Journal Home > Volume 17 , Issue 3

Carbonized metallic organic frameworks (CMOF) have been attracting attention in microwave absorption (MA) research area because of their diverse structures, tunable compositions, and rich porosity. Herein, structure regulation on metal clusters in CMOF is achieved by tuning the interaction strength between metals and ligands to enhance microwave absorption performance. Due to relatively weak interaction among copper cations and ligands, copper nanoclusters (CuNC) can be uniformly formed and embedded within the cobalt/zinc (Co/Zn) CMOF. Firstly, copper cations are added to the Co/Zn bimetallic zeolitic imidazolate frameworks (ZIFs). Secondly, the CMOF composite particles with CuNCs (CuNCs/CoZn-CMOF) were developed by a pyrolysis process. The CuNCs/CoZn-CMOF with an appropriate amount of CuNCs can harmonize both dielectric and magnetic losses. As a result, the minimum reflection loss (RLmin) reaches –45.1 dB at a matching thickness of 2.30 mm and the effective absorption bandwidth (EAB) is 8.80 GHz at a thickness of 3.10 mm. The broadband response to electromagnetic waves is attributed to interfacial polarization at CuNCs surface and heterogeneous interfaces, impedance matching and multiple scattering of electromagnetic waves. This study provides a feasible method to develop CMOF microwave absorption materials with high EAB values.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Structure regulating of metal clusters in carbonized metallic organic frameworks for high-efficient microwave absorption via tuning interaction strength between metals and ligands

Show Author's information Chang Sun1Kun-Yan Zhao1Ming-Lu Huang1Cheng-Long Luo1Xu-Dong Chen2Ming Wang1( )
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China

Abstract

Carbonized metallic organic frameworks (CMOF) have been attracting attention in microwave absorption (MA) research area because of their diverse structures, tunable compositions, and rich porosity. Herein, structure regulation on metal clusters in CMOF is achieved by tuning the interaction strength between metals and ligands to enhance microwave absorption performance. Due to relatively weak interaction among copper cations and ligands, copper nanoclusters (CuNC) can be uniformly formed and embedded within the cobalt/zinc (Co/Zn) CMOF. Firstly, copper cations are added to the Co/Zn bimetallic zeolitic imidazolate frameworks (ZIFs). Secondly, the CMOF composite particles with CuNCs (CuNCs/CoZn-CMOF) were developed by a pyrolysis process. The CuNCs/CoZn-CMOF with an appropriate amount of CuNCs can harmonize both dielectric and magnetic losses. As a result, the minimum reflection loss (RLmin) reaches –45.1 dB at a matching thickness of 2.30 mm and the effective absorption bandwidth (EAB) is 8.80 GHz at a thickness of 3.10 mm. The broadband response to electromagnetic waves is attributed to interfacial polarization at CuNCs surface and heterogeneous interfaces, impedance matching and multiple scattering of electromagnetic waves. This study provides a feasible method to develop CMOF microwave absorption materials with high EAB values.

Keywords: microwave absorption, interfacial polarization, heterogeneous interface, carbonized metallic organic frameworks

References(68)

[1]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[2]

Bao, S. S.; Zhang, M. X.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Advances in microwave absorbing materials with broad-bandwidth response. Nano Res. 2023, 16, 11054–11083.

[3]

Yang, Y.; Luo, C. L.; Chen, X. D.; Wang, M. Sustainable electromagnetic shielding graphene/nanocellulose thin films with excellent joule heating and mechanical properties via in-situ mechanical exfoliation and crosslinking with cations. Compos. Sci. Technol. 2023, 233, 109913.

[4]

Luo, C. L.; Huang, M. L.; Sun, C.; Zhao, K. Y.; Hu, Z. Q.; Wang, M. Achieving high joule heating and self-cleaning performance in copper-coated fabrics with excellent microwave shielding. Cellulose 2023, 30, 5987–6000.

[5]

Wu, Y.; Chen, L.; Han, Y. X.; Liu, P. B.; Xu, H. H.; Yu, G. Z.; Wang, Y. Y.; Wen, T.; Ju, W. B.; Gu, J. W. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 2023, 16, 7801–7809.

[6]

Zhao, K. Y.; Luo, C. L.; Sun, C.; Huang, M. L.; Wang, M. Construction of heterogeneous interfaces on Ti3AlC2 micro-particles via surface dotting liquid metal to enhance electromagnetic wave absorption performance. Composites 2023, 173, 107640.

[7]

Yang, D.; Tao, J. R.; Yang, Y.; He, Q. M.; Wang, M. Robust microwave absorption in silver-cobalt hollow microspheres with heterointerfaces and electric-magnetic synergism: Towards achieving lightweight and absorption-type microwave shielding composites. J. Mater. Sci. Technol. 2023, 138, 245–255.

[8]

Wu, Y.; Tan, S. J.; Zhang, T. C.; Zhou, M.; Fang, G.; Ji, G. B. Alkali and ion exchange co-modulation strategies to design magnetic-dielectric synergistic nano-absorbers for tailoring microwave absorption. Nano Res. 2023, 16, 8522–8532.

[9]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[10]

Tao, J. R.; Luo, C. L.; Huang, M. L.; Weng, Y. X.; Wang, M. Construction of unique conductive networks in carbon nanotubes/polymer composites via poly(ε-caprolactone) inducing partial aggregation of carbon nanotubes for microwave shielding enhancement. Composites 2023, 164, 107304.

[11]

Zhang, F.; Jia, Z. R.; Zhou, J. X.; Liu, J. K.; Wu, G. L.; Yin, P. F. Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 450, 138205.

[12]

Liang, J.; Chen, J.; Shen, H. Q.; Hu, K. T.; Zhao, B. N.; Kong, J. Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mater. 2021, 33, 1789–1798.

[13]

Liu, J. L.; Zhang, L. M.; Wu, H. J. Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through f- regulation engineering. Adv. Funct. Mater. 2022, 32, 2110496.

[14]

Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 2021, 177, 377–402.

[15]

Chen, Y.; Li, J. Z.; Li, T.; Zhang, L. K.; Meng, F. B. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 2021, 180, 163–184.

[16]

Wei, H. Y.; Zhang, Z. P.; Hussain, G.; Zhou, L. S.; Li, Q.; Ostrikov, K. Techniques to enhance magnetic permeability in microwave absorbing materials. Appl. Mater. Today 2020, 19, 100596.

[17]

Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

[18]

Lv, H. L.; Yang, Z. H.; Pan, H. G.; Wu, R. B. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946.

[19]

Xu, Y. L.; Uddin, A.; Estevez, D.; Luo, Y.; Peng, H. X.; Qin, F. X. Lightweight microwire/graphene/silicone rubber composites for efficient electromagnetic interference shielding and low microwave reflectivity. Compos. Sci. Technol. 2020, 189, 108022.

[20]

Hou, T. Q.; Jia, Z. R.; Wang, B. B.; Li, H. B.; Liu, X. H.; Bi, L.; Wu, G. L. MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2T x as efficient electromagnetic wave absorber. Chem. Eng. J. 2021, 414, 128875.

[21]

Li, J.; Miao, P.; Chen, K. J.; Cao, J. W.; Liang, J.; Tang, Y. S.; Kong, J. Highly effective electromagnetic wave absorbing prismatic Co/C nanocomposites derived from cubic metal-organic framework. Composites 2020, 182, 107613.

[22]

Gao, S.; Wang, G. S.; Guo, L.; Yu, S. H. Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 2020, 16, 1906668.

[23]

Zhu, S. Q.; Shu, J. C.; Cao, M. S. Tailorable MOF architectures for high-efficiency electromagnetic functions. Mater. Chem. Front. 2021, 5, 6444–6460.

[24]

Wei, C. H.; He, M. K.; Li, M. Q.; Ma, X.; Dang, W. L.; Liu, P. B.; Gu, J. W. Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 2023, 36, 101142.

[25]

Li, Q. S.; Liu, Q. C.; Kong, X. K. Noncovalent heterointerface on boron-carbon hybrid for improved microwave absorption. J. Mater. Sci. 2020, 55, 14345–14357.

[26]

He, G. H.; Duan, Y. P.; Pang, H. F. Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 2020, 12, 57.

[27]

Liang, S. J.; Cheng, B.; Cui, X. Y.; Miao, F. Van der Waals heterostructures for high-performance device applications: Challenges and opportunities. Adv. Mater. 2020, 32, 1903800.

[28]

Ren, H. S.; Li, T.; Wang, H. G.; Guo, Z. H.; Chen, T. L.; Meng, F. B. Two birds with one stone: Superhelical chiral polypyrrole towards high-performance electromagnetic wave absorption and corrosion protection. Chem. Eng. J. 2022, 427, 131582.

[29]

Liu, J. L.; Zhang, L. M.; Zang, D. Y.; Wu, H. J. A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 2021, 31, 2105018.

[30]

Hu, Q.; Fang, Y.; Du, Z.; Guo, Z. L.; Liu, Z. Y.; Huang, Y.; Lin, J.; Tang, C. C. Controllable synthesis and enhanced microwave absorption properities of novel lightweight graphene quantum dots/hexagonal boron nitride composites. Carbon 2021, 182, 134–143.

[31]

Zhang, W. J.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25, 3456–3461.

[32]

Luo, X. X.; Zhang, K. K.; Zhou, Y. Y.; Wu, H. J.; Xie, H. In situ construction of Fe3Al@Al2O3 core–shell particles with excellent electromagnetic absorption. J. Colloid Interface Sci. 2022, 611, 306–316

[33]

Ding, Z. Z.; Du, Z. J.; Liu, Y.; Zhang, Q. C.; Zhao, Z. X.; Hou, M. M.; Wang, X. Y.; Hassan, Y. A.; Huang, X. Z.; Yue, J. J. et al. Reduced graphene oxide loaded with rich defects CoO/Co3O4 for broadband microwave absorption. Composites 2023, 249, 110403.

[34]

Zhou, P. P.; Wang, X. K.; Song, Z.; Wang, M.; Huang, W. T.; Yu, M. X.; Wang, L. X.; Zhang, Q. T. Multi-dimensional ordered mesoporous carbon/silica@Ni composite with hierarchical nanostructure for strong and broadband microwave absorption. Carbon 2021, 176, 209–218.

[35]

Li, Y.; Qing, Y. C.; Zhou, Y. F.; Zhao, B.; Zhi, Q.; Fan, B. B.; Zhang, R. Unique nanoporous structure derived from Co3O4-C and Co/CoO-C composites towards the ultra-strong electromagnetic absorption. Composites 2021, 213, 108731.

[36]

Wang, L.; Chen, Z.; Wang, X.; Zhang, L. Y.; Zhang, Z. T.; Zhao, Q.; Gao, Y. F. Fe3O4@C 3D foam for strong low-frequency microwave absorption. J. Materiom. 2023, 9, 148–156.

[37]

Sultanov, F.; Daulbayev, C.; Bakbolat, B.; Daulbayev, O. Advances of 3D graphene and its composites in the field of microwave absorption. Adv. Colloid Interface Sci. 2020, 285, 102281.

[38]

Li, D. M.; Pan, W. H.; Wang, T.; Wang, X.; Gong, R. Z. 3D printed lightweight metastructure with microwave absorption and mechanical resistance. Mater. Des. 2023, 225, 111506

[39]

Zhou, C. L.; Wang, X. X.; Luo, H.; Deng, L. W.; Wang, S. L.; Wei, S.; Zheng, Y. W.; Jia, Q.; Liu, J. Q. Interfacial design of sandwich-like CoFe@Ti3C2T x composites as high efficient microwave absorption materials. Appl. Surf. Sci. 2019, 494, 540–550.

[40]

Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013, 65, 124–139.

[41]

Li, T. T.; Xia, L.; Yang, H.; Wang, X. Y.; Zhang, T.; Huang, X. X.; Xiong, L.; Qin, C. L.; Wen, G. W. Construction of a Cu–Sn heterojunction interface derived from a schottky junction in Cu@Sn/rGO composites as a highly efficient dielectric microwave absorber. ACS Appl. Mater. Interfaces 2021, 13, 11911–11919.

[42]

Zeng, X. J.; Li, E. G. N.; Xia, G. H.; Xie, N. H.; Shen, Z. Y.; Moskovits, M.; Yu, R. H. Silica-based ceramics toward electromagnetic microwave absorption. J. Eur. Ceram. Soc. 2021, 41, 7381–7403.

[43]

Huang, M. Q.; Wang, L.; Pei, K.; You, W. B.; Yu, X. F.; Wu, Z. C.; Che, R. C. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 2020, 16, 2000158.

[44]

Xiang, Z. N.; Xu, B. K.; He, Q. C.; Wang, Y. Q.; Yin, X. M. Synergistic magnetic/dielectric loss of Fe3Si/SiC composites for efficient electromagnetic wave absorption. Chem. Eng. J. 2023, 457, 141198.

[45]

Shu, R. W.; Li, X. H.; Ge, C. Q.; Wang, L. Y. Synthesis of FeCoNi/C decorated graphene composites derived from trimetallic metal-organic framework as ultrathin and high-performance electromagnetic wave absorbers. J. Colloid Interface Sci. 2023, 630, 754–762.

[46]

Ren, S. N.; Yu, H. J.; Wang, L.; Huang, Z. K.; Lin, T. F.; Huang, Y. D.; Yang, J.; Hong, Y. C.; Liu, J. Y. State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett. 2022, 14, 68.

[47]

Wu, F.; Wan, L. Y.; Li, Q. Y.; Zhang, Q. Y.; Zhang, B. L. Ternary assembled MOF-derived composite: Anisotropic epitaxial growth and microwave absorption. Composites 2022, 236, 109839.

[48]

Sun, C.; Zhao, K. Y.; Huang, M. L.; Luo, C. L.; Chen, X. D.; Wu, H. J.; Wang, M. Heterointerface construction for permalloy microparticles through the surface modification of bilayer metallic organic frameworks: Toward microwave absorption enhancement. J. Colloid Interface Sci. 2023, 644, 454–465.

[49]

Zhu, H. H.; Liang, J.; Jiao, X. G.; Fu, R. R.; Jiao, Q. Z.; Feng, C. H.; Li, H. S.; Zhang, Y. Y.; Zhao, Y. MOF-derived core–shell structured Cu9S5/NC@Co3S4/NC composite as a high-efficiency electromagnetic wave absorber. Ceram. Int. 2023, 49, 9534–9542.

[50]

Ren, Y. J.; Wang, X.; Ma, J. X.; Zheng, Q.; Wang, L. J.; Jiang, W. Metal-organic framework-derived carbon-based composites for electromagnetic wave absorption: Dimension design and morphology regulation. J. Mater. Sci. Technol. 2023, 132, 223–251.

[51]

Yang, K.; Cui, Y. H.; Wan, L. Y.; Zhang, Q. Y.; Zhang, B. L. MOF-derived magnetic-dielectric balanced Co@ZnO@N-doped carbon composite materials for strong microwave absorption. Carbon 2022, 190, 366–375.

[52]

Hu, Q. M.; Yang, R. L.; Yang, S. D.; Huang, W. B.; Zeng, Z. P.; Gui, X. C. Metal-organic framework-derived core–shell nanospheres anchored on Fe-filled carbon nanotube sponge for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 2022, 14, 10577–10587.

[53]

Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 2022, 32, 2204499.

[54]

Fonseca, J.; Gong, T. H.; Jiao, L.; Jiang, H. L. Metal-organic frameworks (MOFs) beyond crystallinity: Amorphous MOFs, MOF liquids and MOF glasses. J. Mater. Chem. A 2021, 9, 10562–10611.

[55]

Guo, S. Y.; Bao, Y. F.; Li, Y.; Guan, H. L.; Lei, D. Y.; Zhao, T. J.; Zhong, B. M.; Li, Z. H. Super broadband absorbing hierarchical CoFe alloy/porous carbon@carbon nanotubes nanocomposites derived from metal-organic frameworks. J. Mater. Sci. Technol. 2022, 118, 218–228.

[56]

Feng, W.; Wang, Y. M.; Chen, J. C.; Li, B. Q.; Guo, L. X.; Ouyang, J. H.; Jia, D. C.; Zhou, Y. Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: Tunable surface area and electromagnetic wave absorption properties. J. Mater. Chem. C 2018, 6, 10–18.

[57]

Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.

[58]

Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

[59]

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

[60]

Wang, L.; Yu, X. F.; Li, X.; Zhang, J.; Wang, M.; Che, R. C. MOF-derived yolk–shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 2020, 383, 123099.

[61]

He, Y. F.; Liu, Y. N.; Yan, X.; Qin, G. Y.; Liu, Y. H.; Zhong, B.; Xia, L.; Liu, D. D.; Zhou, Y.; Huang, X. X. Mesoscopically ordered Fe3O4/C nano-composite for superior broadband electromagnetic wave absorption. Composites 2022, 158, 106983

[62]

Li, C. J.; Qian, X.; Hao, M. Y.; Wang, X. F.; Zhu, S. Q.; Guo, M.; Gong, H. T.; Zhang, Y. G. Outstanding electromagnetic wave absorption performance of polyacrylonitrile-based ultrahigh modulus carbon fibers decorated with CoZn-bimetallic ZIFs. J. Alloys Compd. 2023, 950, 169912.

[63]

Gao, Z. G.; Xu, B. H.; Ma, M. L.; Feng, A. L.; Zhang, Y.; Liu, X. H.; Jia, Z. R.; Wu, G. L. Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption. Composites 2019, 179, 107417.

[64]

Li, X. H.; Wang, L.; Li, X.; Zhang, J.; Wang, M.; Che, R. C. Multi-dimensional ZnO@MWCNTs assembly derived from MOF-5 heterojunction as highly efficient microwave absorber. Carbon 2021, 172, 15–25.

[65]

Zhang, X. M.; Ji, G. B.; Liu, W.; Zhang, X. X.; Gao, Q. W.; Li, Y. C.; Du, Y. W. A novel Co/TiO2 nanocomposite derived from a metal-organic framework: Synthesis and efficient microwave absorption. J. Mater. Chem. C 2016, 4, 1860–1870.

[66]

Shu, R. W.; Li, W. J.; Wu, Y.; Zhang, J. B.; Zhang, G. Y.; Zheng, M. D. Fabrication of nitrogen-doped cobalt oxide/cobalt/carbon nanocomposites derived from heterobimetallic zeolitic imidazolate frameworks with superior microwave absorption properties. Composites 2019, 178, 107518.

[67]

Wang, Y. Q.; Wang, H. G.; Ye, J. H.; Shi, L. Y.; Feng, X. Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123096.

[68]

Wei, S.; Chen, T.; Wang, Q.; Shi, Z. C.; Li, W.; Chen, S. G. Metal-organic framework derived hollow CoFe@C composites by the tunable chemical composition for efficient microwave absorption. J. Colloid Interface Sci. 2021, 593, 370–379.

File
12274_2023_6255_MOESM1_ESM.pdf (627.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 August 2023
Revised: 30 September 2023
Accepted: 09 October 2023
Published: 17 November 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We thank the National Natural Science Foundation of China (No. 52173264) for financial support. This work acknowledges the support of the Science Compass Agency for their assistance in conducting the transmission electron microscopy tests. Besides, we also express our gratitude to Prof. Dong-Rong Xiao in Southwest University for his valuable feedback and suggestions.

Return