Journal Home > Volume 17 , Issue 5

On-demand color switching systems that utilize synchronized semiconductor-catalyzed reduction and photothermal-accelerated oxidation in liquid/solid are highly appealing. Herein, on-demand single/multi-color switching fabrics have been constructed by using defective SnO2:Sb-based color switching systems. SnO2:Sb nanocrystals with the suitable doping concentration accord lattices with abundant free electrons, conferring high photocatalytic and photothermal performances. A well-crafted set of dual light-responsive semiconductor-catalyzed systems with rapid color change can be attained via the homogenous mixture of SnO2:Sb with suitable redox dyes to produce single-color (RGB (red, green, blue)) and multi-color transitioning (purple and green) systems. The illumination of these systems by 450 nm light triggers rapid photocatalytic discoloration, while irradiation by 980 nm light confers the photothermal effect that accelerates recoloration in air. Besides, the inks can be extended to rewritable fabrics by embedding the nanocrystals and redox dyes into hydroxyethyl cellulose (as the polymer matrix) and then coating on hydrophobic cotton fabrics to produce photo-switchable fabrics with excellent single/multi-color response. By exploiting the dual light interactions with the semiconductor-mediated systems, various images/letters can be remotely printed and erased on the rewritable fabrics which show promise for potential applications as information storage media and visual sensors. Importantly, the present rewritable fabric shows good stability and reversibility. The present work provides insights into the development of novel color-switching materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Constructing on-demand single/multi-color transitioning fabrics with photocatalysis/photothermal-armed deficient semiconductors

Show Author's information Daniel K. MachariaShamima SarkerMeng LiuZeyulong WenNuo Yu( )Meifang ZhuZhigang Chen( )
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

Abstract

On-demand color switching systems that utilize synchronized semiconductor-catalyzed reduction and photothermal-accelerated oxidation in liquid/solid are highly appealing. Herein, on-demand single/multi-color switching fabrics have been constructed by using defective SnO2:Sb-based color switching systems. SnO2:Sb nanocrystals with the suitable doping concentration accord lattices with abundant free electrons, conferring high photocatalytic and photothermal performances. A well-crafted set of dual light-responsive semiconductor-catalyzed systems with rapid color change can be attained via the homogenous mixture of SnO2:Sb with suitable redox dyes to produce single-color (RGB (red, green, blue)) and multi-color transitioning (purple and green) systems. The illumination of these systems by 450 nm light triggers rapid photocatalytic discoloration, while irradiation by 980 nm light confers the photothermal effect that accelerates recoloration in air. Besides, the inks can be extended to rewritable fabrics by embedding the nanocrystals and redox dyes into hydroxyethyl cellulose (as the polymer matrix) and then coating on hydrophobic cotton fabrics to produce photo-switchable fabrics with excellent single/multi-color response. By exploiting the dual light interactions with the semiconductor-mediated systems, various images/letters can be remotely printed and erased on the rewritable fabrics which show promise for potential applications as information storage media and visual sensors. Importantly, the present rewritable fabric shows good stability and reversibility. The present work provides insights into the development of novel color-switching materials.

Keywords: photocatalysis, photothermal, color switching, defective semiconductor, rewritable fabrics

References(42)

[1]

Zheng, J.; Chen, J. Y.; Jin, Y. K.; Wen, Y.; Mu, Y. J.; Wu, C. J.; Wang, Y. F.; Tong, P. E.; Li, Z. G.; Hou, X. et al. Photochromism from wavelength-selective colloidal phase segregation. Nature 2023, 617, 499–506.

[2]

Yang, H. L.; Li, S. N.; Zheng, J. X.; Chen, G. Q.; Wang, W. Q.; Miao, Y. Y.; Zhu, N. N.; Cong, Y.; Fu, J. Erasable, rewritable, and reprogrammable dual information encryption based on photoluminescent supramolecular host–guest recognition and hydrogel shape memory. Adv. Mater., 2023, 35, 2301300.

[3]

Zhang, J. F.; Liu, Y. X.; Njel, C.; Ronneberger, S.; Tarakina, N. V.; Loeffler, F. F. An all-in-one nanoprinting approach for the synthesis of a nanofilm library for unclonable anti-counterfeiting applications. Nat. Nanotechnol. 2023, 18, 1027–1035.

[4]

Balzani, V.; Bergamini, G.; Ceroni, P. Light: A very peculiar reactant and product. Angew. Chem., Int. Ed. 2015, 54, 11320–11337.

[5]

Kundu, P. K.; Samanta, D.; Leizrowice, R.; Margulis, B.; Zhao, H.; Börner, M.; Udayabhaskararao, T.; Manna, D.; Klajn, R. Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat. Chem. 2015, 7, 646–652.

[6]

Jeong, W.; Khazi, M. I.; Park, D. H.; Jung, Y. S.; Kim, J. M. Full color light responsive diarylethene inks for reusable paper. Adv. Funct. Mater. 2016, 26, 5230–5238.

[7]

Zhang, Z. W.; Wang, W. H.; Jin, P. P.; Xue, J. D.; Sun, L.; Huang, J. H.; Zhang, J. J.; Tian, H. A building-block design for enhanced visible-light switching of diarylethenes. Nat. Commun. 2019, 10, 4232.

[8]

Cheng, H. B.; Zhang, S. C.; Bai, E. Y.; Cao, X. Q.; Wang, J. Q.; Qi, J.; Liu, J.; Zhao, J.; Zhang, L. Q.; Yoon, J. Future-oriented advanced diarylethene photoswitches: From molecular design to spontaneous assembly systems. Adv. Mater. 2022, 34, 2108289.

[9]

Liu, L. T.; Gao, Z. P.; Jiang, B. L.; Bai, Y. C.; Wang, W. S.; Yin, Y. D. Reversible assembly and dynamic plasmonic tuning of Ag nanoparticles enabled by limited ligand protection. Nano Lett. 2018, 18, 5312–5318.

[10]

Ohko, Y.; Tatsuma, T.; Fujii, T.; Naoi, K.; Niwa, C.; Kubota, Y.; Fujishima, A. Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat. Mater. 2003, 2, 29–31.

[11]

Wang, W. S.; Xie, N.; He, L.; Yin, Y. D. Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper. Nat. Commun. 2014, 5, 5459.

[12]

Zhang, C. Y.; Wang, B.; Li, W. B.; Huang, S. Q.; Kong, L.; Li, Z. C.; Li, L. Conversion of invisible metal–organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nat. Commun. 2017, 8, 1138.

[13]

Liu, M.; Ma, S. H.; Dong, H.; Zeng, F. L.; Jin, X. T.; Luo, Y. H. Rewritable paper based on layered metal–organic frameworks with NIR-triggered reversible color switching. Adv. Opt. Mater. 2023, 11, 2300056.

[14]

Li, K.; Xiang, Y.; Wang, X. Y.; Li, J.; Hu, R. R.; Tong, A. J.; Tang, B. Z. Reversible photochromic system based on rhodamine b salicylaldehyde hydrazone metal complex. J. Am. Chem. Soc. 2014, 136, 1643–1649.

[15]

Sartzi, H.; Miras, H. N.; Vilà-Nadal, L.; Long, D. L.; Cronin, L. Trapping the δ isomer of the polyoxometalate-based keggin cluster with a tripodal ligand. Angew. Chem., Int. Ed. 2015, 54, 15488–15492.

[16]

Yu, X. Q.; Wang, M. S.; Guo, G. C. Single-component photochromic smart semiconductor with photoswitchable fast bidirectional electron transfer. Adv. Funct. Mater. 2023, 33, 2212907.

[17]

Aleisa, R.; Feng, J.; Ye, Z. Y.; Yin, Y. D. Rapid high-contrast photoreversible coloration of surface-functionalized N-doped TiO2 nanocrystals for rewritable light-printing. Angew. Chem. 2022, 134, e202203700.

[18]

Wang, W. S.; Ye, M. M.; He, L.; Yin, Y. D. Nanocrystalline TiO2-catalyzed photoreversible color switching. Nano Lett. 2014, 14, 1681–1686.

[19]

Ahmed, S.; Macharia, D. K.; Zhu, B.; Ren, X. L.; Yu, N.; Chen, L. Y.; Chen, Z. G. Blue/red light-triggered reversible color switching based on CeO2− x nanodots for constructing rewritable smart fabrics. Nanoscale 2020, 12, 10335–10346.

[20]

Macharia, D. K.; Ahmed, S.; Zhu, B.; Liu, Z. X.; Wang, Z. J.; Mwasiagi, J. I.; Chen, Z. G.; Zhu, M. F. UV/NIR-light-triggered rapid and reversible color switching for rewritable smart fabrics. ACS Appl. Mater. Interfaces 2019, 11, 13370–13379.

[21]

Han, D.; Jiang, B. L.; Feng, J.; Yin, Y. D.; Wang, W. S. Photocatalytic self-doped SnO2− x nanocrystals drive visible-light-responsive color switching. Angew. Chem., Int. Ed. 2017, 56, 7792–7796.

[22]

Smith, A. T.; Shen, K. Y.; Hou, Z. L.; Zeng, S. S.; Jin, J.; Ning, C. J.; Zhao, Y. F.; Sun, L. Y. Dual photo- and mechanochromisms of graphitic carbon nitride/polyvinyl alcohol film. Adv. Funct. Mater. 2022, 32, 2110285.

[23]

Mills, A.; Hazafy, D. Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sens. Actuators B Chem. 2009, 136, 344–349.

[24]

Wang, W. S.; Ye, Y. F.; Feng, J.; Chi, M. F.; Guo, J. H.; Yin, Y. D. Enhanced photoreversible color switching of redox dyes catalyzed by barium-doped TiO2 nanocrystals. Angew. Chem., Int. Ed. 2015, 54, 1321–1326.

[25]

Yang, K. W.; Chen, X. Y.; Zheng, Z. H.; Wan, J. Q.; Feng, M.; Yu, Y. Solvent-induced surface disorder and doping-induced lattice distortion in anatase TiO2 nanocrystals for enhanced photoreversible color switching. J. Mater. Chem. A 2019, 7, 3863–3873.

[26]

Macharia, D. K.; Sarker, S.; Zhu, B.; Zhang, Y.; Liu, Z. X.; Yu, N.; Chen, Z. G. Constructing on-demand photoreversible mono/multi-color switching fabrics with plasmonic In-doped ZnO catalyzed systems. Chem. Eng. J. 2021, 425, 130638.

[27]

Mounkachi, O.; Salmani, E.; Lakhal, M.; Ez-Zahraouy, H.; Hamedoun, M.; Benaissa, M.; Kara, A.; Ennaoui, A.; Benyoussef, A. Band-gap engineering of SnO2. Solar Energy Mater. Solar Cells 2016, 148, 34–38.

[28]

Kanehara, M.; Koike, H.; Yoshinaga, T.; Teranishi, T. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J. Am. Chem. Soc. 2009, 131, 17736–17737.

[29]

Wang, Y. D.; Brezesinski, T.; Antonietti, M.; Smarsly, B. M. Ordered mesoporous Sb-, Nb-, and Ta-doped SnO2 thin films with adjustable doping levels and high electrical conductivity. ACS Nano 2009, 3, 1373–1378.

[30]

Riha, S. C.; DeVries Vermeer, M. J.; Pellin, M. J.; Hupp, J. T.; Martinson, A. B. F. Hematite-based photo-oxidation of water using transparent distributed current collectors. ACS Appl. Mater. Interfaces 2013, 5, 360–367.

[31]

John Silvister Raju, M.; Bhattacharya, S. S. Structural and optical properties of Sb doped SnO2 nanopowders synthesized by nebulized spray pyrolysis. Mater. Today 2018, 5, 10097–10103.

[32]

Yu, N.; Peng, C.; Wang, Z. J.; Liu, Z. X.; Zhu, B.; Yi, Z. G.; Zhu, M. F.; Liu, X. G.; Chen, Z. G. Dopant-dependent crystallization and photothermal effect of Sb-doped SnO2 nanoparticles as stable theranostic nanoagents for tumor ablation. Nanoscale 2018, 10, 2542–2554.

[33]

Shen, B. X.; Wang, Y. H.; Lu, L.; Yang, H. X. Synthesis and characterization of Sb-doped SnO2 with high near-infrared shielding property for energy-efficient windows by a facile dual-titration co-precipitation method. Ceram. Int. 2020, 46, 18518–18525.

[34]

Müller, V.; Rasp, M.; Štefanić, G.; Ba, J. H.; Günther, S.; Rathousky, J.; Niederberger, M.; Fattakhova-Rohlfing, D. Highly conducting nanosized monodispersed antimony-doped tin oxide particles synthesized via nonaqueous sol-gel procedure. Chem. Mater. 2009, 21, 5229–5236.

[35]

Manthiram, K.; Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 2012, 134, 3995–3998.

[36]

Yang, L. Q.; Huang, J. F.; Shi, L.; Cao, L. Y.; Liu, H. Y.; Liu, Y. X.; Li, Y. X.; Song, H.; Jie, Y. N.; Ye, J. H. Sb doped SnO2-decorated porous g-C3N4 nanosheet heterostructures with enhanced photocatalytic activities under visible light irradiation. Appl. Catal. B 2018, 221, 670–680.

[37]

Wang, W. S.; Liu, L. T.; Feng, J.; Yin, Y. D. Photocatalytic reversible color switching based on titania nanoparticles. Small Methods 2018, 2, 1700273.

[38]

Evans, R. A.; Hanley, T. L.; Skidmore, M. A.; Davis, T. P.; Such, G. K.; Yee, L. H.; Ball, G. E.; Lewis, D. A. The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix. Nat. Mater. 2005, 4, 249–253.

[39]

Zhang, T.; Sheng, L.; Liu, J. N.; Ju, L.; Li, J. H.; Du, Z.; Zhang, W. R.; Li, M. J.; Zhang, S. X. A. Photoinduced proton transfer between photoacid and pH-sensitive dyes: Influence factors and application for visible-light-responsive rewritable paper. Adv. Funct. Mater. 2018, 28, 1705532.

[40]

Wang, A. W.; Xiao, X. F.; Zhou, C. T.; Lyu, F.; Fu, L.; Wang, C. D.; Ruan, S. C. Large-scale synthesis of carbon dots/TiO2 nanocomposites for the photocatalytic color switching system. Nanoscale Adv. 2019, 1, 1819–1825.

[41]

Wales, D. J.; Cao, Q.; Kastner, K.; Karjalainen, E.; Newton, G. N.; Sans, V. 3D-printable photochromic molecular materials for reversible information storage. Adv. Mater. 2018, 30, 1800159

[42]

Smith, A. T.; Ding, H.; Gorski, A.; Zhang, M.; Gitman, P. A.; Park, C.; Hao, Z. R.; Jiang, Y. J.; Williams, B. L.; Zeng, S. S. et al. Multi-color reversible photochromisms via tunable light-dependent responses. Matter 2020, 2, 680–696.

File
12274_2023_6246_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 August 2023
Revised: 21 September 2023
Accepted: 06 October 2023
Published: 04 November 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

This work was financially by the Science and Technology Commission of Shanghai Municipality (No. 20JC1414900), the National Natural Science Foundation of China (Nos. 52161145406, 51972056, and 52002061), and the Fundamental Research Funds for the Central Universities (No. 2232023D-03).

Return