Journal Home > Volume 17 , Issue 5

The π-π stacking is a well-recognized intermolecular interaction that is responsible for the construction of electron hopping channels in numerous conducting frameworks/aggregates. However, the exact role of π-to-π channels within typical single crystalline organic semiconductors remains unclear as the orientations of these molecules are diverse, and their control usually requires additional side chain groups that misrepresent the intrinsic properties of the original semiconducting molecules. Therefore, the construction of conduction channels with intrinsic π-π stacking in the molecule-based device is crucial for the utilization of their unique transport characteristics and understanding of the transport mechanism. To this end, we present a molecular intercalation strategy that integrates two-dimensional layered materials with functional organic semiconductor molecules for functional molecule-based electronics. Various organic semiconductor molecules can be effectively intercalated into the van der Waals gaps of semi-metallic TaS2 with π-π stacking configuration and controlled intercalant content. Our results show that the vertical charge transport in the stacking direction shows a tunneling-dominated mechanism that strongly depends on the molecular structures. Furthermore, we demonstrated a new type of molecule-based vertical transistor in which TaS2 and π-π stacked organic molecules function as the electrical contact and the active channel, respectively. On/off ratios as high as 447 are achieved under electrostatic modulation in ionic liquid, comparable to the current state-of-the-art molecular transistors. Our study provides an ideal platform for probing intrinsic charge transport across π-π stacked conjugated molecules and also a feasible approach for the construction of high-performance molecule-based electronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Molecule-based vertical transistor via intermolecular charge transport through π-π stacking

Show Author's information Cheng Liu1,§Cheng Fu1,2,§Lingyu Tang1Jianghua Wu3Zhangyan Mu1Yamei Sun1Yanghang Pan1Bailin Tian1Kai Bao4Jing Ma1,2( )Qiyuan He4( )Mengning Ding1( )
Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China

§ Cheng Liu and Cheng Fu contributed equally to this work.

Abstract

The π-π stacking is a well-recognized intermolecular interaction that is responsible for the construction of electron hopping channels in numerous conducting frameworks/aggregates. However, the exact role of π-to-π channels within typical single crystalline organic semiconductors remains unclear as the orientations of these molecules are diverse, and their control usually requires additional side chain groups that misrepresent the intrinsic properties of the original semiconducting molecules. Therefore, the construction of conduction channels with intrinsic π-π stacking in the molecule-based device is crucial for the utilization of their unique transport characteristics and understanding of the transport mechanism. To this end, we present a molecular intercalation strategy that integrates two-dimensional layered materials with functional organic semiconductor molecules for functional molecule-based electronics. Various organic semiconductor molecules can be effectively intercalated into the van der Waals gaps of semi-metallic TaS2 with π-π stacking configuration and controlled intercalant content. Our results show that the vertical charge transport in the stacking direction shows a tunneling-dominated mechanism that strongly depends on the molecular structures. Furthermore, we demonstrated a new type of molecule-based vertical transistor in which TaS2 and π-π stacked organic molecules function as the electrical contact and the active channel, respectively. On/off ratios as high as 447 are achieved under electrostatic modulation in ionic liquid, comparable to the current state-of-the-art molecular transistors. Our study provides an ideal platform for probing intrinsic charge transport across π-π stacked conjugated molecules and also a feasible approach for the construction of high-performance molecule-based electronic devices.

Keywords: electrical transport, electrochemical intercalation, organic semiconductor, tunneling field effect transistor, π-π stacking

References(62)

[1]

Xin, N.; Guan, J. X.; Zhou, C. G.; Chen, X. J. N.; Gu, C. H.; Li, Y.; Ratner, M. A.; Nitzan, A.; Stoddart, J. F.; Guo, X. F. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 2019, 1, 211–230.

[2]

Sun, L. L.; Diaz-Fernandez, Y. A.; Gschneidtner, T. A.; Westerlund, F.; Lara-Avila, S.; Moth-Poulsen, K. Single-molecule electronics: From chemical design to functional devices. Chem. Soc. Rev. 2014, 43, 7378–7411.

[3]

Xiang, D.; Wang, X. L.; Jia, C. C.; Lee, T.; Guo, X. F. Molecular-scale electronics: From concept to function. Chem. Rev. 2016, 116, 4318–4440.

[4]

Chen, H. L.; Stoddart, J. F. From molecular to supramolecular electronics. Nat. Rev. Mater. 2021, 6, 804–828.

[5]

Tang, J. H.; Li, Y. Q.; Wu, Q. Q.; Wang, Z. X.; Hou, S. J.; Tang, K.; Sun, Y.; Wang, H.; Wang, H.; Lu, C. et al. Single-molecule level control of host–guest interactions in metallocycle-C60 complexes. Nat. Commun. 2019, 10, 4599.

[6]

Chen, H. L.; Brasiliense, V.; Mo, J. S.; Zhang, L.; Jiao, Y.; Chen, Z.; Jones, L. O.; He, G.; Guo, Q. H.; Chen, X. Y. et al. Single-molecule charge transport through positively charged electrostatic anchors. J. Am. Chem. Soc. 2021, 143, 2886–2895.

[7]

Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 2006, 442, 904–907.

[8]

Zang, Y. P.; Fu, T. R.; Zou, Q.; Ng, F.; Li, H. X.; Steigerwald, M. L.; Nuckolls, C.; Venkataraman, L. Cumulene wires display increasing conductance with increasing length. Nano. Lett. 2020, 20, 8415–8419.

[9]

Li, P. H.; Hou, S. J.; Alharbi, B.; Wu, Q. Q.; Chen, Y. J.; Zhou, L.; Gao, T. Y.; Li, R. H.; Yang, L.; Chang, X. Y. et al. Quantum interference-controlled conductance enhancement in stacked graphene-like dimers. J. Am. Chem. Soc. 2022, 144, 15689–15697.

[10]

Famili, M.; Jia, C. C.; Liu, X. S.; Wang, P. Q.; Grace, I. M.; Guo, J.; Liu, Y.; Feng, Z. Y.; Wang, Y. L.; Zhao, Z. P. et al. Self-assembled molecular-electronic films controlled by room temperature quantum interference. Chem 2019, 5, 474–484.

[11]

Jia, C. C.; Famili, M.; Carlotti, M.; Liu, Y.; Wang, P. Q.; Grace, I. M.; Feng, Z. Y.; Wang, Y. L.; Zhao, Z. P.; Ding, M. N.et al. Quantum interference mediated vertical molecular tunneling transistors. Sci. Adv. 2018, 4, eaat8237.

[12]

Gimzewski, J. K.; Joachim, C. Nanoscale science of single molecules using local probes. Science 1999, 283, 1683–1688.

[13]

Donhauser, Z. J.; Mantooth, B. A.; Kelly, K. F.; Bumm, L. A.; Monnell, J. D.; Stapleton, J. J.; Price, D. W.; Rawlett, A. M.; Allara, D. L.; Tour, J. M. et al. Conductance switching in single molecules through conformational changes. Science 2001, 292, 2303–2307.

[14]

Fan, F. R. F.; Yang, J. P.; Cai, L. T.; Price, D. W.; Dirk, S. M.; Kosynkin, D. V.; Yao, Y. X.; Rawlett, A. M.; Tour, J. M.; Bard, A. J. Charge transport through self-assembled monolayers of compounds of interest in molecular electronics. J. Am. Chem. Soc. 2002, 124, 5550–5560.

[15]

Mas-Torrent, M.; Rovira, C. Role of molecular order and solid-state structure in organic field-effect transistors. Chem. Rev. 2011, 111, 4833–4856.

[16]

Beaujuge, P. M.; Fréchet, J. M. J. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J. Am. Chem. Soc. 2011, 133, 20009–20029.

[17]

Frisenda, R.; Janssen, V. A. E. C.; Grozema, F. C.; Van Der Zant, H. S. J.; Renaud, N. Mechanically controlled quantum interference in individual π-stacked dimers. Nat. Chem. 2016, 8, 1099–1104.

[18]

Tan, Z. B.; Zhang, D.; Tian, H. R.; Wu, Q. Q.; Hou, S. J.; Pi, J. C.; Sadeghi, H.; Tang, Z.; Yang, Y.; Liu, J. Y. et al. Atomically defined angstrom-scale all-carbon junctions. Nat. Commun. 2019, 10, 1748.

[19]

Zhao, S. Q.; Wu, Q. Q.; Pi, J. C.; Liu, J. Y.; Zheng, J. T.; Hou, S. J.; Wei, J. Y.; Li, R. H.; Sadeghi, H.; Yang, Y. et al. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. Sci. Adv. 2020, 6, eaba6714.

[20]

Zhao, S. Q.; Deng, Z. Y.; Albalawi, S.; Wu, Q. Q.; Chen, L. J.; Zhang, H. W.; Zhao, X. J.; Hou, H.; Hou, S. J.; Dong, G. et al. Charge transport through single-molecule bilayer-graphene junctions with atomic thickness. Chem. Sci. 2022, 13, 5854–5859.

[21]

Tang, Y. X.; Zhou, Y.; Zhou, D. H.; Chen, Y. R.; Xiao, Z. Y.; Shi, J.; Liu, J. Y.; Hong, W. J. Electric field-induced assembly in single-stacking terphenyl junctions. J. Am. Chem. Soc. 2020, 142, 19101–19109.

[22]

Yu, H.; Li, J. L.; Li, S. S.; Liu, Y.; Jackson, N. E.; Moore, J. S.; Schroeder, C. M. Efficient intermolecular charge transport in π-stacked pyridinium dimers using cucurbit[8]uril supramolecular complexes. J. Am. Chem. Soc. 2022, 144, 3162–3173.

[23]

Kang, B.; Lim, S.; Lee, W. H.; Jo, S. B.; Cho, K. Work-function-tuned reduced graphene oxide via direct surface functionalization as source/drain electrodes in bottom-contact organic transistors. Adv. Mater. 2013, 25, 5856–5862.

[24]

Lee, B.; Chen, Y.; Duerr, F.; Mastrogiovanni, D.; Garfunkel, E.; Andrei, E. Y.; Podzorov, V. Modification of electronic properties of graphene with self-assembled monolayers. Nano Lett. 2010, 10, 2427–2432.

[25]

Zhang, T.; Cheng, Z. G.; Wang, Y. B.; Li, Z. J.; Wang, C. X.; Li, Y. B.; Fang, Y. Self-assembled 1-octadecanethiol monolayers on graphene for mercury detection. Nano Lett. 2010, 10, 4738–4741.

[26]

Seo, S.; Hwang, E.; Cho, Y.; Lee, J.; Lee, H. Functional molecular junctions derived from double self-assembled monolayers. Angew. Chem., Int. Ed. 2017, 56, 12122–12126.

[27]

Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.

[28]

Bao, W. Z.; Wan, J. Y.; Han, X. G.; Cai, X. H.; Zhu, H. L.; Kim, D.; Ma, D. K.; Xu, Y. L.; Munday, J. N.; Drew, H. D. et al. Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 2014, 5, 4224.

[29]

Zhang, J. S.; Yang, A. K.; Wu, X.; Van De Groep, J.; Tang, P. Z.; Li, S. R.; Liu, B. F.; Shi, F. F.; Wan, J. Y.; Li, Q. T. et al. Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nat. Commun. 2018, 9, 5289.

[30]

Wang, Y. Y.; Yan, D. F.; El Hankari, S.; Zou, Y. Q.; Wang, S. Y. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv. Sci. (Weinh.) 2018, 5, 1800064.

[31]

Su, M. X.; Zhou, W. D.; Jiang, Z. Z.; Chen, M. Y.; Luo, X. F.; He, J.; Yuan, C. L. Elimination of interlayer potential barriers of chromium sulfide by self-intercalation for enhanced hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 13055–13062.

[32]

Yan, Z. H.; Sun, H. M.; Chen, X.; Liu, H. H.; Zhao, Y. R.; Li, H. X.; Xie, W.; Cheng, F. Y.; Chen, J. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun. 2018, 9, 2373.

[33]

Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231–236.

[34]
He, Q. Y.; Lin, Z. Y.; Ding, M. N.; Yin, A. X.; Halim, U.; Wang, C.; Liu, Y.; Cheng, H. C.; Huang, Y.; Duan, X. F. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 2019 , 19, 6819–6826.
[35]
Zhou, B. X.; Zhou, J. Y.; Wang, L. Y.; Kang, J. H.; Zhang, A.; Zhou, J. X.; Zhang, D. H.; Xu, D.; Hu, B. Y.; Deng, S. B. et al. A chemical-dedoping strategy to tailor electron density in molecular-intercalated bulk monolayer MoS2. Nat. Synth., in press, DOI: 10.1038/s44160-023-00396-2.
[36]

Zhu, Y.; Ji, Y. J.; Ju, Z. Y.; Yu, K.; Ferreira, P. J.; Liu, Y. Y.; Yu, G. H. Ultrafast intercalation enabled by strong solvent-host interactions: Understanding solvent effect at the atomic level. Angew. Chem., Int. Ed. 2019, 58, 17205–17209.

[37]

He, W.; Zang, H.; Cai, S. H.; Mu, Z. Y.; Liu, C.; Ding, M. N.; Wang, P.; Wang, X. R. Intercalation and hybrid heterostructure integration of two-dimensional atomic crystals with functional organic semiconductor molecules. Nano Res. 2020, 13, 2917–2924.

[38]

Ding, M. N.; He, Q. Y.; Wang, G. M.; Cheng, H. C.; Huang, Y.; Duan, X. F. An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces. Nat. Commun. 2015, 6, 7867.

[39]

Ding, M. N.; Shiu, H. Y.; Li, S. L.; Lee, C. K.; Wang, G. M.; Wu, H.; Weiss, N. O.; Young, T. D.; Weiss, P. S.; Wong, G. C. et al. Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter. ACS Nano 2016, 10, 9919–9926.

[40]

Mu, Z. Y.; Han, N.; Xu, D.; Tian, B. L.; Wang, F. Y.; Wang, Y. Q.; Sun, Y. M.; Liu, C.; Zhang, P. K.; Wu, X. J. et al. Critical role of hydrogen sorption kinetics in electrocatalytic CO2 reduction revealed by on-chip in situ transport investigations. Nat. Commun. 2022, 13, 6911.

[41]

Zheng, L.; He, W.; Zhu, K.; Wang, C.X.; Wang, S.; Hong, Y.; Chen, Y. M.; Zhou, G. Y.; Miao, H.; Zhou, J. Q. Investigation of poly (1-vinyl imidazole co 1, 4-butanediol diglycidyl ether) as a leveler for copper electroplating of through-hole. Electrochim. Acta 2018, 283, 560–567.

[42]

Kusumoto, Y.; Takeshita, Y.; Kurawaki, J.; Satake, I. Preferential solvation studied by the fluorescence spectrum of pyrene in water-alcohol binary mixtures. Chem. Lett. 1997, 26, 349–350.

[43]

Gao, F.; Ren, B. Y.; Yan, Y.; Tong, Z. Changes in solvation state of strong polyelectrolytes in DMSO/THF mixtures. Acta Phys. Chim. Sin. 2000, 16, 450–453.

[44]

Azhagurajan, M.; Kajita, T.; Itoh, T.; Kim, Y. G.; Itaya, K. In situ visualization of lithium ion intercalation into MoS2 single crystals using differential optical microscopy with atomic layer resolution. J. Am. Chem. Soc. 2016, 138, 3355–3361.

[45]

Fu, W.; Qiao, J. S.; Zhao, X. X.; Chen, Y.; Fu, D. Y.; Yu, W.; Leng, K.; Song, P.; Chen, Z.; Yu, T. et al. Room temperature commensurate charge density wave on epitaxially grown bilayer 2H-tantalum sulfide on hexagonal boron nitride. ACS Nano 2020, 14, 3917–3926.

[46]

Shi, J. P.; Wang, X. N.; Zhang, S.; Xiao, L. F.; Huan, Y. H.; Gong, Y.; Zhang, Z. P.; Li, Y. C.; Zhou, X. B.; Hong, M. et al. Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nat. Commun. 2017, 8, 958.

[47]

Chen, S.; Goh, T. W.; Sabba, D.; Chua, J.; Mathews, N.; Huan, C. H. A.; Sum, T. C. Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface. APL Mater. 2014, 2, 081512.

[48]

Xin, N.; Li, X. X.; Jia, C. C.; Gong, Y.; Li, M. L.; Wang, S. P.; Zhang, G. Y.; Yang, J. L.; Guo, X. F. Tuning charge transport in aromatic-ring single-molecule junctions via ionic-liquid gating. Angew. Chem., Int. Ed. 2018, 57, 14026–14031.

[49]

El Abbassi, M.; Sangtarash, S.; Liu, X. S.; Perrin, M. L.; Braun, O.; Lambert, C.; Van Der Zant, H. S. J.; Yitzchaik, S.; Decurtins, S.; Liu, S. X. et al. Robust graphene-based molecular devices. Nat. Nanotechnol. 2019, 14, 957–961.

[50]

Uji-I, H.; Nishio, S.; Fukumura, H. Electronic properties of a π-stacked pyrene derivative at a liquid-Solid interface studied with scanning tunneling spectroscopy. Chem. Phys. Lett. 2005, 408, 112–117.

[51]

Kang, K.; Lee, K. H.; Han, Y. M.; Gao, H.; Xie, S. E.; Muller, D. A.; Park, J. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 2017, 550, 229–233.

[52]

Yuan, L.; Jiang, L.; Zhang, B.; Nijhuis, C. A. Dependency of the tunneling decay coefficient in molecular tunneling junctions on the topography of the bottom electrodes. Angew. Chem., Int. Ed. 2014, 53, 3377–3381.

[53]

Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Mayorov, A. S.; Peres, N. M. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012, 12, 1707–1710.

[54]

Senkovskiy, B. V.; Nenashev, A. V.; Alavi, S. K.; Falke, Y.; Hell, M.; Bampoulis, P.; Rybkovskiy, D. V.; Usachov, D. Y.; Fedorov, A. V.; Chernov, A. I. et al. Tunneling current modulation in atomically precise graphene nanoribbon heterojunctions. Nat. Commun. 2021, 12, 2542.

[55]

Sarkar, D.; Xie, X. J.; Liu, W.; Cao, W.; Kang, J. H.; Gong, Y. J.; Kraemer, S.; Ajayan, P. M.; Banerjee, K. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 2015, 526, 91–95.

[56]

Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947–950.

[57]

Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100–103.

[58]

Bai, J.; Daaoub, A.; Sangtarash, S.; Li, X. H.; Tang, Y. X.; Zou, Q.; Sadeghi, H.; Liu, S.; Huang, X.; Tan, Z. B. et al. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 2019, 18, 364–369.

[59]

Li, Y. Q.; Buerkle, M.; Li, G. F.; Rostamian, A.; Wang, H.; Wang, Z. X.; Bowler, D. R.; Miyazaki, T.; Xiang, L. M.; Asai, Y. et al. Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport. Nat. Mater. 2019, 18, 357–363.

[60]

Ojeda-Aristizabal, C.; Bao, W.; Fuhrer, M. S. Thin-film barristor: A gate-tunable vertical graphene-pentacene device. Phys. Rev. B 2013, 88, 035435.

[61]

Hlaing, H.; Kim, C. H.; Carta, F.; Nam, C. Y.; Barton, R. A.; Petrone, N.; Hone, J.; Kymissis, I. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures. Nano Lett. 2015, 15, 69–74.

[62]

Liu, Y.; Zhou, H. L.; Weiss, N. O.; Huang, Y.; Duan, X. F. High-performance organic vertical thin film transistor using graphene as a tunable contact. ACS Nano 2015, 9, 11102–11108.

File
12274_2023_6252_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 August 2023
Revised: 27 September 2023
Accepted: 07 October 2023
Published: 02 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

M. N. D. acknowledges the support by the National Natural Science Foundation of China (Nos. 22172075 and 92156024), the Fundamental Research Funds for the Central Universities in China (Nos. 0210/14380174 and 14380273), Beijing National Laboratory for Molecular Sciences (No. BNLMS202107), and Thousand Talents Plan of Jiangxi Province (No. jxsq2019102002). J. M. acknowledges the support by the National Natural Science Foundation of China (No. 22033004). Q. Y. H. acknowledges support from Early Career Scheme Project (No. 21302821) and General Research Fund Project (No. 11314322) from the University Grants Committee of Hong Kong.

Return