Journal Home > Volume 17 , Issue 5

For the pursuit of high energy supercapacitors, the development of high performance pseudocapacitance or battery-type negative electrode material is urgently needed to make up for the capacity shortage of commercial electric double layer capacitor (EDLC) type materials. Herein, a porous and defect-rich FexBi2−xS3 solid solution structure is firstly constructed by employing Fe-doped Bi2O2CO3 porous nanosheets as a precursor, which presents dramatically increased energy storage performance than Bi2S3 and FeS2 phase. For the optimized FexBi2−xS3 solid solution (FeBiS-60%), the Fe solute is free and random dispersed in Bi2S3 framework, which can effectively modulate the electronic structure of Bi element and introduce rich-defect due to the existence of Fe(II). Meanwhile, the FeBiS-60%, constructed by pore nanosheets that are assembled by self-supported basic nanorod units, presents rich mesoporous channels for fast mass transfer and abundant active sites for promoting capacity performance. Therefore, a high capacitance of 832.8 F·g−1 at a current density of 1 A·g−1 is achieved by the FeBiS-60% electrode. Furthermore, a fabricated Ni3S2@Co3S4 (NCS)//FeBiS-60% hybrid supercapacitor device delivers an outstanding energy density of 85.33 Wh·kg−1 at the power density of 0.799 kW·kg−1, and ultra-long lifespan of remaining 86.7% initial capacitance after 8700 cycles.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical FexBi2−xS3 solid solutions for boosted supercapacitor performance

Show Author's information Fengming Zhou1,§Xiaodong Wang1,§Ruijie Jing1,2Xiaoyu Li1,2Qi Zhang1Zhenjiang Li1Yunmei Du2Zhenyu Xiao1( )Lei Wang1,2( )
International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Technology Innovation Center of Battery Safety and Energy Storage Technology, Qingdao, International Science and Technology Cooperation Base of Qingdao, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

§ Fengming Zhou and Xiaodong Wang contributed equally to this work.

Abstract

For the pursuit of high energy supercapacitors, the development of high performance pseudocapacitance or battery-type negative electrode material is urgently needed to make up for the capacity shortage of commercial electric double layer capacitor (EDLC) type materials. Herein, a porous and defect-rich FexBi2−xS3 solid solution structure is firstly constructed by employing Fe-doped Bi2O2CO3 porous nanosheets as a precursor, which presents dramatically increased energy storage performance than Bi2S3 and FeS2 phase. For the optimized FexBi2−xS3 solid solution (FeBiS-60%), the Fe solute is free and random dispersed in Bi2S3 framework, which can effectively modulate the electronic structure of Bi element and introduce rich-defect due to the existence of Fe(II). Meanwhile, the FeBiS-60%, constructed by pore nanosheets that are assembled by self-supported basic nanorod units, presents rich mesoporous channels for fast mass transfer and abundant active sites for promoting capacity performance. Therefore, a high capacitance of 832.8 F·g−1 at a current density of 1 A·g−1 is achieved by the FeBiS-60% electrode. Furthermore, a fabricated Ni3S2@Co3S4 (NCS)//FeBiS-60% hybrid supercapacitor device delivers an outstanding energy density of 85.33 Wh·kg−1 at the power density of 0.799 kW·kg−1, and ultra-long lifespan of remaining 86.7% initial capacitance after 8700 cycles.

Keywords: solid solutions, defect structure, supercapacitor, hierarchical structure, Bi2S3

References(71)

[1]

Jha, D.; Karkaria, V. N.; Karandikar, P. B.; Desai, R. S. Statistical modeling of hybrid supercapacitor. J. Energy Storage 2022, 46, 103869.

[2]

Li, B.; Pang, H.; Xue, H. G. Fe-based phosphate nanostructures for supercapacitors. Chin. Chem. Lett. 2021, 32, 885–889.

[3]

Momeni, M. M.; Navandian, S.; Aydisheh, H. M.; Lee, B. K. Photo-assisted rechargeable supercapacitors based on nickel-cobalt-deposited tungsten-doped titania photoelectrodes: A novel self-powered supercapacitor. J. Power Sources 2023, 557, 232588.

[4]

Xue, Q.; Tian, Y.; Deng, S. Z.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Liu, F.; Zhi, C. Y. LaB6 nanowires for supercapacitors. Mater. Today Energy 2018, 10, 28–33.

[5]

Wang, P.; Zhang, X. M.; Duan, W.; Teng, W.; Liu, Y. B.; Xie, Q. Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials. Chin. J. Chem. 2021, 39, 1153–1158.

[6]

Wang, H.; Zhao, P. F.; Zhang, X. M.; Zhang, S.; Lu, X. L.; Qiu, Z. P.; Ren, K.; Xu, Z.; Yao, R. X.; Wei, T. et al. Holey graphene oxide-templated construction of nano nickel-based metal-organic framework for highly efficient asymmetric supercapacitor. Nano Res. 2022, 15, 9047–9056.

[7]

Li, Q. Q.; Liu, M. J.; Huang, F. Z.; Zuo, X. Q.; Wei, X.; Li, S. K.; Zhang, H. Co9S8@MnO2 core–shell defective heterostructure for High-voltage flexible supercapacitor and Zn-ion hybrid supercapacitor. Chem. Eng. J. 2022, 437, 135494.

[8]

Wang, Y. M.; Wu, X. L.; Han, Y. Q.; Li, T. X. Flexible supercapacitor: Overview and outlooks. J. Energy Storage 2021, 42, 103053.

[9]

Liu, T.; Yan, R. Y.; Huang, H. J.; Pan, L.; Cao, X. B.; DeMello, A.; Niederberger, M. A micromolding method for transparent and flexible thin-film supercapacitors and hybrid supercapacitors. Adv. Funct. Mater. 2020, 30, 2004410.

[10]

Zou, Y. L.; Chen, C.; Sun, Y. J.; Gan, S. C.; Dong, L. B.; Zhao, J. H.; Rong, J. H. Flexible, all-hydrogel supercapacitor with self-healing ability. Chem. Eng. J. 2021, 418, 128616.

[11]

Wang, X. S.; Jiang, D. B.; Jing, C.; Liu, X. Y.; Li, K. L.; Yu, M.; Qi, S.; Zhang, Y. X. Biotemplate synthesis of Fe3O4/polyaniline for supercapacitor. J. Energy Storage 2020, 30, 101554.

[12]

Yuan, X. H.; Chen, B. W.; Wu, X. W.; Mo, J.; Liu, Z. C.; Hu, Z. Y.; Liu, Z. H.; Zhou, C. J.; Yang, H. J.; Wu, Y. P. An aqueous asymmetric supercapacitor based on activated carbon and tungsten trioxide nanowire electrodes. Chin. J. Chem. 2017, 35, 61–66.

[13]

Wang, H.; Cao, J. J.; Zhou, Y. J.; Wang, X.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. Carbon dots modified Ti3C2T x -based fibrous supercapacitor with photo-enhanced capacitance. Nano Res. 2021, 14, 3886–3892.

[14]

Liu, S.; Xie, X.; Yang, L. Y. Analysis, modeling and implementation of a switching Bi-directional buck-boost converter based on electric vehicle hybrid energy storage for V2G system. IEEE Access 2020, 8, 65868–65879.

[15]

Levi, M. D.; Daikhin, L.; Aurbach, D.; Presser, V. Quartz crystal microbalance with dissipation monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: A mini-review. Electrochem. Commun. 2016, 67, 16–21.

[16]

Bu, R. R.; Deng, Y.; Wang, Y. L.; Zhao, Y.; Shi, Q. Q.; Zhang, Q.; Xiao, Z. Y.; Li, Y. Y.; Sun, W.; Wang, L. Bucket effect: A metal-organic framework derived high-performance FeS2/Fe2O3@S-rGO negative material for enhanced overall supercapacitor capacitance. ACS Appl. Energy Mater. 2021, 4, 11004–11013.

[17]

Zhong, C.; Deng, Y. D.; Hu, W. B.; Qiao, J. L.; Zhang, L.; Zhang, J. J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539.

[18]

Lv, J. L.; Liang, T. X.; Yang, M.; Ken, S.; Hideo, M. Performance comparison of NiCo2O4 and NiCo2S4 formed on Ni foam for supercapacitor. Compos. Part B: Eng. 2017, 123, 28–33.

[19]

Naveenkumar, P.; Paruthimal Kalaignan, G. Fabrication of core–shell like hybrids of CuCo2S4@NiCo(OH)2 nanosheets for supercapacitor applications. Compos. Part B: Eng. 2019, 173, 106864.

[20]

Chen, Y. X.; Jing, C.; Fu, X.; Shen, M.; Li, K. L.; Liu, X. Y.; Yao, H. C.; Zhang, Y. X.; Yao, K. X. Synthesis of porous NiCoS nanosheets with Al leaching on ordered mesoporous carbon for high-performance supercapacitors. Chem. Eng. J. 2020, 384, 123367.

[21]

Li, J.; Wei, M.; Chu, W.; Wang, N. High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials. Chem. Eng. J. 2017, 316, 277–287.

[22]

Zhao, Y. H.; He, X. Y.; Chen, R. R.; Liu, Q.; Liu, J. Y.; Yu, J.; Li, J. Q.; Zhang, H. S.; Dong, H. X.; Zhang, M. L. et al. A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4@NiCo layered double hydroxide core–shell heterostructures. Chem. Eng. J. 2018, 352, 29–38.

[23]

Han, X. Y.; Li, J. E.; Lu, J. L.; Luo, S.; Wan, J.; Li, B. X.; Hu, C. G.; Cheng, X. L. High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage. Nano Energy 2021, 86, 106079.

[24]

Guo, H.; Liu, Z.; Li, H. Y.; Wu, H.; Zhang, C. J.; Yang, J. L.; Chen, X. H. Active carbon electrode fabricated via large-scale coating-transfer process for high-performance supercapacitor. Appl. Phys. A 2017, 123, 467.

[25]

Chen, Z. D.; Liu, K.; Liu, S.; Xia, L.; Fu, J. J.; Zhang, X. M.; Zhang, C. C.; Gao, B. Porous Active carbon layer modified graphene for high-performance supercapacitor. Electrochim. Acta 2017, 237, 102–108.

[26]

Lv, X. R.; Chen, L.; Min, X. Q.; Lin, X. Y.; Ni, Y. N. Flower-like MnNi2O4-MnNi2S4 core@shell composite electrode as battery-type supercapacitors. J. Energy Storage 2022, 55, 105792.

[27]

Zhou, J.; Dai, S. M.; Li, Y. N.; Han, F. F.; Yuan, Y.; Tang, J.; Tang, W. H. Earth-abundant nanotubes with layered assembly for battery-type supercapacitors. Chem. Eng. J. 2018, 350, 835–843.

[28]

Yin, B. Y.; Hao, L.; Wei, T.; Wang, C.; Zhu, B.; Li, X. G.; Yang, Q. G. Revealing bulk reaction kinetics of battery-like electrode for pseudocapacitor with ultra-high rate performance. Chem. Eng. J. 2022, 450, 138224.

[29]

Johnson William, J.; Manohara Babu, I.; Muralidharan, G. Nickel bismuth oxide as negative electrode for battery-type asymmetric supercapacitor. Chem. Eng. J. 2021, 422, 130058.

[30]

Xu, Z. Y.; Du, C. C.; Yang, H. K.; Huang, J. L.; Zhang, X. H.; Chen, J. H. NiCoP@CoS tree-like core–shell nanoarrays on nickel foam as battery-type electrodes for supercapacitors. Chem. Eng. J. 2021, 421, 127871.

[31]

Kim, M.; Wang, C. H.; Earnshaw, J.; Park, T.; Amiralian, N.; Ashok, A.; Na, J. B.; Han, M. S.; Rowan, A. E.; Li, J. S. et al. Correction: Co, Fe and N co-doped 1D assembly of hollow carbon nanoboxes for high-performance supercapacitors. J. Mater. Chem. A 2023, 11, 1511.

[32]

Xiao, T.; Chen, F.; Zhou, W. J.; Che, P. C.; Wang, S. L.; Chen, X. L.; Tan, X. Y.; Xiang, P.; Jiang, L. H.; Chen, X. B. Ni-Bi-S nanosheets/Ni foam as a binder-free high-performance electrode for asymmetric supercapacitors. Chem. Eng. J. 2019, 378, 122162.

[33]

Hussain, S.; Rabani, I.; Vikraman, D.; Feroze, A.; Ali, M.; Seo, Y. S.; Song, W.; An, K. S.; Kim, H. S.; Chun, S. H. et al. MoS2@X2C ( X = Mo or W) hybrids for enhanced supercapacitor and hydrogen evolution performances. Chem. Eng. J. 2021, 421, 127843.

[34]

Mane, S. A.; Kashale, A. A.; Kamble, G. P.; Kolekar, S. S.; Dhas, S. D.; Patil, M. D.; Moholkar, A. V.; Sathe, B. R.; Ghule, A. V. Facile synthesis of flower-like Bi2O3 as an efficient electrode for high performance asymmetric supercapacitor. J. Alloys Compd. 2022, 926, 166722.

[35]

Sridhar, V.; Park, H. Carbon nanofiber linked FeS2 mesoporous nano-alloys as high capacity anodes for lithium-ion batteries and supercapacitors. J. Alloys Compd. 2018, 732, 799–805.

[36]

Zhang, J. W.; Zhu, L. B.; Jia, H. T.; Wei, K. X.; Wen, L. X. Microreactor facilitated preparation and Ni-doping of MnO2 nanoparticles for supercapacitors. J. Alloys Compd. 2021, 889, 161772.

[37]

Yang, J. J.; Russell, J. C.; Tao, S. S.; Lessio, M.; Wang, F. F.; Hartnett, A. C.; Peurifoy, S. R.; Doud, E. A.; O’Brien, E. S.; Gadjieva, N. et al. Superatomic solid solutions. Nat. Chem. 2021, 13, 607–613.

[38]

Denis, D. K.; Sun, X.; Zhang, J. Y.; Wang, Y. Y.; Hou, L. R.; Li, J.; Yuan, C. Z. Solid solution engineering of Co-Ni-based ternary molybdate nanorods toward hybrid supercapacitors and lithium-ion batteries as high-performance electrodes. ACS Appl. Energy Mater. 2020, 3, 3955–3965.

[39]

Zhang, Q.; Shi, Q. Q.; Yang, Y.; Zang, Q.; Xiao, Z. Y.; Zhang, X. H.; Wang, L. 2D nanosheet/3D cubic framework Ni-Co sulfides for improved supercapacitor performance via structural engineering. Dalton Trans. 2020, 49, 8162–8168

[40]

Liu, C. Y.; Wang, L.; Xia, Z. P.; Chen, R. X.; Wang, H. L.; Liu, Y. Carbon hollow fibers with tunable hierarchical structure as self-standing supercapacitor electrode. Chem. Eng. J. 2022, 431, 134099.

[41]

Chen, W. M.; Wang, X.; Feizbakhshan, M.; Liu, C. Z.; Hong, S.; Yang, P.; Zhou, X. Y. Preparation of lignin-based porous carbon with hierarchical oxygen-enriched structure for high-performance supercapacitors. J. Colloid Interface Sci. 2019, 540, 524–534.

[42]

Liu, Q.; Hong, X. D.; Zhang, X.; Wang, W.; Guo, W. X.; Liu, X. Y.; Ye, M. D. Hierarchically structured Co9S8@NiCo2O4 nanobrushes for high-performance flexible asymmetric supercapacitors. Chem. Eng. J. 2019, 356, 985–993.

[43]

Zhu, Y. C.; Ye, X. K.; Jiang, H. D.; Xia, J. X.; Yue, Z. Y.; Wang, L. H.; Wan, Z. Q.; Jia, C. Y.; Yao, X. J. Controlled swelling of graphene films towards hierarchical structures for supercapacitor electrodes. J. Power Sources 2020, 453, 227851.

[44]

Nguyen, N. T.; Ozkan, S.; Hwang, I.; Zhou, X. M.; Schmuki, P. Spaced TiO2 nanotube arrays allow for a high performance hierarchical supercapacitor structure. J. Mater. Chem. A 2017, 5, 1895–1901.

[45]

Cheng, Z. J.; Ren, Z. Y.; Ye, W. T.; Li, G.; Huang, X. H.; Lin, Y. Q.; Xiong, F. B.; Zhang, H. Y. Synthesis of hierarchically structured MnMoO4·H2O/Ni3S2 nanocomposites on Ni foam for high-performance asymmetric supercapacitors. J. Energy Storage 2022, 56, 105941.

[46]

Zhou, Y.; Cheng, X. Y.; Huang, F.; Sha, Z.; Han, Z. J.; Chen, J. Y.; Yang, W. M.; Yu, Y. Y.; Zhang, J.; Peng, S. H. et al. Hierarchically structured electrodes for moldable supercapacitors by synergistically hybridizing vertical graphene nanosheets and MnO2. Carbon 2021, 172, 272–282.

[47]

Pinto, D.; Anasori, B.; Avireddy, H.; Shuck, C. E.; Hantanasirisakul, K.; Deysher, G.; Morante, J. R.; Porzio, W.; Alshareef, H. N.; Gogotsi, Y. Synthesis and electrochemical properties of 2D molybdenum vanadium carbides-solid solution MXenes. J. Mater. Chem. A 2020, 8, 8957–8968.

[48]

Chen, X.; Tao, H. J.; Jiang, Y. H.; Li, S. S.; Liu, Y. X.; Xie, K.; Wang, Y. Q. P-doped S vacancy-rich NiCo2S4 hollow microspheres for high-performance supercapacitors. J. Energy Storage 2023, 68, 107721.

[49]

Wang, Q. F.; Qu, Z. T.; Chen, S. H.; Zhang, D. H. Metal organic framework derived P-doping CoS@C with sulfide defect to boost high-performance asymmetric supercapacitors. J. Colloid Interface Sci. 2022, 624, 385–393.

[50]

Liu, R. Q.; Xu, S. S.; Shao, X. X.; Wen, Y.; Shi, X. R.; Huang, L. P.; Hong, M.; Hu, J.; Yang, Z. Defect-engineered NiCo-S composite as a bifunctional electrode for high-performance supercapacitor and electrocatalysis. ACS Appl. Mater. Interfaces 2021, 13, 47717–47727.

[51]

Zhang, S. M.; Wang, X. H.; Li, Y.; Zhang, Y. X.; Hu, Q.; Hua, X. H.; Liu, G.; Xie, E. Q.; Zhang, Z. X. Moderate oxygen-deficient Fe(III) oxide nanoplates for high performance symmetric supercapacitors. J. Colloid Interface Sci. 2020, 565, 458–464.

[52]

Ismail, K. B. M.; Kumar, M. A.; Jayavel, R.; Arivanandhan, M.; Ismail, M. A. M. Enhanced electrochemical performance of the MoS2/Bi2S3 nanocomposite-based electrode material prepared by a hydrothermal method for supercapacitor applications. RSC Adv. 2023, 13, 24272–24285.

[53]

Kumar, D. R.; Nguyen, T. T.; Lamiel, C.; Shim, J. J. Layered 2-D Bi2Se3 nanosheets intercalated by Ni(OH)2 and their supercapacitor performance. Mater. Lett. 2016, 165, 257–262.

[54]

Liu, L.; Yan, Y.; Cai, Z. H.; Lin, S. X.; Hu, X. B. Growth-oriented Fe-based MOFs synergized with graphene aerogels for high-performance supercapacitors. Adv. Mater. Interfaces 2018, 5, 1701548.

[55]

Qiu, Y. F.; Fan, H. B.; Chang, X. Y.; Dang, H. F.; Luo, Q.; Cheng, Z. Y. Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance. Appl. Surf. Sci. 2018, 434, 16–20.

[56]

Zhao, C. J.; Shao, X. X.; Zhu, Z. Q.; Zhao, C. H.; Qian, X. Z. One-pot hydrothermal synthesis of RGO/FeS composite on Fe foil for high performance supercapacitors. Electrochim. Acta 2017, 246, 497–506.

[57]

Xie, J. J.; Ma, R.; Fang, H. B.; Shi, H. R.; Liu, D. X. MIL-101(Fe)-attached graphene oxide for high-performance supercapacitors with sound stability in acid electrolyte. Cryst. Growth Des. 2022, 22, 2997–3006.

[58]

Gao, Q.; Wang, J. X.; Ke, B.; Wang, J. F.; Li, Y. Q. Fe doped δ-MnO2 nanoneedles as advanced supercapacitor electrodes. Ceram. Int. 2018, 44, 18770–18775.

[59]

Mitchell, E.; Gupta, R. K.; Mensah-Darkwa, K.; Kumar, D.; Ramasamy, K.; Gupta, B. K.; Kahol, P. Facile synthesis and morphogenesis of superparamagnetic iron oxide nanoparticles for high-performance supercapacitor applications. New J. Chem. 2014, 38, 4344–4350.

[60]

Iqbal, M. Z.; Amjad, N.; Siddique, S.; Ali, R.; Aziz, U.; Aftab, S.; Alzaid, M. Exploring the synergy of binder free MoWS2@Ag as electrode materials for hybrid supercapacitors. J. Energy Storage 2022, 56, 105925.

[61]

Ali, M. S.; Layek, R.; Ali, M. S.; Tudu, S.; Dutta, K.; Gangopadhyay, B.; Karmakar, D.; Mallik, A.; Panda, S.; Maiti, A. et al. Ultrahigh energy density solid state supercapacitor based on metal halide perovskite nanocrystal electrodes: Real-life applications. J. Energy Storage 2023, 65, 107215.

[62]

Li, C. Y.; Wang, X. K.; Ma, D. G.; Yan, Y.; Huo, P. W.; Yang, Q. J. Interlayer nano-dots induced high-rate supercapacitors. Adv. Sci. 2023, 10, 2301398.

[63]

Chen, J. Y.; Nakate, U. T.; Nguyen, Q. T.; Park, S. Electrodeposited Bi(OH)3@Mo(OH)4 nanostructured electrode for high-performance supercapacitor application. Ceram. Int. 2022, 48, 22417–22425.

[64]

Shao, X. X.; Zhu, Z. Q.; Zhao, C. J.; Zhao, C. H.; Qian, X. Z. Hierarchical FeS/RGO/FeS@Fe foil as high-performance negative electrode for asymmetric supercapacitors. Inorg. Chem. Front. 2018, 5, 1912–1922.

[65]

Yang, S. J.; Qian, L. B.; Ping, Y. J.; Zhang, H. L.; Li, J. J.; Xiong, B. Y.; Fang, P. F.; He, C. Q. Electrochemical performance of Bi2O3 supercapacitors improved by surface vacancy defects. Ceram. Int. 2021, 47, 8290–8299.

[66]

Khalafallah, D.; Zhi, M. J.; Hong, Z. L. Bi-Fe chalcogenides anchored carbon matrix and structured core–shell Bi-Fe-P@Ni-P nanoarchitectures with appealing performances for supercapacitors. J. Colloid Interface Sci. 2022, 606, 1352–1363.

[67]

Yan, W.; Zhang, Y.; Zeng, T.; Zhang, Y. Y.; Wan, Q. J.; Yang, N. J. A high-performance asymmetric supercapacitor using composite electrodes of layered double hydroxides and holey reduced graphene oxide. J. Energy Storage 2022, 52, 104899.

[68]

Vattikuti, S. V. P.; Zeng, J.; Shim, J.; Lee, D. S.; Devarayapalli, K. C. Facile synthesis of ultrathin Bi(OH)SO4·H2O nanosheets and battery-like electrode for symmetric supercapacitors. J. Alloys Compd. 2023, 936, 168186.

[69]

Zhu, P.; Xie, L. X.; Xiao, X. B.; Yang, H.; Jiang, J. L. Orthorhombic (Co,Fe)Se2/Ti2C MXene porous microspheres for high-performance supercapacitors. J. Alloys Compd. 2022, 924, 166586.

[70]

Zhao, Y. X.; Feng, Z. H.; Guo, Z. C.; Mu, J. P.; Che, H. W.; Zhang, Z. X.; Tian, T.; Xiaoliang, Z.; Li, S. M.; Wang, Y. M. et al. Fe incorporated ternary layered double hydroxides with remarkably improved electrochemical performance towards asymmetric supercapacitors. Ceram. Int. 2022, 48, 27369–27378.

[71]

Lu, W.; Yang, Y.; Zhang, T. Y.; Ma, L. K. X.; Luo, X. T.; Huang, C. Q.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Synergistic effects of Fe and Mn dual-doping in Co3S4 ultrathin nanosheets for high-performance hybrid supercapacitors. J. Colloid Interface Sci. 2021, 590, 226–237.

File
12274_2023_6243_MOESM1_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 August 2023
Revised: 23 September 2023
Accepted: 02 October 2023
Published: 17 November 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors acknowledge funding support from the National Natural Science Foundation of China (Nos. 52272222 and 52072197), Outstanding Youth Foundation of Shandong Province, China (No. ZR2019JQ14), University Youth Innovation Team of Shandong Province (Nos. 2019KJC004 and 202201010318), the Natural Science Foundation of Shandong Province, China (No. ZR2021MB061), Major Scientific and Technological Innovation Project (No. 2019JZZY020405), Taishan Scholar Young Talent Program (No. tsqn201909114), and Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant (No. ZR2020ZD09).

Return