Journal Home > Volume 17 , Issue 5

Electrocatalytic CO2 reduction reaction (ECO2RR) converts CO2 to high-value chemical products and promotes the carbon cycle. Sulfur (S)-modified copper (Cu) and bismuth (Bi)-based catalysts have been recognized as promising catalysts for ECO2RR. Both of them are highly active for selective formate generation, however, their poor stability and severe competing hydrogen evolution reaction (HER) remain challenging. Herein, S-doped Cu coated with Bi (Bi/Cu-S) is developed to improve ECO2RR selectivity to formate. Bi/Cu-S/brass mesh (BM) electrode material for ECO2RR was prepared by electrodepositing Bi on the surface of Cu-S/BM nanowires obtained from CuS/BM after the electroreduction. The Faradaic efficiency (FE) of the formate reaches the maximum of 94.3% at −0.9 V vs. reversible hydrogen electrode (RHE) with a partial current density as high as −50.7 mA·cm−2 and a yield of 30.7 mmol·h−1·cm−2 under 0.5 M KHCO3 electrolyte. Meanwhile, the FE of formate is higher than 90% in the voltage range of −0.8 to −1.0 V vs. RHE. It also shows good stability at −0.9 V vs. RHE with the FE of formate remaining above 93% after a 10 h reaction. Density functional theory (DFT) calculations demonstrate that the Bi/Cu-S structure promotes the adsorption of CO2 and effectively inhibits HER by enhancing the adsorption of *H to a great extent, improving the selective conversion of CO2 to formate. This work deepens the understanding of the mechanism of Cu-Bi-based catalysts and S-modified Cu-based catalysts in selective ECO2RR to formate, and also provides a new strategy for catalyst design.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical Bi/S-modified Cu/brass mesh used as structured highly performance catalyst for CO2 electroreduction to formate

Show Author's information Tong DouDian SongYiping Wang( )Xuhui ZhaoFazhi ZhangXiaodong Lei( )
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

Electrocatalytic CO2 reduction reaction (ECO2RR) converts CO2 to high-value chemical products and promotes the carbon cycle. Sulfur (S)-modified copper (Cu) and bismuth (Bi)-based catalysts have been recognized as promising catalysts for ECO2RR. Both of them are highly active for selective formate generation, however, their poor stability and severe competing hydrogen evolution reaction (HER) remain challenging. Herein, S-doped Cu coated with Bi (Bi/Cu-S) is developed to improve ECO2RR selectivity to formate. Bi/Cu-S/brass mesh (BM) electrode material for ECO2RR was prepared by electrodepositing Bi on the surface of Cu-S/BM nanowires obtained from CuS/BM after the electroreduction. The Faradaic efficiency (FE) of the formate reaches the maximum of 94.3% at −0.9 V vs. reversible hydrogen electrode (RHE) with a partial current density as high as −50.7 mA·cm−2 and a yield of 30.7 mmol·h−1·cm−2 under 0.5 M KHCO3 electrolyte. Meanwhile, the FE of formate is higher than 90% in the voltage range of −0.8 to −1.0 V vs. RHE. It also shows good stability at −0.9 V vs. RHE with the FE of formate remaining above 93% after a 10 h reaction. Density functional theory (DFT) calculations demonstrate that the Bi/Cu-S structure promotes the adsorption of CO2 and effectively inhibits HER by enhancing the adsorption of *H to a great extent, improving the selective conversion of CO2 to formate. This work deepens the understanding of the mechanism of Cu-Bi-based catalysts and S-modified Cu-based catalysts in selective ECO2RR to formate, and also provides a new strategy for catalyst design.

Keywords: CO2 electroreduction, formate, Cu-Bi-based catalyst, S-modified Cu catalyst

References(50)

[1]

Shi, C. F.; Zhi, J. Q.; Yao, X.; Zhang, H.; Yu, Y.; Zeng, Q. S.; Li, L. J.; Zhang, Y. X. How can China achieve the 2030 carbon peak goal—A crossover analysis based on low-carbon economics and deep learning. Energy 2023, 269, 126776.

[2]

Samset, B. H.; Fuglestvedt, J. S.; Lund, M. T. Delayed emergence of a global temperature response after emission mitigation. Nat. Commun. 2020, 11, 3261.

[3]

Zhang, T. T.; Shang, H. S.; Zhang, B.; Yan, D. P.; Xiang, X. Ag/ultrathin-layered double hydroxide nanosheets induced by a self-redox strategy for highly selective CO2 reduction. ACS Appl. Mater. Interfaces 2021, 13, 16536–16544.

[4]

Zhang, J. Z.; Shi, J. J.; Tao, S.; Wu, L.; Lu, J. Cu2O/Ti3C2MXene heterojunction photocatalysts for improved CO2 photocatalytic reduction performance. Appl. Surf. Sci. 2021, 542, 148685.

[5]

Francke, R.; Schille, B.; Roemelt, M. Homogeneously catalyzed electroreduction of carbon dioxide-methods, mechanisms, and catalysts. Chem. Rev. 2018, 118, 4631–4701.

[6]

Zhang, J. F.; Li, Z. Y.; Cai, R.; Zhang, T. Y.; Yang, S. Z.; Ma, L.; Wang, Y.; Wu, Y. C.; Wu, J. J. Switching CO2 electroreduction selectivity between C1 and C2 hydrocarbons on Cu gas-diffusion electrodes. Energy Environ. Mater. 2023, 6, e12307.

[7]

Gao, D.; Yang, J. X.; Qi, Y. W.; Guo, C.; Zhang, H. Review and perspectives on CO2 bubble dynamic characteristics in different liquids during carbon capture, utilization, and storage process. Energy Fuels 2023, 37, 58–73.

[8]

Dou, T.; He, J. Q.; Diao, S. T.; Wang, Y. P.; Zhao, X. H.; Zhang, F. Z.; Lei, X. D. Dynamic reconstructuring of CuS/SnO2-S for promoting CO2 electroreduction to formate. J. Energy Chem. 2023, 82, 497–506.

[9]

Alli, Y. A.; Oladoye, P. O.; Ejeromedoghene, O.; Bankole, O. M.; Alimi, O. A.; Omotola, E. O.; Olanrewaju, C. A.; Philippot, K.; Adeleye, A. S.; Ogunlaja, A. S. Nanomaterials as catalysts for CO2 transformation into value-added products: A review. Sci. Total Environ. 2023, 868, 161547.

[10]

Gao, T. F.; Kumar, A.; Shang, Z. C.; Duan, X. X.; Wang, H. C.; Wang, S. Y.; Ji, S. F.; Yan, D. P.; Luo, L.; Liu, W. et al. Promoting electrochemical conversion of CO2 to formate with rich oxygen vacancies in nanoporous tin oxides. Chin. Chem. Lett. 2019, 30, 2274–2278.

[11]

Saeidi, S.; Amin, N. A. S.; Rahimpour, M. R. Hydrogenation of CO2 to value-added products—A review and potential future developments. J. CO2 Util. 2014, 5, 66–81.

[12]

Du, J.; Chen, A. B. Ni nanoparticles confined by yolk–shell structure of CNT-mesoporous carbon for electrocatalytic conversion of CO2: Switching CO to formate. J. Energy Chem. 2022, 70, 224–229.

[13]

Liu, X.; Fang, Z. Y.; Teng, X.; Niu, Y. L.; Gong, S. Q.; Chen, W.; Meyer, T. J.; Chen, Z. F. Paired formate and H2 productions via efficient bifunctional Ni-Mo nitride nanowire electrocatalysts. J. Energy Chem. 2022, 72, 432–441.

[14]

Yan, W. R.; Zhang, J.; Lu, S. F.; Jiang, S. P.; Xiang, Y. Tuning dehydrogenation behavior of formic acid on boosting cell performance of formic acid fuel cell at elevated temperatures. J. Power Sources 2022, 544, 231877.

[15]

Lee, C. H.; Kanan, M. W. Controlling H+ vs. CO2 reduction selectivity on Pb electrodes. ACS Catal. 2015, 5, 465–469.

[16]

Ji Jang, H.; Hyun Yang, J.; Young Maeng, J.; Jun Kim, Y.; Kyun Rhee, C.; Sohn, Y. Electrochemical CO2 reduction over Pb electrodes modified with group 10, 11, and 14 elements. Appl. Surf. Sci. 2022, 604, 154438.

[17]

Tsujiguchi, T.; Kawabe, Y.; Jeong, S.; Ohto, T.; Kukunuri, S.; Kuramochi, H.; Takahashi, Y.; Nishiuchi, T.; Masuda, H.; Wakisaka, M. et al. Acceleration of electrochemical CO2 reduction to formate at the Sn/reduced graphene oxide interface. ACS Catal. 2021, 11, 3310–3318.

[18]

Wu, Y. Z.; Zhai, P. L.; Cao, S. Y.; Li, Z. W.; Zhang, B.; Zhang, Y. T.; Nie, X. W.; Sun, L. C.; Hou, J. G. Beyond d orbits: Steering the selectivity of electrochemical CO2 reduction via hybridized sp band of sulfur-incorporated porous Cd architectures with dual collaborative sites. Adv. Energy Mater. 2020, 10, 2002499.

[19]

Li, Z. Q.; Sun, B.; Xiao, D. F.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Wang, P.; Dai, Y.; Cheng, H. F.; Huang, B. B. Electron-rich Bi nanosheets promote CO2· formation for high-performance and pH-universal electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202217569.

[20]

Wu, M. G.; Xu, B. L.; Zhang, Y. F.; Qi, S. H.; Ni, W.; Hu, J.; Ma, J. M. Perspectives in emerging bismuth electrochemistry. Chem. Eng. J. 2020, 381, 122558.

[21]

Peng, L. W.; Wang, Y. F.; Wang, Y. X.; Xu, N. N.; Lou, W. S.; Liu, P. X.; Cai, D. Q.; Huang, H. T.; Qiao, J. L. Separated growth of Bi-Cu bimetallic electrocatalysts on defective copper foam for highly converting CO2 to formate with alkaline anion-exchange membrane beyond KHCO3 electrolyte. Appl. Catal. B: Environ. 2021, 288, 120003.

[22]

Zu, M. Y.; Zhang, L.; Wang, C. W.; Zheng, L. R.; Yang, H. G. Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO2 electroreduction. J. Mater. Chem. A 2018, 6, 16804–16809.

[23]

Deng, Y. L.; Huang, Y.; Ren, D.; Handoko, A. D.; Seh, Z. W.; Hirunsit, P.; Yeo, B. S. On the role of sulfur for the selective electrochemical reduction of CO2 to formate on CuS x catalysts. ACS Appl. Mater. Interfaces 2018, 10, 28572–28581.

[24]

Dou, T.; Qin, Y.; Zhang, F. Z.; Lei, X. D. CuS nanosheet arrays for electrochemical CO2 reduction with surface reconstruction and the effect on selective formation of formate. ACS Appl. Energy Mater. 2021, 4, 4376–4384.

[25]

Qin, Y.; Kong, X. G.; Lei, D. Q.; Lei, X. D. Facial grinding method for synthesis of high-purity CuS nanosheets. Ind. Eng. Chem. Res. 2018, 57, 2759–2764.

[26]

Morales-García, A.; Soares, A. L. Jr; Dos Santos, E. C.; de Abreu, H. A.; Duarte, H. A. First-principles calculations and electron density topological analysis of covellite (CuS). J. Phys. Chem. A 2014, 118, 5823–5831.

[27]

Conejeros, S.; Moreira, I. D. P. R.; Alemany, P.; Canadell, E. Nature of holes, oxidation states, and hypervalency in covellite (CuS). Inorg. Chem. 2014, 53, 12402–12406.

[28]

Singh, H.; Kumar, S.; Sharma, P. K. Tunable exciton–plasmon coupled resonances with Cu2+/Cu+ substitution in self-assembled CuS nanostructured films. Appl. Surf. Sci. 2023, 612, 155831.

[29]

Guo, P. P.; He, Z. H.; Yang, S. Y.; Wang, W. T.; Wang, K.; Li, C. C.; Wei, Y. Y.; Liu, Z. T.; Han, B. X. Electrocatalytic CO2 reduction to ethylene over ZrO2/Cu-Cu2O catalysts in aqueous electrolytes. Green Chem. 2022, 24, 1527–1533.

[30]

DeSario, P. A.; Pietron, J. J.; Brintlinger, T. H.; McEntee, M.; Parker, J. F.; Baturina, O.; Stroud, R. M.; Rolison, D. R. Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO2 nanoarchitectures. Nanoscale 2017, 9, 11720–11729.

[31]

Ding, S. Q.; Liu, S.; Li, J. J.; Wu, L.; Ma, Z. F.; Yuan, X. X. Multifunctional catalyst CuS for nonaqueous rechargeable lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2021, 13, 50065–50075.

[32]

Yang, C.; Hu, Y. R.; Li, S. X.; Huang, Q.; Peng, J. Self-supporting Bi-Sb bimetallic nanoleaf for electrochemical synthesis of formate by highly selective CO2 reduction. ACS Appl. Mater. Interfaces 2023, 15, 6942–6950.

[33]

Dou, T.; Du, J. W.; He, J. Q.; Wang, Y. P.; Zhao, X. H.; Zhang, F. Z.; Lei, X. D. Sulfurization-derived Cu0-Cu+ sites for electrochemical CO2 reduction to ethanol. J. Power Sources 2022, 533, 231393.

[34]

Hu, Q. F.; Liu, Y.; Zheng, X. R.; Zhang, J. F.; Wang, J. J.; Han, X. P.; Deng, Y. D.; Hu, W. B. How the surface Cu layer affected the activity of Ni foil for alkaline hydrogen evolution. J. Mater. Sci. Technol. 2024, 169, 11–18.

[35]

Fan, B.; Zhou, B. N.; Chen, S.; Zhu, F. X.; Chen, B.; Gong, Z. M.; Wang, X. L.; Zhu, C. Y.; Zhou, D. M.; He, F. et al. Preparation of Fe/Cu bimetals by ball milling iron powder and copper sulfate for trichloroethylene degradation: Combined effect of FeS x and Fe/Cu alloy. J. Hazard. Mater. 2023, 460, 132402.

[36]

Azenha, C.; Mateos-Pedrero, C.; Alvarez-Guerra, M.; Irabien, A.; Mendes, A. Binary copper-bismuth catalysts for the electrochemical reduction of CO2: Study on surface properties and catalytic activity. Chem. Eng. J. 2022, 445, 136575.

[37]

Chang, S.; Xuan, Y. M.; Duan, J. J.; Zhang, K. High-performance electroreduction CO2 to formate at Bi/nafion interface. Appl. Catal. B: Environ. 2022, 306, 121135.

[38]

Koh, J. H.; Won, D. H.; Eom, T.; Kim, N. K.; Jung, K. D.; Kim, H.; Hwang, Y. J.; Min, B. K. Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst. ACS Catal. 2017, 7, 5071–5077.

[39]

Xing, Y. L.; Kong, X. D.; Guo, X.; Liu, Y.; Li, Q. Y.; Zhang, Y. Z.; Sheng, Y. L.; Yang, X. P.; Geng, Z. G.; Zeng, J. Bi@Sn core–shell structure with compressive strain boosts the electroreduction of CO2 into formic acid. Adv. Sci. 2020, 7, 1902989.

[40]

Zhao, M. M.; Gu, Y. L.; Gao, W. C.; Cui, P. X.; Tang, H.; Wei, X. Y.; Zhu, H.; Li, G. Q.; Yan, S. C.; Zhang, X. Y. et al. Atom vacancies induced electron-rich surface of ultrathin Bi nanosheet for efficient electrochemical CO2 reduction. Appl. Catal. B: Environ. 2020, 266, 118625.

[41]

Sui, P. F.; Xu, C. Y.; Zhu, M. N.; Liu, S. B.; Liu, Q. X.; Luo, J. L. Interface-induced electrocatalytic enhancement of CO2-to-formate conversion on heterostructured bismuth-based catalysts. Small 2022, 18, 2105682.

[42]

Liu, S. B.; Lu, X. F.; Xiao, J.; Wang, X.; Lou, X. W. Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem., Int. Ed. 2019, 58, 13828–13833.

[43]

Allioux, F. M.; Merhebi, S.; Ghasemian, M. B.; Tang, J. B.; Merenda, A.; Abbasi, R.; Mayyas, M.; Daeneke, T.; O’Mullane, A. P.; Daiyan, R. et al. Bi-Sn catalytic foam governed by nanometallurgy of liquid metals. Nano Lett. 2020, 20, 4403–4409.

[44]

Liu, B. W.; Xie, Y.; Wang, X. L.; Gao, C.; Chen, Z. M.; Wu, J.; Meng, H. Y.; Song, Z. C.; Du, S. C.; Ren, Z. Y. Copper-triggered delocalization of bismuth p-orbital favours high-throughput CO2 electroreduction. Appl. Catal. B: Environ. 2022, 301, 120781.

[45]

Zhang, X. L.; Sun, X. H.; Guo, S. X.; Bond, A. M.; Zhang, J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ. Sci. 2019, 12, 1334–1340.

[46]

Hu, Y. J.; Lu, D. Z.; Zhou, W. L.; Wang, X. Y.; Li, Y. Y. In situ construction of 3D low-coordinated bismuth nanosheets@Cu nanowire core–shell nanoarchitectures for superior CO2 electroreduction activity. J. Mater. Chem. A 2023, 11, 1937–1943.

[47]

Zhang, F. H.; Chen, C. Z.; Yan, S. L.; Zhong, J. H.; Zhang, B.; Cheng, Z. M. Cu@Bi nanocone induced efficient reduction of CO2 to formate with high current density. Appl. Catal. A: Gen. 2020, 598, 117545.

[48]

Wu, Z. D.; Yu, J.; Wu, K.; Song, J. J.; Gao, H. W.; Shen, H. L.; Xia, X. F.; Lei, W.; Hao, Q. L. Ultrafine CuS anchored on nitrogen and sulfur Co-doped graphene for selective CO2 electroreduction to formate. Appl. Surf. Sci. 2022, 575, 151796.

[49]

Kahsay, A. W.; Ibrahim, K. B.; Tsai, M. C.; Birhanu, M. K.; Chala, S. A.; Su, W. N.; Hwang, B. J. Selective and low overpotential electrochemical CO2 reduction to formate on CuS decorated CuO heterostructure. Catal. Lett. 2019, 149, 860–869.

[50]

Zhuang, T. T.; Liang, Z. Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F. L.; Meng, F.; Min, Y. M.; Quintero-Bermudez, R. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 2018, 1, 421–428.

File
12274_2023_6247_MOESM1_ESM.pdf (1,021.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 August 2023
Revised: 30 September 2023
Accepted: 06 October 2023
Published: 25 November 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22278020 and 2177060378), the Program for Changjiang Scholars, Innovative Research Teams in Universities (No. IRT1205), and the Fundamental Research Funds for the Central Universities (Nos. 12060093063 and XK1803-05).

Return