55]

Bai, Y. F.; Yang, H. Z.; He, L. L.; Ge, C. H.; Zhai, R. C.; Zhang, X. D. Construction of core–shell BN-OH@Fe3O4@PAn nanocomposite with ultra-wide microwave absorption and efficiency thermal management. J. Alloys Compd. 2023, 936, 168174.

[56]

Wang, Y.; Di, X. C.; Chen, J.; She, L. N.; Pan, H. G.; Zhao, B.; Che, R. C. Multi-dimensional C@NiCo-LDHs@Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion, and thermal-insulation. Carbon 2022, 191, 625–635.

[57]

Yang, W. X.; Zhao, Z. D.; Wu, K.; Huang, R.; Liu, T. Y.; Jiang, H.; Chen, F.; Fu, Q. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 2017, 5, 3748–3756.

[58]

Bai, Y. F.; He, L. L.; Lv, P.; Ge, C. H.; Xu, H. R.; Zhang, X. D. Impedance-matched (hydroxylated nano-BN/reduced graphene oxide)@Fe3O4/polyaniline composite for efficient microwave absorption and thermal management. Mater. Chem. Phys. 2023, 295, 127193.

[59]

Zhang, F.; Feng, Y. Y.; Qin, M. M.; Gao, L.; Li, Z. Y.; Zhao, F. L.; Zhang, Z. X.; Lv, F.; Feng, W. Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite. Adv. Funct. Mater. 2019, 29, 1901383.

[60]

Lv, F.; Qin, M. M.; Zhang, F.; Yu, H. T.; Gao, L.; Lv, P.; Wei, W.; Feng, Y. Y.; Feng, W. High cross-plane thermally conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite. Carbon 2019, 149, 281–289.

[61]

Yu, H. T.; Guo, P. L.; Qin, M. M.; Han, G. Y.; Chen, L.; Feng, Y. Y.; Feng, W. Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure. Compos. Sci. Technol. 2022, 222, 109406.

[62]

Mortazavi, B.; Baniassadi, M.; Bardon, J.; Ahzi, S. Modeling of two-phase random composite materials by finite element, Mori–Tanaka, and strong contrast methods. Compos. Part B. Eng. 2013, 45, 1117–1125.

[63]

Xu, X. F.; Chen, J.; Zhou, J.; Li, B. W. Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 2018, 30, 1705544.

[64]

Guo, Y. Q.; Ruan, K. P.; Shi, X. T.; Yang, X. T.; Gu, J. W. Factors affecting thermal conductivities of the polymers and polymer composites: A review. Compos. Sci. Technol. 2020, 193, 108134.

[65]

Yang, X. T.; Liang, C. B.; Ma, T. B.; Guo, Y. Q.; Kong, J.; Gu, J. W.; Chen, M. J.; Zhu, J. H. A review on thermally conductive polymeric composites: Classification, measurement, model and equations, mechanism, and fabrication methods. Adv. Compos. Hybrid Mater. 2018, 1, 207–230.

[66]

Gu, J. W.; Xu, S.; Zhuang, Q.; Tang, Y. S.; Kong, J. Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 784–790.

[67]

Qin, M. M.; Xu, Y. X.; Cao, R.; Feng, W.; Chen, L. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv. Funct. Mater. 2018, 28, 1805053.

[68]

Wang, S. S.; Feng, D. Y.; Guan, H.; Guo, Y. Q.; Liu, X.; Yan, C.; Zhang, L.; Gu, J. W. Highly efficient thermal conductivity of polydimethylsiloxane composites via introducing “line–plane”-like hetero-structured fillers. Compos. Part A Appl. Sci. Manuf. 2022, 157, 106911.

[69]

Lv, P.; Tan, X. W.; Yu, K. H.; Zheng, R. L.; Zheng, J. J.; Wei, W. Super-elastic graphene/carbon nanotube aerogel: A novel thermal interface material with highly thermal transport properties. Carbon 2016, 99, 222–228.

[70]

Qin, M. M.; Feng, Y. Y.; Ji, T. X.; Feng, W. Enhancement of cross-plane thermal conductivity and mechanical strength via vertical aligned carbon nanotube@graphite architecture. Carbon 2016, 104, 157–168.

[71]

Wu, Y. Q.; Wang, X.; Yao, L. H.; Chang, S. Y.; Wang, X. M. Thermal insulation mechanism, preparation, and modification of nanocellulose aerogels: A review. Molecules 2023, 28, 5836.

[72]

Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053.

[73]

Wang, Y. Y.; Zhou, Z. H.; Zhou, C. G.; Sun, W. J.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 8704–8712.

[74]

Wei, C. H.; Shi, L. Z.; Li, M. Q.; He, M. K.; Li, M. J.; Jing, X. R.; Liu, P. B.; Gu, J. W. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194–203.

[75]

Wang, Y. Y.; Zhou, Z. H.; Zhu, J. L.; Sun, W. J.; Yan, D. X.; Dai, K.; Li, Z. M. Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption. Compos. Part B. Eng. 2021, 220, 108985.

[76]

Huang, X. G.; Wei, J. W.; Zhang, Y. K.; Qian, B. B.; Jia, Q.; Liu, J.; Zhao, X. J.; Shao, G. F. Ultralight magnetic and dielectric aerogels achieved by metal–organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 107.

[77]

Cheng, Z.; Wang, R. F.; Wang, Y.; Cao, Y. S.; Shen, Y. X.; Huang, Y.; Chen, Y. S. Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials. Carbon 2023, 205, 112–137.

[78]

Sun, F.; Liu, Q. D.; Xu, Y. F.; Xin, X. P.; Wang, Z. Z.; Song, X. F.; Zhao, X. F.; Xu, J. J.; Liu, J.; Zhao, L. P. et al. Attapulgite modulated thorny nickel nanowires/graphene aerogel with excellent electromagnetic wave absorption performance. Chem. Eng. J. 2021, 415, 128976

[79]

Ma, W. L.; Liu, X. Y.; Qiu, Z. R.; Cai, Z. H.; Diao, J. L.; Huang, Y. Hydrophobic and flame-retardant multifunctional foam for enhanced thermal insulation and broadband microwave absorption via a triple-continuous network of rGO/MWCNT-melamine composite. Carbon 2022, 196, 913–922.

[80]

Jiang, Z. Y.; Gao, Y. J.; Pan, Z. H.; Zhang, M. M.; Guo, J. H.; Zhang, J. W.; Gong, C. H. Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2024, 174, 195–203.

[81]

Hou, T. Q.; Jia, Z. R.; Wang, B. B.; Li, H. B.; Liu, X. H.; Bi, L.; Wu, G. L. MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2T x as efficient electromagnetic wave absorber. Chem. Eng. J. 2021, 414, 128875.

[82]

Liu, X. Y.; Ma, W. L.; Qiu, Z. R.; Yang, T. Y.; Wang, J. B.; Ji, X. Y.; Huang, Y. Manipulation of impedance matching toward 3D-printed lightweight and stiff MXene-based aerogels for consecutive multiband tunable electromagnetic wave absorption. ACS Nano 2023, 17, 8420–8432.

[83]

Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

[84]

Zhu, L. L.; Mo, R.; Yin, C. G.; Guo, W. Y.; Yu, J. H.; Fan, J. C. Synergistically constructed electromagnetic network of magnetic particle-decorated carbon nanotubes and MXene for efficient electromagnetic shielding. ACS Appl. Mater. Interfaces 2022, 14, 56120–56131.

[85]

Yang, J. M.; Chen, Y. J.; Yan, X.; Liao, X.; Wang, H.; Liu, C.; Wu, H.; Zhou, Y. Y.; Gao, H.; Xia, Y. Y. et al. Construction of in-situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection. Compos. Sci. Technol. 2023, 240, 110093.

[86]

Peng, M. Y.; Qin, F. X. Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 2021, 130, 225108.

[87]

Cheng, Z.; Cao, Y. S.; Wang, R. F.; Xia, L.; Ma, S. P.; Li, Z.; Cai, Z. H.; Zhang, Z. W.; Huang, Y. Hierarchical surface engineering of carbon fiber for enhanced composites interfacial properties and microwave absorption performance. Carbon 2021, 185, 669–680.

[88]

Zou, K. K.; Yi, S. Q.; Li, X. Y.; Li, J.; Xu, Y. T.; Li, Z. M.; Yan, D. X.; Wang, H. L. Efficient electromagnetic interference shielding of flexible Ag microfiber sponge/polydimethylsiloxane composite constructed by blow spinning. Compos. Sci. Technol. 2022, 220, 109281.

[89]

Agrawal, P. R.; Kumar, R.; Teotia, S.; Kumari, S.; Mondal, D. P.; Dhakate, S. R. Lightweight, high electrical and thermal conducting carbon-rGO composites foam for superior electromagnetic interference shielding. Compos. Part B. Eng. 2019, 160, 131–139.

[90]

Duan, H. J.; Zhu, H. X.; Gao, J. F.; Yan, D. X.; Dai, K.; Yang, Y. Q.; Zhao, G. Z.; Liu, Y. Q.; Li, Z. M. Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 2020, 8, 9146–9159.

[91]

Gu, W. H.; Ong, S. J. H.; Shen, Y. H.; Guo, W. Y.; Fang, Y. T.; Ji, G. B.; Xu, Z. J. A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 2022, 9, 2204165.

[92]

Liang, C. B.; Song, P.; Ma, A. J.; Shi, X. T.; Gu, H. B.; Wang, L.; Qiu, H.; Kong, J.; Gu, J. W. Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution. Compos. Sci. Technol. 2019, 181, 107683.

[93]

Wang, L.; Qiu, H.; Song, P.; Zhang, Y. L.; Lu, Y. J.; Liang, C. B.; Kong, J.; Chen, L. X.; Gu, J. W. 3D Ti3C2T x MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. Part A Appl. Sci. Manuf. 2019, 123, 293–300.

[94]

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

[95]
Wang, P. L.; Mai, T.; Zhang, W.; Qi, M. Y.; Chen, L.; Liu, Q.; Ma, M. G. Robust and multifunctional Ti3C2T x/modified sawdust composite paper for electromagnetic interference shielding and wearable thermal management. Small, in press, https://doi.org/10.1002/smll.202304914.
DOI
[96]

Liu, J.; Yu, M. Y.; Yu, Z. Z.; Nicolosi, V. Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 2023, 66, 245–272.

[97]

Wu, S. Q.; Chen, D. M.; Han, W. B.; Xie, Y. S.; Zhao, G. D.; Dong, S.; Tan, M. Y.; Huang, H.; Xu, S. B.; Chen, G. Q. et al. Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 2022, 446, 137093.

[98]

Lin, S. F.; Ju, S.; Zhang, J. W.; Shi, G.; He, Y.; Jiang, D. Z. Ultrathin flexible graphene films with high thermal conductivity and excellent EMI shielding performance using large-sized graphene oxide flakes. RSC Adv. 2019, 9, 1419–1427.

[99]

Mani, D.; Vu, M. C.; Lim, C. S.; Kim, J. B.; Jeong, T. H.; Kim, H. J.; Islam, M. A.; Lim, J. H.; Kim, K. M.; Kim, S. R. Stretching induced alignment of graphene nanoplatelets in polyurethane films for superior in-plane thermal conductivity and electromagnetic interference shielding. Carbon 2023, 201, 568–576.

[100]

Zhang, Y.; Yang, S. D.; Zhang, Q.; Ma, Z. Y.; Guo, Y. J.; Shi, M.; Wu, H.; Guo, S. Y. Constructing interconnected asymmetric conductive network in TPU fibrous film: Achieving low-reflection electromagnetic interference shielding and surperior thermal conductivity. Carbon 2023, 206, 37–44.

[101]

Li, Y.; Xu, G. J.; Guo, Y. Q.; Ma, T. B.; Zhong, X.; Zhang, Q. Y.; Gu, J. W. Fabrication, proposed model, and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers. Compos. Part A Appl. Sci. Manuf. 2018, 107, 570–578.

[102]

Han, Y. X.; Ruan, K. P.; Gu, J. W. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem., Int. Ed. 2023, 62, e202216093.

[103]

Li, J. C.; Zhao, X. Y.; Wu, W. J.; Ji, X. W.; Lu, Y. L.; Zhang, L. Q. Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity. Chem. Eng. J. 2021, 415, 129054.

[104]

Liu, H. B.; Huang, Z. Y.; Chen, T.; Su, X. Q.; Liu, Y. N.; Fu, R. L. Construction of 3D MXene/silver nanowires aerogels reinforced polymer composites for extraordinary electromagnetic interference shielding and thermal conductivity. Chem. Eng. J. 2022, 427, 131540.

[105]

Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Li, Y. G.; Ruan, K. P.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105670.

[106]

Liang, C. B.; Liu, Y. X.; Ruan, Y. F.; Qiu, H.; Song, P.; Kong, J.; Zhang, H. B.; Gu, J. W. Multifunctional sponges with flexible motion sensing and outstanding thermal insulation for superior electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106143.

[107]

Liu, C. X.; Ma, Y. N.; Xie, Y. M.; Zou, J. J.; Wu, H.; Peng, S. H.; Qian, W.; He, D. P.; Zhang, X.; Li, B. W. et al. Enhanced electromagnetic shielding and thermal management properties in MXene/aramid nanofiber films fabricated by intermittent filtration. ACS Appl. Mater. Interfaces 2023, 15, 4516–4526.

[108]

Chu, Q. D.; Lin, H.; Ma, M.; Chen, S.; Shi, Y. Q.; He, H. W.; Wang, X. Cellulose nanofiber/graphene nanoplatelet/MXene nanocomposites for enhanced electromagnetic shielding and high in-plane thermal conductivity. ACS Appl. Nano Mater. 2022, 5, 7217–7227.

[109]

Li, L.; Ma, Z. G.; Xu, P. H.; Zhou, B.; Li, Q. T.; Ma, J. M.; He, C. G.; Feng, Y. Z.; Liu, C. T. Flexible and alternant-layered cellulose nanofiber/graphene film with superior thermal conductivity and efficient electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106134.

[110]

Fan, M. S.; Chen, R.; Lu, Y. Z.; Liu, R. K.; Ma, Y.; Zhao, Q. Q.; Ran, S.; Tang, P.; Bin, Y. Z. Flexible microfibrillated cellulose/carbon nanotube multilayered composite films with electromagnetic interference shielding and thermal conductivity. Compos. Commun. 2022, 35, 101293.

[111]

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

[112]

Li, X.; Xu, T. L.; Cao, W. J.; Wang, M. H.; Chen, F. Q.; Jin, L. Y.; Song, N.; Sun, S.; Ding, P. Graphene/carbon fiber network constructed by co-carbonization strategy for functional integrated polyimide composites with enhanced electromagnetic shielding and thermal conductive properties. Chem. Eng. J. 2023, 464, 142595.

[113]

Wu, B. Z.; Yang, Y. H.; Zhu, K. Q.; Liu, S. Y.; Liu, R. R.; Zhu, H. H.; Li, Y. L. Robust polyamide 66 composites with hybrid fillers for thermal management and electromagnetic shielding. Polym. Compos. 2023, 44, 3126–3138.

[114]

Fan, B. X.; Xing, L.; Yang, K. X.; Yang, Y. J.; Zhou, F. J.; Tong, G. X.; Wu, W. H. Salt-templated graphene nanosheet foams filled in silicon rubber toward prominent EMI shielding effectiveness and high thermal conductivity. Carbon 2023, 207, 317–327.

[115]

Barani, Z.; Kargar, F.; Mohammadzadeh, A.; Naghibi, S.; Lo, C.; Rivera, B.; Balandin, A. A. Multifunctional graphene composites for electromagnetic shielding and thermal management at elevated temperatures. Adv. Electron. Mater. 2020, 6, 2000520.

[116]

Liang, C. B.; Qiu, H.; Han, Y. Y.; Gu, H. B.; Song, P.; Wang, L.; Kong, J.; Cao, D. P.; Gu, J. W. Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C 2019, 7, 2725–2733.

[117]

Guo, Y. L.; Zhang, R. Z.; Wu, K.; Chen, F.; Fu, Q. Preparation of nylon MXD6/EG/CNTs ternary composites with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Chin. J. Polym. Sci. 2017, 35, 1497–1507.

[118]

Li, Y.; Xue, B.; Yang, S. D.; Cheng, Z. L.; Xie, L.; Zheng, Q. Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding. Chem. Eng. J. 2021, 410, 128356.

[119]

Li, Y. K.; Li, W. J.; Wang, Z. X.; Du, P. Y.; Xu, L.; Jia, L. C.; Yan, D. X. High-efficiency electromagnetic interference shielding and thermal management of high-graphene nanoplate-loaded composites enabled by polymer-infiltrated technique. Carbon 2023, 211, 118096.

[120]

Qi, F. Q.; Wang, L.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Robust Ti3C2T x MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 2021, 21, 100512.

[121]

Patle, V. K.; Mehta, Y.; Dwivedi, N.; Mondal, D. P.; Srivastava, A. K.; Kumar, R. Thermal insulating and fire-retardant lightweight carbon-slag composite foams towards absorption dominated electromagnetic interference shielding. Sustainable Mater. Techno. 2022, 33, e00453.

[122]

Wang, H. Y.; Sun, X. B.; Yang, S. H.; Zhao, P. Y.; Zhang, X. J.; Wang, G. S.; Huang, Y. 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 2021, 13, 206

[123]

Jiang, X. Y.; Zhao, Z. X.; Zhou, S. T.; Zou, H. W.; Liu, P. B. Anisotropic and lightweight carbon/graphene composite aerogels for efficient thermal insulation and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2022, 14, 45844–45852.

[124]

Liang, C. Y.; Wang, Z. F.; Wu, L. N.; Zhang, X. C.; Wang, H.; Wang, Z. J. Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces 2017, 9, 29950–29957.

[125]

Guo, Z. Z.; Ren, P. G.; Wang, J.; Huo, X.; Tang, J. H.; Liu, Z. B.; Chen, Z. Y.; Jin, Y. L.; Ren, F. Methylene blue adsorption derived thermal insulating N, S-co-doped TiC/carbon hybrid aerogel for high-efficient absorption-dominant electromagnetic interference shielding. Chem. Eng. J. 2023, 451, 138667.

[126]

Xie, Z. X.; Cai, Y. F.; Zhan, Y. H.; Meng, Y. Y.; Li, Y. C.; Xie, Q.; Xia, H. S. Thermal insulating rubber foams embedded with segregated carbon nanotube networks for electromagnetic shielding applications. Chem. Eng. J. 2022, 435, 135118.

[127]

Wang, H.; He, D. Y.; Qiu, J.; Ma, Y. Y.; Wang, J.; Li, Y. X.; Chen, J. Y.; Wang, C. PAN/W18O49/Ag nanofibrous membrane for high-efficient and multi-band electromagnetic-interference shielding with broad temperature tolerance and good thermal isolating capacity. Compos. Part B. Eng. 2022, 236, 109793.

[128]

Guo, Y. B.; Vokhidova, N. R.; Wang, Q.; Lan, B. J.; Lu, Y. X. Lightweight and thermal insulation fabric-based composite foam for high-performance electromagnetic interference shielding. Mater. Chem. Phys. 2023, 303, 127787.

[129]

Zhang, P.; Cao, Z.; Liu, C. L.; Li, P. N.; Kong, H.; Li, T.; Luo, X. M.; Feng, J. Y.; Yuan, K. Y.; Xu, R. Q. Ultra-thin freestanding graphene films for efficient thermal insulation and electromagnetic interference shielding. RSC Adv. 2023, 13, 19388–19402.

[130]

Chithra, A.; Wilson, P.; Vijayan, S.; Rajeev, R.; Prabhakaran, K. Thermally insulating robust carbon composite foams with high EMI shielding from natural cotton. J. Mater. Sci. Technol. 2021, 94, 113–122.

[131]

Raji, S.; Sharma, G. K.; Aranya, B. R.; Prabhakaran, K. Carbon composite foams from the wasted banana leaf for EMI shielding and thermal insulation. Carbon 2023, 213, 118259.

[132]

Zhao, J.; Zhang, J. L.; Wang, L.; Lyu, S. S.; Ye, W. L.; Xu, B. B.; Qiu, H.; Chen, L. X.; Gu, J. W. Fabrication and investigation on ternary heterogeneous MWCNT@TiO2-C fillers and their silicone rubber wave-absorbing composites. Compos. Part A Appl. Sci. Manuf. 2020, 129, 105714.

[133]

Zhang, Y. W.; Li, S. S.; Tang, X. W.; Fan, W.; Lan, Q. Q.; Li, L.; Ma, P. M.; Dong, W. F.; Wang, Z. C.; Liu, T. X. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption. J. Mater. Sci. Technol. 2022, 102, 97–104.

[134]

Liu, X. F.; Li, Y.; Sun, X.; Tang, W. K.; Deng, G.; Liu, Y. J.; Song, Z. M.; Yu, Y. H.; Yu, R. H.; Dai, L. M. et al. Off/on switchable smart electromagnetic interference shielding aerogel. Matter 2021, 4, 1735–1747.

[135]

Qian, Y. X.; Tao, Y.; Li, W.; Li, Y.; Xu, T.; Hao, J. N.; Jiang, Q. H.; Luo, Y. B.; Yang, J. Y. High electromagnetic wave absorption and thermal management performance in 3D CNF@C-Ni/epoxy resin composites. Chem. Eng. J. 2021, 425, 131608.

[136]

Jiao, Z. B.; Huyan, W. J.; Yang, F.; Yao, J. R.; Tan, R. Y.; Chen, P.; Tao, X. W.; Yao, Z. J.; Zhou, J. T.; Liu, P. J. Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nano-Micro Lett. 2022, 14, 173.

[137]

Zhou, M. F.; Wan, G. P.; Mou, P. P.; Teng, S. J.; Lin, S. W.; Wang, G. Z. CNT@NiO/natural rubber with excellent impedance matching and low interfacial thermal resistance toward flexible and heat-conducting microwave absorption applications. J. Mater. Chem. C 2021, 9, 869–880.

[138]

Pan, Y.; Yang, B.; Jia, N.; Yu, Y. N.; Xu, X.; Wang, Y. Y.; Xia, R.; Qian, J. S.; Wang, C. J.; Sun, A. Q. et al. Enhanced thermally conductive and microwave absorbing properties of polymethyl methacrylate/Ni@GNP nanocomposites. Ind. Eng. Chem. Res. 2021, 60, 12316–12327.

[139]

Fang, X.; Pan, L. M.; Yin, S.; Chen, H. X.; Qiu, T.; Yang, J. Spherical glassy carbon/AlN microwave attenuating composite ceramics with high thermal conductivity and strong attenuation. Ceram. Int. 2020, 46, 21505–21516.

[140]

He, Y. Q.; Li, X. Y.; Zhang, J. X.; Li, X. G.; Duan, Y. S.; Huang, M. M.; Bai, H. N.; Jiang, D. L.; Qiu, T. Method for fabricating microwave absorption ceramics with high thermal conductivity. J. Eur. Ceram. Soc. 2018, 38, 501–505.

[141]

Fang, X.; Hou, S. J.; Pan, L. M.; Yin, S.; Wang, Y.; Li, Q.; Chen, D. P.; Jin, J. Y.; Yang, J. Core–shell spherical graphite@SiC attenuating agent for AlN-based microwave attenuating ceramics with high-efficiency thermal conduction and microwave absorption abilities. Ceram. Int. 2023, 49, 25063–25073.

[142]

Ma, L. L.; Dou, Z. F.; Li, D. G.; Liu, J.; Xu, Y.; Wang, G. Z. Facile synthesis of nitrogen-doped porous Ni@C nanocomposites with excellent synergistically enhanced microwave absorption and thermal conductive performances. Carbon 2023, 201, 587–598.

[143]

Mou, P. P.; Zhao, J. C.; Wang, G. Z.; Shi, S. H.; Wan, G. P.; Zhou, M. F.; Deng, Z.; Teng, S. J.; Wang, G. L. BCN nanosheets derived from coconut shells with outstanding microwave absorption and thermal conductive properties. Chem. Eng. J. 2022, 437, 135285.

[144]

Wang, L. F.; An, L. Q.; Zhou, G. H.; Wang, X. G.; Sun, K.; Chen, H. T.; Hou, H. T. Dense AlN/FeSiAl composite ceramics with high thermal conductivity and strong microwave absorption. J. Mater. Sci. Mater. Electron. 2022, 33, 10723–10733.

[145]

Zhang, Z.; Wang, J. D.; Shang, J.; Xu, Y. D.; Wan, Y. J.; Lin, Z. Q.; Sun, R.; Hu, Y. G. A through-thickness arrayed carbon fibers elastomer with horizontal segregated magnetic network for highly efficient thermal management and electromagnetic wave absorption. Small 2023, 19, 2205716.

[146]

Pan, D.; Yang, G.; Abo-Dief, H. M.; Dong, J. W.; Su, F. M.; Liu, C. T.; Li, Y. F.; Xu, B. B.; Murugadoss, V.; Naik, N. et al. Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 2022, 14, 118.

[147]

Han, X. P.; Huang, Y.; Wang, J. M.; Zhang, G. Z.; Li, T. H.; Liu, P. B. Flexible hierarchical ZnO/AgNWs/carbon cloth-based film for efficient microwave absorption, high thermal conductivity, and strong electro-thermal effect. Compos. Part B: Eng. 2022, 229, 109458.

[148]

Bai, Y. F.; Liu, R.; Wang, L. X.; Ge, C. H.; Shi, G. M.; Zhang, X. D. Microwave absorption and thermal conductivity properties of HO-BNNS@Fe3O4 composites. J. Alloys Compd. 2020, 837, 155574.

[149]

Cheng, Y. J.; Sun, X. X.; Yang, S.; Wang, D.; Liang, L.; Wang, S. S.; Ning, Y. H.; Yin, W. L.; Li, Y. B. Multifunctional elastic rGO hybrid aerogels for microwave absorption, infrared stealth, and heat insulation. Chem. Eng. J. 2023, 452, 139376.

[150]

Shang, S. Y.; Zhao, N.; Chen, Y. Q.; Wang, X. H.; Hu, F. Y.; Fan, B. B.; Zhao, B.; Lu, H. X.; Wang, H. L.; Zhang, R. Ti3C2T x /rGO aerogel towards high electromagnetic wave absorption and thermal resistance. CrystEngComm 2022, 24, 4556–4563.

[151]

Liu, Q.; Tang, L.; Li, J. Z.; Chen, Y.; Xu, Z. K.; Li, J. T.; Chen, X. Y.; Meng, F. B. Multifunctional aramid nanofibers reinforced RGO aerogels integrated with high-efficiency microwave absorption, sound absorption, and heat insulation performance. J. Mater. Sci. Technol. 2022, 130, 166–175.

[152]

Yang, F.; Yao, J. R.; Shen, Z.; Ma, Q.; Peng, G. Y.; Zhou, J. T.; Yao, Z. J.; Tao, X. W. Multifunctional carbon nanotubes-based hybrid aerogels with high-efficiency electromagnetic wave absorption at elevated temperature. J. Colloid Interface Sci. 2023, 638, 843–854.

[153]

Liang, C. Y.; Wang, Z. J. Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties. Chem. Eng. J. 2019, 373, 598–605.

[154]

Gu, W. H.; Tan, J. W.; Chen, J. B.; Zhang, Z.; Zhao, Y.; Yu, J. W.; Ji, G. B. Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 28727–28737.

[155]

Dong, Y. P.; Fan, X. M.; Wei, H. J.; Hou, Z. X.; Li, M. H.; Qu, Q.; Yin, X. W.; Cheng, L. F.; Zhang, L. T. A lightweight CNWs-SiO2/3Al2O3∙2SiO2 porous ceramic with excellent microwave absorption and thermal insulation properties. Ceram. Int. 2020, 46, 20395–20403.

[156]
Zhang, Q. Q.; Zhang, F.; Medarametla, S. P.; Li, H.; Zhou, C.; Lin, D. 3D printing of graphene aerogels. Small 2016 , 12, 1702–1708.
DOI
[157]

Luo, J. W.; Wang, Y.; Qu, Z. J.; Wang, W.; Yu, D. Lightweight and robust cobalt ferrite/carbon nanotubes/waterborne polyurethane hybrid aerogels for efficient microwave absorption and thermal insulation. J. Mater. Chem. C 2021, 9, 12201–12212.

[158]

Zhang, Z.; Tan, J. W.; Gu, W. H.; Zhao, H. Q.; Zheng, J.; Zhang, B. S.; Ji, G. B. Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 2020, 395, 125190.

[159]

Wang, K. F.; Chu, W. S.; Li, H.; Chen, Y. J.; Cai, Y. L.; Liu, H. Z. Ferromagnetic Ti3CNCl2-decorated rGO aerogel: From 3D interconnecting conductive network construction to ultra-broadband microwave absorber with thermal insulation property. J. Colloid Interface Sci. 2021, 604, 402–414.

[160]

Xiang, Z.; Zhu, X. J.; Dong, Y. Y.; Zhang, X.; Shi, Y. Y.; Lu, W. Enhanced electromagnetic wave absorption of magnetic Co nanoparticles/CNTs/EG porous composites with waterproof, flame-retardant, and thermal management functions. J. Mater. Chem. A 2021, 9, 17538–17552.

[161]

Xu, J.; Zhang, X.; Zhao, Z. B.; Hu, H.; Li, B.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties. Small 2021, 17, 2102032.

[162]

Huang, Q. Q.; Zhao, Y.; Wu, Y.; Zhou, M.; Tan, S. J.; Tang, S. L.; Ji, G. B. A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility. Chem. Eng. J. 2022, 446, 137279.

[163]

Gao, Y.; Lei, Z. K.; Pan, L. N.; Wu, Q.; Zhuang, X. H.; Tan, G. G.; Ning, M. Q.; Man, Q. K. Lightweight chitosan-derived carbon/rGO aerogels loaded with hollow Co1− x Ni x O nanocubes for superior electromagnetic wave absorption and heat insulation. Chem. Eng. J. 2023, 457, 141325.

[164]

Wang, Y. H.; Zhang, M. H.; Deng, X. S.; Li, Z. G.; Chen, Z. S.; Shi, J. M.; Han, X. J.; Du, Y. C. Reduced graphene oxide aerogel decorated with Mo2C nanoparticles toward multifunctional properties of hydrophobicity, thermal insulation, and microwave absorption. Int. J. Miner. Metall. Mater. 2023, 30, 536–547.

[165]

Zhang, B. J.; Liu, Y.; Li, X. L.; Su, D.; Ji, H. M. Closed-cell ZrO2/SiC-based composite nanofibers with efficient electromagnetic wave absorption and thermal insulation properties. J. Alloys Compd. 2022, 927, 167036.

[166]

Song, L. M.; Chen, Y. Q.; Gao, Q. C.; Li, Z.; Zhang, X. Y.; Wang, H. L.; Guan, L.; Yu, Z. J.; Zhang, R.; Fan, B. B. Low weight, low thermal conductivity, and highly efficient electromagnetic wave absorption of three-dimensional graphene/SiC-nanosheets aerogel. Compos. Part A Appl. Sci. Manuf. 2022, 158, 106980.

[167]

Ma, T. B.; Ruan, K. P.; Guo, Y. Q.; Han, Y. X.; Gu, J. W. Controlled length and number of thermal conduction pathways for copper wire/poly(lactic acid) composites via 3D printing. Sci. China Mater. 2023, 66, 4012–4021.

[168]

Tian, L.; Gu, H. D.; Zhang, Q. Q.; You, X.; Wang, M. M.; Yang, J. S.; Dong, S. M. Multifunctional hierarchical metamaterial for thermal insulation and electromagnetic interference shielding at elevated temperatures. ACS Nano 2023, 17, 12673–12683.

[169]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[170]

Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 September 2023
Revised: 09 October 2023
Accepted: 10 October 2023
Published: 30 November 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2022YFB3805702), the National Natural Science Foundation of China (Nos. 52173078, 52130303, 51973158, 51803151, and 51973152), and the Science Foundation for Distinguished Young Scholars in Tianjin (No. 19JCJQJC61700).

Return