Journal Home > Volume 17 , Issue 5

Defect fluorescence from high aspect ratio semiconductor nanowires typically displays a weak polarization parallel to the nanowire’s long axis due to dielectric mismatch in high aspect ratio media. Instead, anomalous 2.2 eV defect fluorescence distinctly polarized perpendicular to the nanowire is observed and measured from carbon-incorporated zinc oxide nanowires. These observations are significant because polarized defect emissions with consistent polarization on a mesoscopic scale are uncommon. Through a systematic study and comparison of experimental results with density functional theory calculations, an oriented defect complex comprising carbon substituting on an oxygen site and an oxygen vacancy (CO-VO) is deduced to be responsible for the anomalous yellow fluorescence, demonstrating a method for relating atomic-scale defect geometry to mesoscopic properties. The anomalous emission can appear in both green- and red-fluorescing nanowires grown with different carbon concentrations, verifying the independence and uniqueness of the 2.2 eV emission. This allows for polarization-dependent emission wavelength selection from a single nanowire.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Emission wavelength selection via anomalous polarized fluorescence in ZnO-C nanowires

Show Author's information Joon Kiat KangKim Yong Lim( )Chorng Haur Sow( )
Department of Physics, National University of Singapore, Singapore 117542, Singapore

Abstract

Defect fluorescence from high aspect ratio semiconductor nanowires typically displays a weak polarization parallel to the nanowire’s long axis due to dielectric mismatch in high aspect ratio media. Instead, anomalous 2.2 eV defect fluorescence distinctly polarized perpendicular to the nanowire is observed and measured from carbon-incorporated zinc oxide nanowires. These observations are significant because polarized defect emissions with consistent polarization on a mesoscopic scale are uncommon. Through a systematic study and comparison of experimental results with density functional theory calculations, an oriented defect complex comprising carbon substituting on an oxygen site and an oxygen vacancy (CO-VO) is deduced to be responsible for the anomalous yellow fluorescence, demonstrating a method for relating atomic-scale defect geometry to mesoscopic properties. The anomalous emission can appear in both green- and red-fluorescing nanowires grown with different carbon concentrations, verifying the independence and uniqueness of the 2.2 eV emission. This allows for polarization-dependent emission wavelength selection from a single nanowire.

Keywords: carbon, defects, fluorescence, zinc oxide, anomalous polarization

References(29)

[1]

Galdámez-Martinez, A.; Santana, G.; Güell, F.; Martínez-Alanis, P. R.; Dutt, A. Photoluminescence of ZnO nanowires: A review. Nanomaterials 2020, 10, 857.

[2]

Borysiewicz, M. A. ZnO as a functional material, a review. Crystals 2019, 9, 505.

[3]

Ding, M.; Guo, Z.; Zhou, L. Q.; Fang, X.; Zhang, L. L.; Zeng, L. Y.; Xie, L. N.; Zhao, H. B. One-dimensional zinc oxide nanomaterials for application in high-performance advanced optoelectronic devices. Crystals 2018, 8, 223.

[4]

Janotti, A.; Van De Walle, C. G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72, 126501.

[5]

Xu, X.; Li, D. X.; Yuan, J.; Zhou, Y. H.; Zou, Y. P. Recent advances in stability of organic solar cells. EnergyChem 2021, 3, 100046.

[6]

Kadam, K. D.; Kim, H.; Rehman, S.; Patil, H.; Aziz, J.; Dongale, T. D.; Khan, M. F.; Kim, D. K. Optimization of ZnO: PEIE as an electron transport layer for flexible organic solar cells. Energy Fuels 2021, 35, 12416–12424.

[7]

Ryu, S. Y.; Ha, N. Y.; Ahn, Y. H.; Park, J. Y.; Lee, S. Effects of oxygen vacancies in a zinc oxide electron transport layer on long-term degradation and short-term photo-induced changes in the operation characteristics of organic solar cells. ACS Appl. Energy Mater. 2022, 5, 9668–9675.

[8]

Barbillon, G. Oxygen vacancy dynamics in highly crystalline zinc oxide film investigated by PIERS effect. Materials 2021, 14, 4423.

[9]

Xiong, X.; Wang, Y.; Ma, J. P.; He, Y. X.; Huang, J. Y.; Feng, Y. J.; Ban, C. G.; Gan, L. Y.; Zhou, X. Y. Oxygen vacancy engineering of zinc oxide for boosting piezo-electrocatalytic hydrogen evolution. Appl. Surf. Sci. 2023, 616, 156556.

[10]

Bhat, S. S.; Waghmare, U. V.; Ramamurty, U. Effect of oxygen vacancies on the elastic properties of zinc oxide: A first-principles investigation. Comput. Mater. Sci. 2015, 99, 133–137.

[11]

Cui, J. B. Zinc oxide nanowires. Mater. Charact. 2012, 64, 43–52.

[12]

Djurišić, A. B.; Leung, Y. H. Optical properties of ZnO nanostructures. Small 2006, 2, 944–961.

[13]

Lu, Y. H.; Hong, Z. X.; Feng, Y. P.; Russo, S. P. Roles of carbon in light emission of ZnO. Appl. Phys. Lett. 2010, 96, 091914.

[14]

Li, D.; Leung, Y. H.; Djurišić, A. B.; Liu, Z. T.; Xie, M. H.; Shi, S. L.; Xu, S. J.; Chan, W. K. Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods. Appl. Phys. Lett. 2004, 85, 1601–1603.

[15]

Djurišić, A. B.; Choy, W. C. H.; Roy, V. A. L.; Leung, Y. H.; Kwong, C. Y.; Cheah, K. W.; Rao, T. K. G.; Chan, W. K.; Lui, H. F.; Surya, C. Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures. Adv. Funct. Mater. 2004, 14, 856–864.

[16]

Lim, K. Y.; Linghu, J. J.; Chi, X.; Yuan, K. D.; Hew, K. M.; Zheng, M. R.; Yang, M.; Tok, E. S.; Rusydi, A.; Yu, X. J. et al. Tunable fluorescence properties due to carbon incorporation in zinc oxide nanowires. Adv. Opt. Mater. 2017, 5, 1700381.

[17]

Ruda, H. E.; Shik, A. Polarization-sensitive optical phenomena in semiconducting and metallic nanowires. Phys. Rev. B 2005, 72, 115308.

[18]

Fang, L.; Zhao, X. W.; Chiu, Y. H.; Ko, D.; Reddy, K. M.; Lemberger, T. R.; Padture, N. P.; Yang, F. Y.; Johnston-Halperin, E. Comprehensive control of optical polarization anisotropy in semiconducting nanowires. Appl. Phys. Lett. 2011, 99, 141101.

[19]

Li, H. Y.; Rühle, S.; Khedoe, R.; Koenderink, A. F.; Vanmaekelbergh, D. Polarization, microscopic origin, and mode structure of luminescence and lasing from single ZnO nanowires. Nano Lett. 2009, 9, 3515–3520.

[20]

Joyce, H. J.; Gao, Q.; Hoe Tan, H.; Jagadish, C.; Kim, Y.; Zou, J.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J. M.; Parkinson, P. et al. III–V semiconductor nanowires for optoelectronic device applications. Prog. Quantum Electron. 2011, 35, 23–75.

[21]

Mishra, A.; Titova, L. V.; Hoang, T. B.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Kim, Y.; Joyce, H. J.; Gao, Q.; Tan, H. H. et al. Polarization and temperature dependence of photoluminescence from zincblende and wurtzite InP nanowires. Appl. Phys. Lett. 2007, 91, 263104.

[22]

Birman, J. L. Some selection rules for band-band transitions in wurtzite structure. Phys. Rev. 1959, 114, 1490–1492.

[23]

Hsu, N. E.; Hung, W. K.; Chen, Y. F. Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods. J. Appl. Phys. 2004, 96, 4671–4673.

[24]

Coburn, J. W.; Winters, H. F. Plasma etching—A discussion of mechanisms. J. Vac. Sci. Technol. 1979, 16, 391–403.

[25]

Donnelly, V. M.; Kornblit, A. Plasma etching: Yesterday, today, and tomorrow. J. Vac. Sci. Technol. A 2013, 31, 050825.

[26]

Flamm, D. L.; Donnelly, V. M.; Ibbotson, D. E. Basic chemistry and mechanisms of plasma etching. J. Vac. Sci. Technol. B 1983, 1, 23–30.

[27]

Rauwel, E.; Galeckas, A.; Rauwel, P.; Hansen, P. A.; Wragg, D.; Nilsen, O.; Fjellvåg, H. Metal oxide nanoparticles embedded in rare-earth matrix for low temperature thermal imaging applications. Mater. Res. Express 2016, 3, 055010.

[28]

Jungwirth, N. R.; Chang, H. S.; Jiang, M. D.; Fuchs, G. D. Polarization spectroscopy of defect-based single photon sources in ZnO. ACS Nano 2016, 10, 1210–1215.

[29]

He, C.; He, H. H.; Chang, J. T.; Chen, B. G.; Ma, H.; Booth, M. J. Polarisation optics for biomedical and clinical applications: A review. Light Sci. Appl. 2021, 10, 194.

File
12274_2023_6242_MOESM1_ESM.pdf (14.9 MB)
12274_2023_6242_MOESM2_ESM.rar (7.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 August 2023
Revised: 21 September 2023
Accepted: 02 October 2023
Published: 04 November 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

J. K. K. acknowledges the generous support from the National University of Singapore Faculty of Science President Graduate Fellowship Top-up Scheme. C. H. S. acknowledges the generous support from the National University of Singapore Faculty of Science under grant E14100009101.

Return