Journal Home > Volume 17 , Issue 5

Energy shortage hinders the rapid development of today’s society, and the emergence of electronic travel equipment alleviates this phenomenon to a certain extent. The batteries are the energy storage part of electric equipment. Metal-organic frameworks (MOFs) are a fresh sort of porous crystal materials with controllable structure, large specific surface area, and adjustable pore size. MOFs are good electrode materials, which are used to make a variety of friendly environment, long cycling life and superior energy density of new batteries. Furthermore, MOFs are also used in separators and electrolytes, which have a lot of application space in batteries. In this review, the up-to-date research advance of MOF materials in various kinds of batteries (lithium-ion batteries, lithium oxygen batteries, lithium sulfur batteries, zinc-ion batteries, potassium-ion batteries, etc.) is reviewed. Moreover, concisely introduced several conventional synthesis approaches of MOFs. Finally, Perspectives and directions on the future improvement of MOF in energy storage devices are proposed for meeting the requirement of practical applications.


menu
Abstract
Full text
Outline
About this article

Recent advances in metal-organic frameworks for electrochemical performance of batteries

Show Author's information Haoyang Xu1Pengbiao Geng2Wanchang Feng1Meng Du1Dae Joon Kang3Huan Pang1( )
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea

Abstract

Energy shortage hinders the rapid development of today’s society, and the emergence of electronic travel equipment alleviates this phenomenon to a certain extent. The batteries are the energy storage part of electric equipment. Metal-organic frameworks (MOFs) are a fresh sort of porous crystal materials with controllable structure, large specific surface area, and adjustable pore size. MOFs are good electrode materials, which are used to make a variety of friendly environment, long cycling life and superior energy density of new batteries. Furthermore, MOFs are also used in separators and electrolytes, which have a lot of application space in batteries. In this review, the up-to-date research advance of MOF materials in various kinds of batteries (lithium-ion batteries, lithium oxygen batteries, lithium sulfur batteries, zinc-ion batteries, potassium-ion batteries, etc.) is reviewed. Moreover, concisely introduced several conventional synthesis approaches of MOFs. Finally, Perspectives and directions on the future improvement of MOF in energy storage devices are proposed for meeting the requirement of practical applications.

Keywords: metal-organic frameworks, synthesis, batteries, cycling performance

References(239)

[1]

Guo, S. J.; Xiao, Y. B.; Wang, J.; Ouyang, Y.; Li, X.; Deng, H. Y.; He, W. C.; Zeng, Q. H.; Zhang, W.; Zhang, Q. et al. Ordered structure of interlayer constructed with metal-organic frameworks improves the performance of lithium-sulfur batteries. Nano Res. 2021, 14, 4556–4562.

[2]

Zhang, Y. J.; Li, J.; Zhao, W. Y.; Dou, H. L.; Zhao, X. L.; Liu, Y.; Zhang, B. W.; Yang, X. W. Defect-free metal-organic framework membrane for precise ion/solvent separation toward highly stable magnesium metal anode. Adv. Mater. 2022, 34, 2108114.

[3]

Mehtab, T.; Yasin, G.; Arif, M.; Shakeel, M.; Korai, R. M.; Nadeem, M.; Muhammad, N.; Lu, X. Metal-organic frameworks for energy storage devices: Batteries and supercapacitors. J. Energy Storage 2019, 21, 632–646.

[4]

Hua, Y.; Li, X. X.; Chen, C. Y.; Pang, H. Cobalt based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. Chem. Eng. J. 2019, 370, 37–59.

[5]

Liu, J. J.; Song, X. Y.; Zhang, T.; Liu, S. Y.; Wen, H. R.; Chen, L. 2D conductive metal-organic frameworks: An emerging platform for electrochemical energy storage. Angew. Chem., Int. Ed. 2021, 60, 5612–5624.

[6]

Wu, X. X.; Zhou, C.; Dong, C. X.; Shen, C. L.; Shuai, B. B.; Li, C.; Li, Y.; An, Q. Y.; Xu, X.; Mai, L. Polydopamine-assisted in- situ formation of dense MOF layer on polyolefin separator for synergistic enhancement of lithium-sulfur battery. Nano Res. 2022, 15, 8048–8055.

[7]

Ding, L.; Zeng, M.; Wang, H.; Jiang, X. B. Synthesis of MIL-101-derived bimetal-organic framework and applications for lithium-ion batteries. J. Mater. Sci.: Mater. Electron. 2021, 32, 1778–1786.

[8]

Wang, Y. Y.; Zhang, X. Q.; Zhou, M. Y.; Huang, J. Q. Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Res. Energy 2023, 2, e9120046.

[9]

Ahmed, S.; Shim, J.; Sun, H. J.; Rim, H. R.; Lee, H. K.; Park, G. Nickel decorated bimetallic catalysts derived from metal-organic frameworks as cathode materials for rechargeable zinc-air batteries. Mater. Lett. 2021, 283, 128781.

[10]

Tong, Z. Q.; Kang, T. X.; Wu, Y.; Zhang, F.; Tang, Y. B.; Lee, C. S. Novel metastable Bi:Co and Bi:Fe alloys nanodots@carbon as anodes for high rate K-ion batteries. Nano Res. 2022, 15, 7220–7226.

[11]

Li, Z. L.; Wang, S. X.; Shi, J. K.; Liu, Y.; Zheng, S. Y.; Zou, H. Q.; Chen, Y. L.; Kuang, W. X.; Ding, K.; Chen, L. Y. et al. A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. Energy Stor. Mater. 2022, 47, 262–270.

[12]

Liu, J. B.; Qiao, Z. S.; Xie, Q. S.; Peng, D. L.; Xie, R. J. Phosphorus-doped metal-organic framework-derived CoS2 nanoboxes with improved adsorption-catalysis effect for Li-S batteries. ACS Appl. Mater. Interfaces 2021, 13, 15226–15236.

[13]

Zhang, S. L.; Sun, L.; Fan, Q. N.; Zhang, F. L.; Wang, Z. J.; Zou, J. S.; Zhao, S. Y.; Mao, J. F.; Guo, Z. P. Challenges and prospects of lithium-CO2 batteries. Nano Res. Energy 2022, 1, e9120001.

[14]

Sun, F. C.; Chen, T. T.; Li, Q.; Pang, H. Hierarchical nickel oxalate superstructure assembled from 1D nanorods for aqueous nickel-zinc battery. J. Colloid Interface Sci. 2022, 627, 483–491.

[15]

Wei, A. K.; Wang, L.; Li, Z. Metal-organic framework derived binary-metal oxide/MXene composite as sulfur host for high-performance lithium-sulfur batteries. J. Alloys Compd. 2022, 899, 163369.

[16]

Ge, H. Y.; Feng, X. L.; Liu, D. P.; Zhang, Y. Recent advances and perspectives for Zn-based batteries: Zn anode and electrolyte. Nano Res. Energy 2023, 2, e9120039.

[17]

Yang, Z. Q.; Zhu, J. P.; Tang, W. H.; Ding, Y. An Fe2O3/Mn2O3 nanocomposite derived from a metal-organic framework as an anode material for lithium-ion batteries. ChemistrySelect 2022, 7, e202203107.

[18]

Nam, K. W.; Park, S. S.; dos Reis, R.; Dravid, V. P.; Kim, H.; Mirkin, C. A.; Stoddart, J. F. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 2019, 10, 4948.

[19]

Zhou, H. J.; Yang, H.; Yao, S. Y.; Jiang, L.; Sun, N. C.; Pang, H. Synthesis of 3D printing materials and their electrochemical applications. Chin. Chem. Lett. 2022, 33, 3681–3694.

[20]

Wang, Q. P.; Guo, C.; He, J. P.; Yang, S.; Liu, Z. F.; Wang, Q. H. Fe2O3/C-modified Si nanoparticles as anode material for high-performance lithium-ion batteries. J. Alloys Compd. 2019, 795, 284–290.

[21]

Liu, D.; Lu, B. B.; Pei, W. Y.; Gu, Z. Y.; Yang, J.; Wu, X. L.; Ma, J. F. A new polyoxometalate-resorcin[4]arene-based framework as an efficient anode material for lithium-ion batteries. J. Alloys Compd. 2020, 835, 155314.

[22]

Gao, M. Q.; Wang, Z. Y.; Lek, D. G.; Wang, Q. Towards high power density aqueous redox flow batteries. Nano Res. Energy 2023, 2, e9120045.

[23]

Zhang, P.; Wei, Y.; Zhou, S. J.; Soomro, R. A.; Jiang, M. C.; Xu, B. A metal-organic framework derived approach to fabricate in- situ carbon encapsulated Bi/Bi2O3 heterostructures as high-performance anodes for potassium ion batteries. J. Colloid Interface Sci. 2023, 630, 365–374.

[24]

Wang, X. X.; Ge, L.; Lu, Q.; Dai, J.; Guan, D. Q.; Ran, R.; Weng, S. C.; Hu, Z. W.; Zhou, W.; Shao, Z. P. High-performance metal-organic framework-perovskite hybrid as an important component of the air-electrode for rechargeable Zn-air battery. J. Power Sources 2020, 46, 228377.

[25]

Zhu, F. L.; Tao, Y. L.; Bao, H. F.; Wu, X. S.; Qin, C.; Wang, X. L.; Su, Z. M. Ferroelectric metal-organic framework as a host material for sulfur to alleviate the shuttle effect of lithium-sulfur battery. Chem.—Eur. J. 2020, 26, 13779–13782.

[26]

Liu, Y. L.; Liu, X. Y.; Feng, L.; Shao, L. X.; Li, S. J.; Tang, J.; Cheng, H.; Chen, Z.; Huang, R.; Xu, H. C. et al. Two-dimensional metal-organic framework nanosheets: Synthesis and applications in electrocatalysis and photocatalysis. ChemSusChem 2022, 15, e202102603.

[27]

Qin, X. L.; Huang, Y.; Wang, K.; Xu, T. T.; Wang, Y. L.; Liu, P. B.; Kang, Y.; Zhang, Y. Novel hierarchically porous Ti-MOFs/nitrogen-doped graphene nanocomposite served as high efficient oxygen reduction reaction catalyst for fuel cells application. Electrochim. Acta 2019, 297, 805–813.

[28]

Tang, Y. J.; Zheng, S. S.; Cao, S.; Yang, F. Y.; Guo, X. T.; Zhang, S. T.; Xue, H. G.; Pang, H. Hollow mesoporous carbon nanospheres space-confining ultrathin nanosheets superstructures for efficient capacitive deionization. J. Colloid Interface Sci. 2022, 626, 1062–1069.

[29]

Du, M.; Geng, P. B.; Pei, C. X.; Jiang, X. Y.; Shan, Y. Y.; Hu, W. H.; Ni, L. B.; Pang, H. High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2022, 61, e202209350.

[30]

Geng, P. B.; Du, M.; Wu, C. S.; Luo, T. X.; Zhang, Y.; Pang, H. PPy-constructed core–shell structures from MOFs for confining lithium polysulfides. Inorg. Chem. Front. 2022, 9, 2389–2394.

[31]

Wu, Z. Z.; Adekoya, D.; Huang, X.; Kiefel, M. J.; Xie, J.; Xu, W.; Zhang, Q. C.; Zhu, D. B.; Zhang, S. Q. Highly conductive two-dimensional metal-organic frameworks for resilient lithium storage with superb rate capability. ACS Nano 2020, 14, 12016–12026.

[32]

Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 2021, 13, 203.

[33]

Qi, C.; Xu, L.; Wang, J.; Li, H. L.; Zhao, C. C.; Wang, L. N.; Liu, T. X. Titanium-containing metal-organic framework modified separator for advanced lithium-sulfur batteries. ACS Sustain. Chem. Eng. 2020, 8, 12968–12975.

[34]

Zhang, F. P.; Chen, L.; Zhang, Y. L.; Peng, Y. Y.; Luo, X.; Xu, Y. S.; Shi, Y. L. Engineering Co/CoO heterojunctions stitched in mulberry-like open-carbon nanocages via a metal-organic frameworks in- situ sacrificial strategy for performance-enhanced zinc-air batteries. Chem. Eng. J. 2022, 447, 137490.

[35]

Zhang, Y. T.; Zhu, J.; Liu, Z. Y.; Li, S. B.; Huang, H.; Jiang, B. X. Microwave-assisted synthesis of Zr-based metal-organic polyhedron: Serving as efficient visible-light photocatalyst for Cr(VI) reduction. Inorg. Chim. Acta 2022, 543, 121204.

[36]

Azbell, T. J.; Pitt, T. A.; Bollmeyer, M. M.; Cong, C.; Lancaster, K. M.; Milner, P. J. Ionothermal synthesis of metal-organic frameworks using low-melting metal salt precursors. Angew. Chem., Int. Ed. 2023, 62, e202218252.

[37]

Bashar, B. S.; Kareem, H. A.; Hasan, Y. M.; Ahmad, N.; Alshehri, A. M.; Al-Majdi, K.; Hadrawi, S. K.; Al Kubaisy, M. M. R.; Qasim, M. T. Application of novel Fe3O4/Zn-metal organic framework magnetic nanostructures as an antimicrobial agent and magnetic nanocatalyst in the synthesis of heterocyclic compounds. Front. Chem. 2022, 10, 1014731.

[38]

Zhou, J. J.; Liu, H.; Lin, Y. C.; Zhou, C.; Huang, A. S. Synthesis of well-shaped and high-crystalline Ce-based metal organic framework for CO2/CH4 separation. Microporous Mesoporous Mater. 2020, 302, 110224.

[39]

Skoda, D.; Kazda, T.; Hanulikova, B.; Cech, O.; Vykoukal, V.; Michalicka, J.; Cudek, P.; Kuritka, I. Vanadium metal-organic frameworks derived VO x /carbon nano-sheets and paperclip-like VO x /nitrogen-doped carbon nanocomposites for sodium-ion battery electrodes. Mater. Chem. Phys. 2022, 278, 125584.

[40]

Yuan, R. R.; He, H. M. Constructing a 3D porous Co(II)-organic framework: Synthesis, characterization and chemical transformation of epoxide and CO2 into cyclic carbonate. Inorg. Chem. Commun. 2020, 121, 108235.

[41]

Abo El-Yazeed, W. S.; Abou El-Reash, Y. G.; Elatwy, L. A.; Ahmed, A. I. Novel bimetallic Ag-Fe MOF for exceptional Cd and Cu removal and 3,4-dihydropyrimidinone synthesis. J. Taiwan Inst. Chem. Eng. 2020, 114, 199–210.

[42]

Shan, Y.; Zhang, G. X.; Yin, W.; Pang, H.; Xu, Q. Recent progress in Prussian blue/Prussian blue analogue-derived metallic compounds. Bull. Chem. Soc. Jpn. 2022, 95, 230–260.

[43]

Abánades Lázaro, I.; Mazarakioti, E. C.; Andres-Garcia, E.; Vieira, B. J. C.; Waerenborgh, J. C.; Vitórica-Yrezábal, I. J.; Giménez-Marqués, M.; Mínguez Espallargas, G. Ultramicroporous iron-isonicotinate MOFs combining size-exclusion kinetics and thermodynamics for efficient CO2/N2 gas separation. J. Mater. Chem. A 2023, 11, 5320–5327.

[44]

Lee, G.; Yoon, J. H.; Kwon, K.; Han, H.; Song, J. H.; Lim, K. S.; Lee, W. R. Dimensional selective syntheses of metal-organic frameworks using mixed organic ligands. Inorg. Chim. Acta 2020, 513, 119739.

[45]

Shah, R.; Ali, S.; Ali, S.; Xia, P. F.; Raziq, F.; Adnan; Mabood, F.; Shah, S.; Zada, A.; Ismail, P. M. et al. Amino functionalized metal-organic framework/RGO composite electrode for flexible Li-ion batteries. J. Alloys Compd. 2023, 936, 168183.

[46]

Guo, X. T.; Li, W. T.; Geng, P. B.; Zhang, Q. Y.; Pang, H.; Xu, Q. Construction of SiO x /nitrogen-doped carbon superstructures derived from rice husks for boosted lithium storage. J. Colloid Interface Sci. 2022, 606, 784–792.

[47]

He, S. H.; Li, Z. P.; Wang, J. Q. Bimetallic MOFs with tunable morphology: Synthesis and enhanced lithium storage properties. J. Solid State Chem. 2022, 307, 122726.

[48]

Hou, J. M.; Guo, Y. P.; Zhang, Y. R.; Li, J. Z.; Xu, Y. P.; Fang, Z. X.; Yang, J.; Wu, M. Q. Facile green and sustainable synthesis of MnO@rGO as electrochemically stable anode for lithium-ion batteries. Mater. Lett. 2022, 325, 132761.

[49]

Wang, M. X. Tremella-like NiO/NiCo2O4 nanocomposites as excellent anodes for cyclable lithium-ion batteries. J. Cryst. Growth 2022, 589, 126685.

[50]

Li, T.; Tong, Y. H.; Li, J. W.; Kong, Z.; Liu, X. X.; Xu, H. Y.; Xu, H.; Wang, K. L.; Jin, H. Hericium erinaceus-like copper-based MOFs as anodes for high performance lithium-ion batteries. ACS Appl. Energy Mater. 2021, 4, 11400–11407

[51]

Huang, K. S.; Li, B.; Zhao, M. M.; Qiu, J. Q.; Xue, H. G.; Pang, H. Synthesis of lithium metal silicates for lithium ion batteries. Chin. Chem. Lett. 2017, 28, 2195–2206.

[52]

Choi, D.; Lim, S.; Han, D. Advanced metal-organic frameworks for aqueous sodium-ion rechargeable batteries. J. Energy Chem. 2021, 53, 396–406.

[53]

Zhou, J. E.; Zhong, H.; Zhang, Y. Z.; Huang, Q. H.; Zhang, B. H.; Zeb, A.; Xu, Z. G.; Lin, X. M. An oxygen-deficient strategy to boost lithium storage of metal-organic framework-derived ZnTiO3/TiO2/C composite anodes. Chem. Eng. J. 2022, 450, 137448.

[54]

Liu, H.; Zhao, Y. Y.; Zhou, C.; Mu, B.; Chen, L. Microwave-assisted synthesis of Zr-based metal-organic framework (Zr-fum-fcu-MOF) for gas adsorption separation. Chem. Phys. Lett. 2021, 780, 138906.

[55]

Li, Q. L.; Liu, Y. B.; Niu, S. Y.; Li, C. H.; Chen, C.; Liu, Q. Q.; Huo, J. Microwave-assisted rapid synthesis and activation of ultrathin trimetal-organic framework nanosheets for efficient electrocatalytic oxygen evolution. J. Colloid Interface Sci. 2021, 603, 148–156.

[56]

Wang, W. J.; Sun, Z. H.; Chen, S. C.; Qian, J. F.; He, M. Y.; Chen, Q. Microwave-assisted fabrication of a mixed-ligand [Cu43-OH)2]-cluster-based metal-organic framework with coordinatively unsaturated metal sites for carboxylation of terminal alkynes with carbon dioxide. Appl. Organomet. Chem. 2021, 35, e6288.

[57]

Skoda, D.; Kazda, T.; Munster, L.; Hanulikova, B.; Styskalik, A.; Eloy, P.; Debecker, D. P.; Vyroubal, P.; Simonikova, L.; Kuritka, I. Microwave-assisted synthesis of a manganese metal-organic framework and its transformation to porous MnO/carbon nanocomposite utilized as a shuttle suppressing layer in lithium-sulfur batteries. J. Mater. Sci. 2019, 54, 14102–14122.

[58]

Jiang, L. L.; Zeng, X. Z.; Li, M. K.; Wang, M. Q.; Su, T. Y.; Tian, X. C.; Tang, J. Rapid electrochemical synthesis of HKUST-1 on indium tin oxide. RSC Adv. 2017, 7, 9316–9320.

[59]

Vo, T. K.; Le, V. N.; Quang, D. T.; Song, M.; Kim, D.; Kim, J. Rapid defect engineering of UiO-67 (Zr) via microwave-assisted continuous-flow synthesis: Effects of modulator species and concentration on the toluene adsorption. Microporous Mesoporous Mater. 2020, 306, 110405.

[60]

González, L.; Gil-San-Millán, R.; Navarro, J. A. R.; Maldonado, C. R.; Barea, E.; Carmona, F. J. Green synthesis of zirconium MOF-808 for simultaneous phosphate recovery and organophosphorus pesticide detoxification in wastewater. J. Mater. Chem. A 2022, 10, 19606–19611.

[61]

Appelhans, L. N.; Hughes, L.; McKenzie, B.; Rodriguez, M.; Griego, J.; Briscoe, J.; Moorman, M.; Frederick, E.; Wright, J. B. Facile microwave synthesis of zirconium metal-organic framework thin films on gold and silicon and application to sensor functionalization. Microporous Mesoporous Mater. 2021, 323, 111133.

[62]

da Trindade, L. G.; Zanchet, L.; Dreon, R.; Souza, J. C.; Assis, M.; Longo, E.; Martini, E. M. A.; Chiquito, A. J.; Pontes, F. M. Microwave-assisted solvothermal preparation of Zr-BDC for modification of proton exchange membranes made of SPEEK/PBI blends. J. Mater. Sci. 2020, 55, 14938–14952.

[63]

Salahdin, O. D.; Patra, I.; Ansari, M. J.; Emad Izzat, S.; Uktamov, K. F.; Abid, M. K.; Mahdi, A. B.; Hammid, A. T.; Mustafa, Y. F.; Sharma, H. Synthesis of efficient cobalt-metal organic framework as reusable nanocatalyst in the synthesis of new 1,4-dihydropyridine derivatives with antioxidant activity. Front. Chem. 2022, 10, 932902.

[64]

Hu, L.; Wang, Q. S.; Zhu, X. D.; Meng, T.; Huang, B. B.; Yang, J. D.; Lin, X. M.; Tong, Y. X. Novel Fe4-based metal-organic cluster-derived iron oxides/S,N dual-doped carbon hybrids for high-performance lithium storage. Nanoscale 2021, 13, 716–723.

[65]

Vaitsis, C.; Kanellou, E.; Pandis, P. K.; Papamichael, I.; Sourkouni, G.; Zorpas, A. A.; Argirusis, C. Sonochemical synthesis of zinc adipate metal-organic framework (MOF) for the electrochemical reduction of CO2: MOF and circular economy potential. Sustain. Chem. Pharm. 2022, 29, 100786.

[66]

Yu, K.; Lee, Y. R.; Seo, J. Y.; Baek, K. Y.; Chung, Y. M.; Ahn, W. S. Sonochemical synthesis of Zr-based porphyrinic MOF-525 and MOF-545: Enhancement in catalytic and adsorption properties. Microporous Mesoporous Mater. 2021, 316, 110985.

[67]

Beamish-Cook, J.; Shankland, K.; Murray, C. A.; Vaqueiro, P. Insights into the mechanochemical synthesis of MOF-74. Cryst. Growth Des. 2021, 21, 3047–3055.

[68]

Cindro, N.; Tireli, M.; Karadeniz, B.; Mrla, T.; Užarević, K. Investigations of thermally controlled mechanochemical milling reactions. ACS Sustain. Chem. Eng. 2019, 7, 16301–16309.

[69]

Wu, D. N.; Li, X. C.; Zheng, J.; He, C. J.; Zhang, J.; Xie, Y. R.; Li, Y. F.; Tang, B. H. J.; Rui, Y. C.; Liu, F. J. Self-healable metal-organic gel membranes as anodes with high lithium storage. Electrochim. Acta 2021, 386, 138334.

[70]

Li, L.; Wang, Q. M.; Zhang, X. Y.; Fang, L. D.; Li, X. T.; Zhang, W. M. Unique three-dimensional Co3O4@N-CNFs derived from ZIFs and bacterial cellulose as advanced anode for sodium-ion batteries. Appl. Surf. Sci. 2020, 508, 145295.

[71]

Xia, S. B.; Huang, W. J.; Shen, X.; Liu, J. M.; Cheng, F. X.; Guo, H.; Liu, J. J. Fabrication of porous Ni/CoFe2O4@C composite for pseudocapacitive lithium storage. J. Alloys Compd. 2021, 854, 157177.

[72]

Liu, Y. Y.; Sun, K.; Jiang, J. C.; Zhou, W. S.; Shang, Y.; Du, C. X.; Li, B. J. Metallurgical pyrolysis toward Co@nitrogen-doped carbon composite for lithium storage. Green Energy Environ. 2021, 6, 91–101.

[73]

Xue, Y. S.; Cheng, W. W.; Luo, X. M.; Cao, J. P.; Xu, Y. Multifunctional polymolybdate-based metal-organic framework as an efficient catalyst for the CO2 cycloaddition and as the anode of a lithium-ion battery. Inorg. Chem. 2019, 58, 13058–13065.

[74]

Chen, Y. Y.; Chen, J. H.; Liu, J. W.; Lin, Z.; Hu, X.; Lin, X. M.; Xu, Z. G.; Zeb, A. Metal-organic framework-derived mixed-phase anatase/rutile TiO2 towards boosted lithium storage: Surface engineering and design strategy through crystal phase transition. Mater. Today Nano 2022, 20, 100265.

[75]

Mallarabanavadi Ravikumar, M.; Rajshekar Shetty, V.; Suresh, G. S. Synthesis and applications of aurin tricarboxylic acid-copper metal organic framework for rechargeable lithium-ion batteries. J. Electrochem. Soc. 2020, 167, 100533.

[76]

Cui, X.; Liang, M. X.; Wang, L.; Li, L. G.; Peng, Q. Q.; Dong, H. H.; Qi, S.; Sun, W. W.; Lv, L. P.; Chen, X. F. et al. High structural stability and reaction mechanism of porous carbon nanobox encapsulated monodisperse CoP nanoparticles for high-performance lithium-ion battery. Batter. Supercaps 2022, 5, e202200271.

[77]

Hu, W. H.; Zheng, M. B.; Duan, H. Y.; Zhu, W.; Wei, Y.; Zhang, Y.; Pan, K. M.; Pang, H. Heat treatment-induced Co3+ enrichment in CoFePBA to enhance OER electrocatalytic performance. Chin. Chem. Lett. 2022, 33, 1412–1416.

[78]

Shi, X.; Lin, X. J.; Liu, S. T.; Li, A.; Chen, X. H.; Zhou, J. S.; Ma, Z. K.; Song, H. H. Flake-like carbon coated Mn2SnO4 nanoparticles as anode material for lithium-ion batteries. Chem. Eng. J. 2019, 372, 269–276.

[79]

Gao, X. Y.; Zhu, G.; Zhang, X. J.; Hu, T. Porous carbon materials derived from in situ construction of metal-organic frameworks for high-performance sodium ions batteries. Microporous Mesoporous Mater. 2019, 273, 156–162.

[80]

Li, J. P.; Li, Y. J.; Ma, X. D.; Zhang, K.; Hu, J. H.; Yang, C. H.; Liu, M. L. A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries. Chem. Eng. J. 2020, 384, 123328.

[81]

Fan, L.; Guo, X. T.; Hang, X. X.; Pang, H. Synthesis of truncated octahedral zinc-doped manganese hexacyanoferrates and low-temperature calcination activation for lithium-ion battery. J. Colloid Interface Sci. 2022, 607, 1898–1907.

[82]

Fang, Y. X.; Chen, Y. L.; Zeng, L. X.; Yang, T.; Xu, Q. X.; Wang, Y. Y.; Zeng, S. H.; Qian, Q. R.; Wei, M. D.; Chen, Q. H. Nitrogen-doped carbon encapsulated zinc vanadate polyhedron engineered from a metal-organic framework as a stable anode for alkali ion batteries. J. Colloid Interface Sci. 2021, 593, 251–265.

[83]

Gu, S.; Liu, D. N.; Zhang, X.; Huang, H.; Zhang, Y. L.; Cheng, Z. Q.; Liu, Q.; Meng, L. Q.; Wang, J. H.; Chu, P. K. et al. Finite phosphorene derived partial reduction of metal organic framework nanofoams for enhanced lithium storage capability. J. Power Sources 2022, 525, 231025.

[84]

Li, N.; Guo, X. W.; Tang, X. R.; Xing, Y. C.; Pang, H. Three-dimensional Co2V2O7· nH2O superstructures assembled by nanosheets for electrochemical energy storage. Chin. Chem. Lett. 2022, 33, 462–465.

[85]

Furukawa, H.; Miller, M. A.; Yaghi, O. M. Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks. J. Mater. Chem. 2007, 17, 3197–3204.

[86]

Li, X. X.; Cheng, F. Y.; Zhang, S. N.; Chen, J. Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2. J. Power Sources 2006, 160, 542–547.

[87]

Yu, L. T.; Zhang, L. G.; Fu, J. J.; Yun, J. M.; Kim, K. H. Hierarchical Tiny-Sb encapsulated in MOFs derived-carbon and TiO2 hollow nanotubes for enhanced Li/Na-ion half-and full-cell batteries. Chem. Eng. J. 2021, 417, 129106.

[88]

Liu, X. F.; Guo, X. Q.; Wang, R.; Liu, Q. C.; Li, Z. J.; Zang, S. Q.; Mak, T. C. W. Manganese cluster-based MOF as efficient polysulfide-trapping platform for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 2838–2844.

[89]

Yuan, Y. F.; Chen, F.; Ye, L. W.; Cai, G. S.; Zhu, M.; Yin, S. M.; Guo, S. Y. Construction of Co3O4@TiO2 heterogeneous mesoporous hollow nanocage-in-nanocage from metal-organic frameworks with enhanced lithium storage properties. J. Alloys Compd. 2019, 790, 814–821.

[90]

Chen, L.; Yang, W. J.; Li, X. Y.; Han, L. J.; Wei, M. D. Co9S8 Embedded into N/S doped carbon composites: In situ derivation from a sulfonate-based metal-organic framework and its electrochemical properties. J. Mater. Chem. A 2019, 7, 10331–10337.

[91]

Zheng, S. S.; Ru, Y.; Xue, H. G.; Pang, H. Fluorinated pillared-layer metal-organic framework microrods for improved electrochemical cycling stability. Chin. Chem. Lett. 2021, 32, 3817–3820.

[92]

Wu, N.; Yang, Y. J.; Jia, T.; Li, T. H.; Li, F.; Wang, Z. Sodium-tin metal-organic framework anode material with advanced lithium storage properties for lithium-ion batteries. J. Mater. Sci. 2020, 55, 6030–6036.

[93]

Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci. 2017, 3, 1063–1069.

[94]

Li, C.; Zhang, C.; Xie, J.; Wang, K. B.; Li, J. Z.; Zhang, Q. C. Ferrocene-based metal-organic framework as a promising cathode in lithium-ion battery. Chem. Eng. J. 2021, 404, 126463.

[95]

Mutahir, S.; Wang, C. X.; Song, J. J.; Wang, L.; Lei, W.; Jiao, X. Y.; Khan, M. A.; Zhou, B. J.; Zhong, Q.; Hao, Q. L. Pristine Co(BDC)TED0.5 a pillared-layer biligand cobalt based metal organic framework as improved anode material for lithium-ion batteries. Appl. Mater. Today 2020, 21, 100813.

[96]

Jiang, Y. C.; Zhao, H. T.; Yue, L. C.; Liang, J.; Li, T. S.; Liu, Q.; Luo, Y. L.; Kong, X. Z.; Lu, S. Y.; Shi, X. F. et al. Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochem. Commun. 2021, 122, 106881.

[97]

Song, J. J.; He, B.; Wang, X. C.; Guo, Y. Q.; Peng, C. Q.; Wang, Y.; Su, Z.; Hao, Q. L. Hollow porous nanocuboids cobalt-based metal-organic frameworks with coordination defects as anode for enhanced lithium storage. J. Mater. Sci. 2021, 56, 17178–17190.

[98]

Peng, Y.; Bai, Y.; Liu, C. L.; Cao, S.; Kong, Q. Q.; Pang, H. Applications of metal-organic framework-derived N,P,S doped materials in electrochemical energy conversion and storage. Coord. Chem. Rev. 2022, 466, 214602.

[99]

Zheng, W.; Bi, W. Y.; Gao, X. N.; Zhang, Z. G.; Yuan, W. H.; Li, L. A nickel and cobalt bimetal organic framework with high capacity as an anode material for lithium-ion batteries. Sustain. Energy Fuels 2020, 4, 5757–5764.

[100]

Rambabu, D.; Lakraychi, A. E.; Wang, J. D.; Sieuw, L.; Gupta, D.; Apostol, P.; Chanteux, G.; Goossens, T.; Robeyns, K.; Vlad, A. An electrically conducting Li-ion metal-organic framework. J. Am. Chem. Soc. 2021, 143, 11641–11650.

[101]

Wu, X. Y.; Ru, Y.; Bai, Y.; Zhang, G. X.; Shi, Y. X.; Pang, H. PBA composites and their derivatives in energy and environmental applications. Coord. Chem. Rev. 2022, 451, 214260.

[102]

Wang, Z. K.; Bi, R.; Liu, J. D.; Wang, K. B.; Mao, F. F.; Wu, H.; Bu, Y. Q.; Song, N. H. Polyoxometalate-based Cu/Zn-MOFs with diverse stereo dimensions as anode materials in lithium ion batteries. Chem. Eng. J. 2021, 404, 127117.

[103]

Gao, C. W.; Jiang, Z. J.; Qi, S. B.; Wang, P. X.; Jensen, L. R.; Johansen, M.; Christensen, C. K.; Zhang, Y. F.; Ravnsbæk, D. B.; Yue, Y. Z. Metal-organic framework glass anode with an exceptional cycling-induced capacity enhancement for lithium-ion batteries. Adv. Mater. 2022, 34, 2110048.

[104]

Dai, Z. X.; Long, Z. W.; Li, R. R.; Shi, C.; Qiao, H.; Wang, K. L.; Liu, K. Metal-organic framework-structured porous ZnCo2O4/C composite nanofibers for high-rate lithium-ion batteries. ACS Appl. Energy Mater. 2020, 3, 12378–12384.

[105]

Yin, C. J.; Xu, L. F.; Pan, Y. S.; Pan, C. L. Metal-organic framework as anode materials for lithium-ion batteries with high capacity and rate performance. ACS Appl. Energy Mater. 2020, 3, 10776–10786.

[106]

Chang, Z.; Qiao, Y.; Deng, H.; Yang, H. J.; He, P.; Zhou, H. S. A stable high-voltage lithium-ion battery realized by an in-built water scavenger. Energy Environ. Sci. 2020, 13, 1197–1204.

[107]

Panda, D. K.; Maity, K.; Palukoshka, A.; Ibrahim, F.; Saha, S. Li+ ion-conducting sulfonate-based neutral metal-organic framework. ACS Sustain. Chem. Eng. 2019, 7, 4619–4624.

[108]

Zhou, X. Y.; Yu, Y. W.; Yang, J.; Wang, H.; Jia, M.; Tang, J. J. Cross-linking tin-based metal-organic frameworks with encapsulated silicon nanoparticles: High-performance anodes for lithium-ion batteries. ChemElectroChem 2019, 6, 2056–2063.

[109]

Wang, J.; Kong, F. J.; Chen, J. Y.; Han, Z. S.; Tao, S.; Qian, B.; Jiang, X. F. Metal-organic-framework-derived FeSe2@carbon embedded into nitrogen-doped graphene sheets with binary conductive networks for rechargeable batteries. ChemElectroChem 2019, 6, 2805–2811.

[110]

Zhang, J.; Zhou, L.; Sun, Q. J.; Ming, H.; Sun, L. S.; Wang, C. L.; Wu, Y. Q.; Guan, K.; Wang, L. M.; Ming, J. Metal-organic coordination strategy for obtaining metal-decorated Mo-based complexes: Multi-dimensional structural evolution and high-rate lithium-ion battery applications. Chem.—Eur. J. 2019, 25, 8813–8819.

[111]

Xu, H. J.; Wang, L.; Zhong, J.; Wang, T.; Cao, J. H.; Wang, Y. Y.; Li, X. Q.; Fei, H. L.; Zhu, J.; Duan, X. D. Ultra-stable and high-rate lithium ion batteries based on metal-organic framework-derived In2O3 nanocrystals/hierarchically porous nitrogen-doped carbon anode. Energy Environ. Mater. 2020, 3, 177–185.

[112]

Yang, Z.; Wang, J.; Wu, H. T.; Kong, F. J.; Yin, W. Y.; Cheng, H. J.; Tang, X. Y.; Qian, B.; Tao, S.; Yi, J. et al. MOFs derived Co1− x S nanoparticles embedded in N-doped carbon nanosheets with improved electrochemical performance for lithium ion batteries. Appl. Surf. Sci. 2019, 479, 693–699.

[113]

Wang, Y. L.; Song, J.; Wong, W. Y. Constructing 2D sandwich-like MOF/MXene heterostructures for durable and fast aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2022, 62, e202218343.

[114]

Yan, Z. L.; Liu, J. Y.; Lin, Y. F.; Deng, Z.; He, X. Q.; Ren, J. G.; He, P.; Pang, C. L.; Xiao, C. M.; Yang, D. R. et al. Metal-organic frameworks-derived CoMOF-D@Si@C core–shell structure for high-performance lithium-ion battery anode. Electrochim. Acta 2021, 390, 138814.

[115]

Palani, R.; Wu, Y. S.; Wu, S. H.; Jose, R.; Yang, C. C. Metal-organic framework-derived ZrO2/NiCo2O4/graphene mesoporous cake-like structure as enhanced bifunctional electrocatalytic cathodes for long life Li-O2 batteries. Electrochim. Acta 2022, 412, 140147.

[116]

Jiang, Y.; Shen, L. X.; Ma, H. T.; Ma, J. L.; Yang, K.; Geng, X. D.; Zhang, H. W.; Liu, Q. L.; Zhu, N. A low-strain metal organic framework for ultra-stable and long-life sodium-ion batteries. J. Power Sources 2022, 541, 231701.

[117]

Jin, W. W.; Zou, J. Z.; Zeng, S. Z.; Inguva, S.; Xu, G. Z.; Li, X. H.; Peng, M.; Zeng, X. R. Tailoring the structure of clew-like carbon skeleton with 2D Co-MOF for advanced Li-S cells. Appl. Surf. Sci. 2019, 469, 404–413.

[118]

Liu, Z. C.; Wang, D.; Mu, H. L.; Zhang, C. J.; Wu, L. Q.; Feng, L.; Sun, X. Y.; Zhang, G. S.; Wu, J.; Wen, G. W. Nanosized monometallic selenides heterostructures implanted into metal organic frameworks-derived carbon for efficient lithium storage. J. Alloys Compd. 2021, 884, 161151.

[119]

Liu, K. Y.; Meng, X. H.; Yan, L. J.; Fan, M. Q.; Wu, Y. C.; Li, C.; Ma, T. L. Sn/SnO x core–shell structure encapsulated in nitrogen-doped porous carbon frameworks for enhanced lithium storage. J. Alloys Compd. 2022, 896, 163009.

[120]

Li, L.; Luo, Y. H.; Wang, Y. N.; Zhang, Z. S.; Wu, F. C.; Li, J. D. Rational design of a well-aligned metal-organic framework nanopillar array for superior lithium-sulfur batteries. Chem. Eng. J. 2023, 454, 140043.

[121]

Han, D. D.; Wang, P. F.; Li, P.; Shi, J.; Liu, J.; Chen, P. J.; Zhai, L. P.; Mi, L. W.; Fu, Y. Z. Homogeneous and fast Li-ion transport enabled by a novel metal-organic-framework-based succinonitrile electrolyte for dendrite-free Li deposition. ACS Appl. Mater. Interfaces 2021, 13, 52688–52696.

[122]

Zheng, Y.; Yang, N.; Gao, R.; Li, Z. Q.; Dou, H. Z.; Li, G. R.; Qian, L. T.; Deng, Y. P.; Liang, J. Q.; Yang, L. X. et al. “Tree-trunk” design for flexible quasi-solid-state electrolytes with hierarchical ion-channels enabling ultralong-life lithium-metal batteries. Adv. Mater. 2022, 34, 2203417

[123]

Hao, Z. D.; Wu, Y.; Zhao, Q.; Tang, J. D.; Zhang, Q. Q.; Ke, X. X.; Liu, J. B.; Jin, Y. H.; Wang, H. Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes. Adv. Funct. Mater. 2021, 31, 2102938.

[124]

Li, D. X.; Wang, J.; Guo, S. J.; Xiao, Y. B.; Zeng, Q. H.; He, W. C.; Gan, L. Y.; Zhang, Q.; Huang, S. M. Molecular-scale interface engineering of metal-organic frameworks toward ion transport enables high-performance solid lithium metal battery. Adv. Funct. Mater. 2020, 30, 2003945.

[125]

Li, Z. J.; Liu, Q. Q.; Gao, L. N.; Xu, Y. F.; Kong, X. Q.; Luo, Y.; Peng, H. X.; Ren, Y. R.; Wu, H. B. Quasi-solid electrolyte membranes with percolated metal-organic frameworks for practical lithium-metal batteries. J. Energy Chem. 2021, 52, 354–360.

[126]

Jiang, X. B.; Shao, M. Y.; Li, K.; Ding, L.; Zeng, M. Facile synthesis and lithium storage mechanism study of directly usable tin-based metal organic framework. J. Electroanal. Chem. 2022, 912, 116268.

[127]

Zhou, D.; Ni, J. F.; Li, L. Self-supported multicomponent CPO-27 MOF nanoarrays as high-performance anode for lithium storage. Nano Energy 2019, 57, 711–717.

[128]

Chen, G. L.; Li, Y. J.; Zhong, W. T.; Zheng, F. H.; Hu, J. H.; Ji, X. H.; Liu, W. Z.; Yang, C. H.; Lin, Z.; Liu, M. L. MOFs-derived porous Mo2C-C nano-octahedrons enable high-performance lithium-sulfur batteries. Energy Stor. Mater. 2020, 25, 547–554.

[129]

Liu, L.; Sun, C. W. Flexible quasi-solid-state composite electrolyte membrane derived from a metal-organic framework for lithium-metal batteries. ChemElectroChem 2020, 7, 707–715.

[130]

Zhu, X. Y.; Chang, Z.; Yang, H. J.; Qian, Y. M.; He, P.; Zhou, H. S. Sifting weakly-coordinated solvents within solvation sheath through an electrolyte filter for high-voltage lithium-metal batteries. Energy Stor. Mater. 2022, 44, 360–369.

[131]

Liu, Y.; Liu, Q. Q.; Hong, Y. R.; Xu, Y. F.; Chen, Z. R.; Zhao, W.; Hu, Z. K.; Wang, J. W.; Wu, H. B. Solvent sieving separators implement dual electrolyte for high-voltage lithium-metal batteries. Nano Res. 2023, 16, 4901–4907.

[132]

Wu, Q. P.; Zheng, Y. J.; Guan, X.; Xu, J.; Cao, F. H.; Li, C. L. Dynamical SEI reinforced by open-architecture MOF film with stereoscopic lithiophilic sites for high-performance lithium-metal batteries. Adv. Funct. Mater. 2021, 31, 2101034.

[133]

Chen, D. C.; Mukherjee, S.; Zhang, C.; Li, Y.; Xiao, B. B.; Singh, C. V. Two-dimensional square metal organic framework as promising cathode material for lithium-sulfur battery with high theoretical energy density. J. Colloid Interface Sci. 2022, 613, 435–446.

[134]

Park, J. S.; Kim, J. H.; Yang, S. J. Rational design of metal-organic framework-based materials for advanced Li-S batteries. Bull. Korean Chem. Soc. 2021, 42, 148–158.

[135]

Wu, H.; Yang, Y. Q.; Jia, W.; Xiao, R.; Wang, H. Z. Defect-engineered bilayer MOFs separator for high stability lithium-sulfur batteries. J. Alloys Compd. 2021, 874, 159917.

[136]

Bo, R. H.; Taheri, M.; Liu, B. R.; Ricco, R.; Chen, H. J.; Amenitsch, H.; Fusco, Z.; Tsuzuki, T.; Yu, G. H.; Ameloot, R. et al. Hierarchical metal-organic framework films with controllable meso/macroporosity. Adv. Sci. 2020, 7, 2002368.

[137]

Zhang, X. M.; Li, G. R.; Zhang, Y. G.; Luo, D.; Yu, A. P.; Wang, X.; Chen, Z. W. Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries. Nano Energy 2021, 86, 106094.

[138]

Wang, Y.; Deng, Z.; Huang, J. Y.; Li, H. J.; Li, Z. Y.; Peng, X. S.; Tian, Y.; Lu, J. G.; Tang, H. C.; Chen, L. X. et al. 2D Zr-Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li-S battery. Energy Stor. Mater. 2021, 36, 466–477

[139]

Jin, G. F.; Zhang, J. L.; Dang, B. Y.; Wu, F. C.; Li, J. D. Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium-sulfur batteries. Front. Chem. Sci. Eng. 2022, 16, 511–522.

[140]

Li, C.; Zhang, X. F.; Zhang, Q.; Xiao, Y. H.; Fu, Y. Y.; Tan, H. H.; Liu, J. Q.; Wu, Y. C. Theoretical understanding for anchoring effect of MOFs for lithium-sulfur batteries. Comput. Theor. Chem. 2021, 1196, 113110.

[141]

Yao, M. J.; Wang, R.; Zhao, Z. F.; Liu, Y.; Niu, Z. Q.; Chen, J. A flexible all-in-one lithium-sulfur battery. ACS Nano 2018, 12, 12503–12511.

[142]

Zheng, Z. J.; Ye, H.; Guo, Z. P. Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries. Energy Environ. Sci. 2021, 14, 1835–1853.

[143]

Li, Y. J.; Lin, S. Y.; Wang, D. D.; Gao, T. T.; Song, J. W.; Zhou, P.; Xu, Z. K.; Yang, Z. H.; Xiao, N.; Guo, S. J. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Adv. Mater. 2020, 32, 1906722.

[144]

Dang, B. Y.; Gao, D. Y.; Luo, Y. H.; Zhang, Z. S.; Li, J. D.; Wu, F. C. Bifunctional design of cerium-based metal-organic framework-808 membrane modified separator for polysulfide shuttling and dendrite growth inhibition in lithium-sulfur batteries. J. Energy Storage 2022, 52, 104981.

[145]

Zhou, C.; Li, Z. H.; Xu, X.; Mai, L. Q. Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Natl. Sci. Rev. 2021, 8, nwab055.

[146]

Benítez, A.; Amaro-Gahete, J.; Esquivel, D.; Romero-Salguero, F. J.; Morales, J.; Caballero, Á. MIL-88A metal-organic framework as a stable sulfur-host cathode for long-cycle Li-S batteries. Nanomaterials 2020, 10, 424.

[147]

Yang, D. W.; Liang, Z. F.; Tang, P. Y.; Zhang, C. Q.; Tang, M. X.; Li, Q. Z.; Biendicho, J. J.; Li, J. S.; Heggen, M.; Dunin-Borkowski, R. E. et al. A high conductivity 1D π–d conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium-sulfur batteries. Adv. Mater. 2022, 34, 2108835.

[148]

Geng, P. B.; Du, M.; Guo, X. T.; Pang, H.; Tian, Z. Q.; Braunstein, P.; Xu, Q. Bimetallic metal-organic framework with high-adsorption capacity toward lithium polysulfides for lithium-sulfur batteries. Energy Environ. Mater. 2022, 5, 599–607.

[149]

Wang, S.; Huang, F. Y.; Zhang, Z. F.; Cai, W. B.; Jie, Y. L.; Wang, S. Y.; Yan, P. F.; Jiao, S. H.; Cao, R. G. Conductive metal-organic frameworks promoting polysulfides transformation in lithium-sulfur batteries. J. Energy Chem. 2021, 63, 336–343.

[150]

Li, Q.; Zhang, Y. F.; Zhang, G. X.; Wang, Y. X.; Pang, H. Recent advances in the development of perovskite@metal-organic frameworks composites. Natl. Sci. Open 2023, 2, 20220065.

[151]

Cui, G. L.; Li, G. R.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Wang, D. R.; Wang, J. Y.; Zhang, Z.; Wang, X.; Chen, Z. W. Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries. Nano Energy 2020, 72, 104685.

[152]

Qi, X. H.; Cai, D.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. Ionic liquid-impregnated ZIF-8/polypropylene solid-like electrolyte for dendrite-free lithium-metal batteries. ACS Appl. Mater. Interfaces 2022, 14, 6859–6868.

[153]

Rana, M.; Al-Fayaad, H. A.; Luo, B.; Lin, T.; Ran, L. B.; Clegg, J. K.; Gentle, I.; Knibbe, R. Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. Nano Energy 2020, 75, 105009.

[154]

Chu, Z. H.; Gao, X. C.; Wang, C. Y.; Wang, T. Y.; Wang, G. X. Metal-organic frameworks as separators and electrolytes for lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 7301–7316.

[155]

Chang, Z.; Qiao, Y.; Wang, J.; Deng, H.; He, P.; Zhou, H. S. Fabricating better metal-organic frameworks separators for Li-S batteries: Pore sizes effects inspired channel modification strategy. Energy Stor. Mater. 2020, 25, 164–171.

[156]

Chang, Z.; Qiao, Y.; Wang, J.; Deng, H.; Zhou, H. S. Two-dimensional metal-organic framework with perpendicular one-dimensional nano-channel as precise polysulfide sieves for highly efficient lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 4870–4879.

[157]

Parse, H. B.; Patil, I.; Kakade, B.; Swami, A. Cobalt nanoparticles encapsulated in N-doped carbon on the surface of MXene (Ti3C2) play a key role for electroreduction of oxygen. Energy Fuels 2021, 35, 17909–17918.

[158]

Majidi, L.; Ahmadiparidari, A.; Shan, N. N.; Kumar Singh, S.; Zhang, C. J.; Huang, Z. H.; Rastegar, S.; Kumar, K.; Hemmat, Z.; Ngo, A. T. et al. Nanostructured conductive metal organic frameworks for sustainable low charge overpotentials in Li-air batteries. Small 2022, 18, 2102902.

[159]

Zhan, Y.; Yu, S. Z.; Luo, S. H.; Feng, J.; Wang, Q. Nitrogen-coordinated CoS2@NC yolk–shell polyhedrons catalysts derived from a metal-organic framework for a highly reversible Li-O2 battery. ACS Appl. Mater. Interfaces 2021, 13, 17658–17667.

[160]

Zhao, Y. J.; Ding, L.; Wang, X. M.; Yang, X. M.; He, J. B.; Yang, B. J.; Wang, B. N.; Zhang, D. W.; Li, Z. W. Yolk–shell ZIF-8@ZIF-67 derived Co3O4@NiCo2O4 catalysts with effective electrochemical properties for Li-O2 batteries. J. Alloys Compd. 2021, 861, 157945.

[161]

Guo, S. Q.; Sun, Y. X.; Wang, J. N.; Peng, L. C.; Li, H. Y.; Li, C. J. Bimetallic ZIF-derived cobalt nanoparticles anchored on N- and S-codoped porous carbon nanofibers as cathode catalyst for Li-O2 batteries. Electrochim. Acta 2022, 418, 140279.

[162]

Li, J.; Deng, Y. J.; Leng, L. M.; Liu, M. R.; Huang, L. L.; Tian, X. L.; Song, H. Y.; Lu, X. Y.; Liao, S. J. MOF-templated sword-like Co3O4@NiCo2O4 sheet arrays on carbon cloth as highly efficient Li-O2 battery cathode. J. Power Sources 2020, 450, 227725.

[163]

Liu, D.; Zhang, X. M.; Wang, Y. J.; Song, S. Y.; Cui, L. F.; Fan, H. B.; Qiao, X. C.; Fang, B. Z. A new perspective of lanthanide metal-organic frameworks: Tailoring Dy-BTC nanospheres for rechargeable Li-O2 batteries. Nanoscale 2020, 12, 9524–9532.

[164]

Wei, L.; Ma, Y.; Gu, Y. T.; Yuan, X. Z.; He, Y.; Li, X. J.; Zhao, L.; Peng, Y.; Deng, Z. Ru-embedded highly porous carbon nanocubes derived from metal-organic frameworks for catalyzing reversible Li2O2 formation. ACS Appl. Mater. Interfaces 2021, 13, 28295–28303.

[165]

Liu, H. X.; Zhao, L. Y.; Xing, Y.; Lai, J. N.; Li, L.; Wu, F.; Chen, N.; Chen, R. J. Enhancing the long cycle performance of Li-O2 batteries at high temperatures using metal-organic framework-based electrolytes. ACS Appl. Energy Mater. 2022, 5, 7185–7191.

[166]

Wang, X. X.; Du, D. Y.; Xu, H. Y.; Yan, Y.; Wen, X. J.; Ren, L. F.; Shu, C. Z. NiMn-based metal-organic framework with optimized eg orbital occupancy as efficient bifunctional electrocatalyst for lithium-oxygen batteries. Chem. Eng. J. 2023, 452, 139524.

[167]

Zhao, G. Y.; Liu, Y. F.; Tang, L.; Zhang, L.; Sun, K. N. Capacitive behavior based on the ultrafast mass transport in a self-supported lithium oxygen battery cathode. ACS Appl. Energy Mater. 2019, 2, 2113–2121.

[168]

Zheng, S. S.; Li, Q.; Xue, H. G.; Pang, H.; Xu, Q. A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage. Natl. Sci. Rev. 2020, 7, 305–314.

[169]

Palani, R.; Karuppiah, C.; Yang, C. C.; Piraman, S. Metal-organic frameworks derived spinel NiCo2O4/graphene nanosheets composite as a Bi-functional cathode for high energy density Li-O2 battery applications. Int. J. Hydrogen Energy 2021, 46, 14288–14300.

[170]

Dou, Y. Y.; Lian, R. Q.; Zhang, Y. T.; Zhao, Y. Y.; Chen, G.; Wei, Y. J.; Peng, Z. Q. Co9S8@carbon porous nanocages derived from a metal-organic framework: A highly efficient bifunctional catalyst for aprotic Li-O2 batteries. J. Mater. Chem. A 2018, 6, 8595–8603.

[171]

Lv, T. T.; Zhu, G. Y.; Dong, S. Y.; Kong, Q. Q.; Peng, Y.; Jiang, S.; Zhang, G. X.; Yang, Z. L.; Yang, S. Y.; Dong, X. C. et al. Co-intercalation of dual charge carriers in metal-ion-confining layered vanadium oxide nanobelts for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202216089.

[172]

Zheng, S. S.; Sun, Y.; Xue, H. G.; Braunstein, P.; Huang, W.; Pang, H. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance. Natl. Sci. Rev. 2022, 9, nwab197.

[173]

Zhen, S. Y.; Wu, H. T.; Wang, Y.; Li, N.; Chen, H. S.; Song, W. L.; Wang, Z. H.; Sun, W.; Sun, K. N. Metal-organic framework derived hollow porous CuO-CuCo2O4 dodecahedrons as a cathode catalyst for Li-O2 batteries. RSC Adv. 2019, 9, 16288–16295.

[174]

Lang, X. S.; Dong, C. X.; Cai, K. D.; Li, L.; Zhang, Q. G. Highly active cluster structure manganese-based metal organic frameworks (Mn-MOFs) like corals in the sea synthesized by facile solvothermal method as gas electrode catalyst for lithium-oxygen batteries. Int. J. Energy Res. 2020, 44, 1256–1263.

[175]

Wang, J. J.; Yue, X. Y.; Liu, Z.; Xie, Z. K.; Zhao, Q.; Abudula, A.; Guan, G. Q. Trimetallic sulfides derived from tri-metal-organic frameworks as anode materials for advanced sodium ion batteries. J. Colloid Interface Sci. 2022, 625, 248–256.

[176]

Zhang, W. M.; Yue, Z. W.; Wang, Q. M.; Zeng, X. X.; Fu, C. C.; Li, Q.; Li, X. T.; Fang, L. D.; Li, L. Carbon-encapsulated CoS2 nanoparticles anchored on n-doped carbon nanofibers derived from ZIF-8/ZIF-67 as anode for sodium-ion batteries. Chem. Eng. J. 2020, 380, 122548.

[177]

Xu, Z. P.; Huang, Y.; Chen, C.; Ding, L.; Zhu, Y. D.; Zhang, Z.; Guang, Z. X. MOF-derived hollow Co(Ni)Se2/N-doped carbon composite material for preparation of sodium ion battery anode. Ceram. Int. 2020, 46, 4532–4542.

[178]

Zhou, H. J.; Zhu, G. Y.; Dong, S. Y.; Liu, P.; Lu, Y. Y.; Zhou, Z.; Cao, S.; Zhang, Y. Z.; Pang, H. Ethanol-induced Ni2+-intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D-printed micro-supercapacitors. Adv. Mater. 2023, 35, 2211523.

[179]

Liu, S. T.; Li, D.; Zhang, G. J.; Sun, D. D.; Zhou, J. S.; Song, H. H. Two-dimensional NiSe2/N-rich carbon nanocomposites derived from Ni-hexamine frameworks for superb Na-ion storage. ACS Appl. Mater. Interfaces 2018, 10, 34193–34201.

[180]

Chen, L.; Han, L. J.; Liu, X. J.; Li, Y. F.; Wei, M. D. General synthesis of sulfonate-based metal-organic framework derived composite of M x S y @N/S-doped carbon for high-performance lithium/sodium ion batteries. Chem.—Eur. J. 2021, 27, 2104–2111.

[181]

Atangana Etogo, C.; Huang, H. W.; Hong, H.; Liu, G. X.; Zhang, L. Metal-organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Stor. Mater. 2020, 24, 167–176.

[182]

Ma, G. Y.; Li, C. J.; Liu, F.; Majeed, M. K.; Feng, Z. Y.; Cui, Y. H.; Yang, J.; Qian, Y. T. Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater. Today Energy 2018, 10, 241–248.

[183]

Jiang, Q. Q.; Wang, L.; Zhao, W. F.; Xu, X. Y.; Li, Z.; Li, Y. X.; Zhou, T. F.; Hu, J. C. Carbon dots decorated on the ultrafine metal sulfide nanoparticles implanted hollow layered double hydroxides nanocages as new-type anodes for potassium-ion batteries. Chem. Eng. J. 2022, 433, 133539.

[184]

Xie, J. P.; Zhu, Y. Q.; Zhuang, N.; Lei, H.; Zhu, W. L.; Fu, Y.; Javed, M. S.; Li, J. L.; Mai, W. J. Rational design of metal organic framework-derived FeS2 hollow nanocages@reduced graphene oxide for K-ion storage. Nanoscale 2018, 10, 17092–17098.

[185]

Deng, Q. J.; Feng, S. S.; Hui, P.; Chen, H. T.; Tian, C. C.; Yang, R.; Xu, Y. H. Exploration of low-cost microporous Fe(Ⅲ)-based organic framework as anode material for potassium-ion batteries. J. Alloys Compd. 2020, 830, 154714.

[186]

Liu, L. L.; Meng, X. H.; Hu, L.; Liang, S.; Yu, L.; Liang, D. W.; Wang, L. L.; Zhou, N. N.; Yang, L.; Yang, X. L. Regular mesoporous structural FeSe@C composite with enhanced reversibility for fast and stable potassium storage. J. Phys. Chem. C 2021, 125, 15812–15820.

[187]

Xie, Y. D.; Zhang, H. W.; Wu, K. D.; Wang, X. Q.; Xiong, D. P.; He, M. Fe3C encapsulated in N-doped carbon as potassium ion battery anode with high capacity and long-term cycling performance. J. Alloys Compd. 2022, 910, 164845.

[188]

Lu, X. L.; Zhang, D. D.; Zhong, J.; Wang, L.; Jiang, L.; Liu, Q.; Shao, G.; Fu, D. F.; Teng, J.; Yang, W. Y. MOF-5 as anodes for high-temperature potassium-ion batteries with ultrahigh stability. Chem. Eng. J. 2022, 432, 134416.

[189]

Mahmood, A.; Ali, Z.; Tabassum, H.; Akram, A.; Aftab, W.; Ali, R.; Khan, M. W.; Loomba, S.; Alluqmani, A.; Adil Riaz, M. et al. Carbon fibers embedded with iron selenide (Fe3Se4) as anode for high-performance sodium and potassium ion batteries. Front. Chem. 2020, 8, 408.

[190]

Nazir, A.; Le, H. T. T.; Nguyen, A. G.; Kim, J.; Park, C. J. Conductive metal organic framework mediated Sb nanoparticles as high-capacity anodes for rechargeable potassium-ion batteries. Chem. Eng. J. 2022, 450, 138408.

[191]

Li, C.; Wang, K. B.; Li, J. Z.; Zhang, Q. C. Nanostructured potassium-organic framework as an effective anode for potassium-ion batteries with a long cycle life. Nanoscale 2020, 12, 7870–7874.

[192]

Deng, Q. J.; Luo, Z. B.; Liu, H. X.; Wang, Y. M.; Zhou, Y. Y.; Yang, R. Self-formed carbon layer on calcium metal-organic framework and RGO composite with high-stable K-storage performance in K-ion batteries. Appl. Surf. Sci. 2022, 571, 151387.

[193]

Li, A.; Li, C. F.; Xiong, P. X.; Zhang, J. F.; Geng, D. L.; Xu, Y. H. Rapid synthesis of layered K x MnO2 cathodes from metal-organic frameworks for potassium-ion batteries. Chem. Sci. 2022, 13, 7575–7580.

[194]

Deng, Q. J.; Luo, Z. B.; Liu, H. X.; Zhou, Y. Y.; Zhou, C.; Yang, R.; Wang, L. L.; Yan, Y. L.; Xu, Y. H. Facile synthesis of Fe-based metal-organic framework and graphene composite as an anode material for K-ion batteries. Ionics 2020, 26, 5565–5573.

[195]

Wang, L.; Wang, H. L.; Cheng, M. R.; Hong, Y. R.; Li, M. J.; Su, H.; Sun, J.; Wang, J. W.; Xu, Y. H. Metal-organic framework@polyacrylonitrile-derived potassiophilic nanoporous carbon nanofiber paper enables stable potassium metal anodes. ACS Appl. Energy Mater. 2021, 4, 6245–6252.

[196]

Yang, H. J.; Chang, Z.; Qiao, Y.; Deng, H.; Mu, X. W.; He, P.; Zhou, H. S. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem., Int. Ed. 2020, 59, 9377–9381.

[197]

Gou, L.; Mou, K. L.; Fan, X. Y.; Zhao, M. J.; Wang, Y.; Xue, D.; Li, D. L. Mn2O3/Al2O3 cathode material derived from a metal-organic framework with enhanced cycling performance for aqueous zinc-ion batteries. Dalton Trans. 2020, 49, 711–718.

[198]

Maeboonruan, N.; Lohitkarn, J.; Poochai, C.; Lomas, T.; Wisitsoraat, A.; Kheawhom, S.; Siwamogsatham, S.; Tuantranont, A.; Sriprachuabwong, C. Dendrite suppression with zirconium(IV) based metal-organic frameworks modified glass microfiber separator for ultralong-life rechargeable zinc-ion batteries. J. Sci.: Adv. Mater. Dev. 2022, 7, 100467.

[199]

Chen, T.; Wang, F. F.; Cao, S.; Bai, Y.; Zheng, S. S.; Li, W. T.; Zhang, S. T.; Hu, S. X.; Pang, H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries. Adv. Mater. 2022, 34, 2201779.

[200]

Wang, F. F.; Lu, H.; Li, H. T.; Li, J.; Wang, L.; Han, D. L.; Gao, J. C.; Geng, C. N.; Cui, C. J.; Zhang, Z. C. et al. Demonstrating U-shaped zinc deposition with 2D metal-organic framework nanoarrays for dendrite-free zinc batteries. Energy Stor. Mater. 2022, 50, 641–647.

[201]

Deng, S. Z.; Yuan, Z. S.; Tie, Z.; Wang, C. D.; Song, L.; Niu, Z. Q. Electrochemically induced metal-organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 22002–22006.

[202]

Xiong, P. X.; Zhao, X. X.; Xu, Y. H. Nitrogen-doped carbon nanotubes derived from metal-organic frameworks for potassium-ion battery anodes. ChemSusChem 2018, 11, 202–208.

[203]

He, B.; Zhang, Q. C.; Man, P.; Zhou, Z. Y.; Li, C. W.; Li, Q. L.; Xie, L. Y.; Wang, X. N.; Pang, H.; Yao, Y. G. Self-sacrificed synthesis of conductive vanadium-based metal-organic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-ion batteries. Nano Energy 2019, 64, 103935.

[204]

Yang, X. Y.; Sha, J. Q.; Li, W. J.; Tan, Z. L.; Hou, L. R.; Jiang, J. Z. Ternary cross-vanadium tetra-capped POMOFs@PPy/RGO nanocomposites with hybrid battery-supercapacitor behavior for enhancing lithium battery storage. ACS Sustain. Chem. Eng. 2020, 8, 4667–4675.

[205]

Li, W. T.; Guo, X. T.; Geng, P. B.; Du, M.; Jing, Q. L.; Chen, X. D.; Zhang, G. X.; Li, H. P.; Xu, Q.; Braunstein, P. et al. Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li-S battery. Adv. Mater. 2021, 33, 2105163.

[206]

Yin, C. J.; Pan, C. L.; Liao, X. B.; Pan, Y. S.; Yuan, L. Coordinately unsaturated manganese-based metal-organic frameworks as a high-performance cathode for aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 35837–35847.

[207]

Li, H. H.; Ma, Y.; Zhang, H.; Diemant, T.; Behm, R. J.; Varzi, A.; Passerini, S. Metal-organic framework derived Fe7S8 nanoparticles embedded in heteroatom-doped carbon with lithium and sodium storage capability. Small Methods 2020, 4, 2000637.

[208]

Li, S. Y.; Luo, W. B.; He, Q.; Lu, J.; Du, J.; Tao, Y. H.; Cheng, Y.; Wang, H. S. A lignin-based carbon anode with long-cycle stability for Li-ion batteries. Int. J. Mol. Sci. 2023, 24, 284.

[209]

Wan, J.; Li, J. F.; Xiao, Z. H.; Tang, D. D.; Wang, B.; Xiao, Y. J.; Xu, W. L. Transition bimetal based MOF nanosheets for robust aqueous Zn battery. Front. Mater. 2020, 7, 194.

[210]

Wang, K. N.; Qin, M. R.; Wang, C. T.; Yan, T.; Zhen, Y. Z.; Sun, X. L.; Wang, J. W.; Fu, F. CeO2/MnO x @C hollow cathode derived from self-assembly of Ce-Mn-MOFs for high-performance aqueous zinc-ion batteries. J. Colloid Interface Sci. 2023, 629, 733–743.

[211]

Pu, X. C.; Jiang, B. Z.; Wang, X. L.; Liu, W. B.; Dong, L. B.; Kang, F. Y.; Xu, C. J. High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 2020, 12, 152.

[212]

Wu, X. T.; Yin, C. S.; Zhang, M. F.; Xie, Y. Q.; Hu, J. J.; Long, R. L.; Wu, X. M.; Wu, X. W. The intercalation cathode of MOFs-driven vanadium-based composite embedded in N-doped carbon for aqueous zinc ion batteries. Chem. Eng. J. 2023, 452, 139573.

[213]

Geng, P. B.; Wang, L.; Du, M.; Bai, Y.; Li, W. T.; Liu, Y. F.; Chen, S. Q.; Braunstein, P.; Xu, Q.; Pang, H. MIL-96-Al for Li-S batteries: Shape or size. Adv. Mater. 2022, 34, 2107836.

[214]

Lv, T. T.; Luo, X.; Yuan, G. Q.; Yang, S. Y.; Pang, H. Layered VO2@N-doped carbon composites for high-performance rechargeable aqueous zinc-ion batteries. Chem. Eng. J. 2022, 428, 131211.

[215]

Lv, T. T.; Zhang, G. X.; Zheng, S. S.; Guo, X. T.; Chen, T. T.; Yang, S. Y.; Pang, H. In- situ growth of MnO2 nanoflakes on Co3V2O8 generating a hollow hexahedron: Zn-storage properties, and investigation of electrochemical mechanism. Chem. Eng. J. 2022, 440, 135931.

[216]

Guan, C.; Sumboja, A.; Zang, W. J.; Qian, Y. H.; Zhang, H.; Liu, X. M.; Liu, Z. L.; Zhao, D.; Pennycook, S. J.; Wang, J. Decorating Co/CoN x nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Stor. Mater. 2019, 16, 243–250.

[217]

Ren, D. Z.; Ying, J.; Xiao, M. L.; Deng, Y. P.; Ou, J. H.; Zhu, J. B.; Liu, G. H.; Pei, Y.; Li, S.; Jauhar, A. M. et al. Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable zinc-air batteries. Adv. Funct. Mater. 2020, 30, 1908167.

[218]

Hou, C. C.; Zou, L. L.; Wang, Y.; Xu, Q. MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries. Angew. Chem., Int. Ed. 2020, 59, 21360–21366.

[219]

Bhardwaj, U.; Janjani, P.; Sharma, R.; Kushwaha, H. S. Investigation of single-metal Fe-based metal-organic framework as an electrocatalyst for a rechargeable zinc-air battery. J. Electron. Mater. 2023, 52, 917–924.

[220]

Li, T. Z.; Chen, Y. H.; Tang, Z. H.; Liu, Z.; Wang, C. H. Palladium nanoparticles supported by metal-organic frameworks derived FeNi3C x nanorods as efficient oxygen reversible catalysts for rechargeable Zn-air batteries. Electrochim. Acta 2019, 307, 403–413.

[221]

Zhong, Y. T.; Pan, Z. H.; Wang, X. S.; Yang, J.; Qiu, Y. C.; Xu, S. Y.; Lu, Y. T.; Huang, Q. M.; Li, W. S. Hierarchical Co3O4 nano-micro arrays featuring superior activity as cathode in a flexible and rechargeable zinc-air battery. Adv. Sci. 2019, 6, 1802243.

[222]

Li, J. T.; Meng, Z.; Brett, D. J. L.; Shearing, P. R.; Skipper, N. T.; Parkin, I. P.; Gadipelli, S. High-performance zinc-air batteries with scalable metal-organic frameworks and platinum carbon black bifunctional catalysts. ACS Appl. Mater. Interfaces 2020, 12, 42696–42703.

[223]

Zhang, K. X.; Zhang, Y. L.; Zhang, Q. H.; Liang, Z. B.; Gu, L.; Guo, W. H.; Zhu, B. J.; Guo, S. J.; Zou, R. Q. Metal-organic framework-derived Fe/Cu-substituted Co nanoparticles embedded in CNTs-grafted carbon polyhedron for Zn-air batteries. Carbon Energy 2020, 2, 283–293.

[224]

Lv, T. T.; Liu, Y. Y.; Wang, H.; Yang, S. Y.; Liu, C. S.; Pang, H. Crystal water enlarging the interlayer spacing of ultrathin V2O5·4VO2·2.72H2O Nanobelts for high-performance aqueous zinc-ion battery. Chem. Eng. J. 2021, 411, 128533.

[225]

Pourfarzad, H.; Shabani-Nooshabadi, M.; Ganjali, M. R. Novel Bi-functional electrocatalysts based on the electrochemical synthesized bimetallicmetal organic frameworks: Towards high energy advanced reversible zinc-air batteries. J. Power Sources 2020, 451, 227768.

[226]

Fan, F.; Zhou, H. R.; Yan, R.; Yang, C. D.; Zhu, H.; Gao, Y.; Ma, L.; Cao, S. J.; Cheng, C.; Wang, Y. H. Anchoring Fe-N-C sites on hierarchically porous carbon sphere and CNT interpenetrated nanostructures as efficient cathodes for zinc-air batteries. ACS Appl. Mater. Interfaces 2021, 13, 41609–41618.

[227]

Wang, C. H.; Kim, J. T.; Wang, C. S.; Sun, X. L. Progress and prospects of inorganic solid-state electrolyte-based all-solid-state pouch cells. Adv. Mater. 2023, 35, 2209074.

[228]

Li, W. X.; Wu, C.; Ren, H.; Fang, W.; Zhao, L.; Dinh, K. N. Hybrid cobalt and iron based metal organic framework composites as efficient bifunctional electrocatalysts towards long-lasting flexible zinc-air batteries. Batter. Supercaps 2020, 3, 1321–1328.

[229]

Yan, Q.; Sun, R. M.; Wang, L. P.; Feng, J. J.; Zhang, L.; Wang, A. J. Cobalt nanoparticles/nitrogen, sulfur-codoped ultrathin carbon nanotubes derived from metal organic frameworks as high-efficiency electrocatalyst for robust rechargeable zinc-air battery. J. Colloid Interface Sci. 2021, 603, 559–571.

[230]

Zhang, G. X.; Jin, L.; Zhang, R. X.; Bai, Y.; Zhu, R. M.; Pang, H. Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coord. Chem. Rev. 2021, 439, 213915.

[231]

Hossain, M. A.; Tulaphol, S.; Thapa, A. K.; Rahaman, M. S.; Jasinski, J. B.; Wang, H.; Sunkara, M. K.; Syzdek, J.; Ozdemir, O. K.; Ornstein, J. M. et al. Metal-organic framework separator as a polyselenide filter for high-performance lithium-selenium batteries. ACS Appl. Energy Mater. 2021, 4, 13450–13460.

[232]

Yang, H. J.; Qiao, Y.; Chang, Z.; Deng, H.; He, P.; Zhou, H. S. A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries. Adv. Mater. 2020, 32, 2004240.

[233]

Li, C. W.; Zhang, Q. C.; Li, T. T.; He, B.; Man, P.; Zhu, Z. Z.; Zhou, Z. Y.; Wei, L.; Zhang, K.; Hong, G. et al. Nickel metal-organic framework nanosheets as novel binder-free cathode for advanced fibrous aqueous rechargeable Ni-Zn battery. J. Mater. Chem. A 2020, 8, 3262–3269.

[234]

Li, R. R.; Ke, H. Z.; Shi, C.; Long, Z. W.; Dai, Z. X.; Qiao, H.; Wang, K. L. Mesoporous RGO/NiCo2O4@carbon composite nanofibers derived from metal-organic framework compounds for lithium storage. Chem. Eng. J. 2021, 415, 128874.

[235]

Li, C. F.; Li, A.; Li, M. J.; Xiong, P. X.; Liu, Y. S.; Cheng, M. R.; Geng, D. L.; Xu, Y. H. Ultrafast synthesis of layered transition-metal oxide cathodes from metal-organic frameworks for high-capacity sodium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 24462–24468.

[236]

Zhang, X. J.; Gao, X. Y.; Hong, K.; Jiang, J. L.; Zhang, L. J.; Chen, J.; Rao, Z. H. Hierarchically porous carbon materials derived from MIL-88(Fe) for superior high-rate and long cycling-life sodium ions batteries. J. Electroanal. Chem. 2019, 852, 113525.

[237]

Tan, X. H.; Liu, J. W.; Huang, Q. H.; Wu, Y. J.; Lin, X. M.; Zeb, A.; Yuan, Z. Z.; Xu, X.; Luo, Y. F. Efficient vapor-solid fluorination synthesis of MOF-derived MnF2/C for superior lithium storage with boosted kinetics. J. Alloys Compd. 2022, 895, 162569.

[238]

Kon, K.; Uchida, K.; Fuku, K.; Yamanaka, S.; Wu, B.; Yamazui, D.; Iguchi, H.; Kobayashi, H.; Gambe, Y.; Honma, I. et al. Electron-conductive metal-organic framework, Fe(dhbq) (dhbq = 2,5-dihydroxy-1,4-benzoquinone): Coexistence of microporosity and solid-state redox activity. ACS Appl. Mater. Interfaces 2021, 13, 38188–38193.

[239]

Na, Z.; Yao, R. F.; Yan, Q.; Wang, X. R.; Sun, X. D. Metal-organic frameworks derived in-based nanoparticles encapsulated by carbonaceous matrix for highly efficient energy storage. Appl. Surf. Sci. 2020, 513, 145894.

Publication history
Copyright
Acknowledgements

Publication history

Received: 05 September 2023
Revised: 06 October 2023
Accepted: 08 October 2023
Published: 28 November 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. U1904215), Natural Science Foundation of Jiangsu Province (No. BK20200044), and Changjiang scholars program of the Ministry of Education (No. Q2018270).

Return