Journal Home > Volume 17 , Issue 5

The development of non-platinum group metal (non-PGM) and efficient multifunctional electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) with high activity and stability remains a great challenge. Herein, by in-situ transforming silver manganese composite oxide heterointerface into boosted Mott–Schottky heterointerface through a facile carbon reduction strategy, a nanorod-like silver/manganese oxide with superior multifunctional catalytic activities for ORR, OER and HER and stability was obtained. The nanorod-like silver/manganese oxide with Mott–Schottky heterointerface (designated as Ag/Mn3O4) exhibits an ORR half-wave potential of 0.831 V (vs. RHE) in 0.1 M KOH, an OER overpotential of 338 mV and a HER overpotential of 177 mV at the current density of 10 mA·cm−2 in 1 M KOH, contributing to its noble-metal benchmarks comparable performance in aqueous aluminum-air (Al-air) battery and laboratorial overall water splitting electrolytic cell. Moreover, in-situ electrochemical Raman and synchrotron radiation spectroscopic measurements were conducted to further illustrate the catalytic mechanism of Ag/Mn3O4 Mott–Schottky heterointerface towards various electrocatalytic reactions. At the heterointerface, the Ag phase serves as the electron donor and the active phase for ORR and HER, while the Mn3O4 phase serves as the electron acceptor and the active phase for OER, respectively. This work deepens the understanding of the Mott–Schottky effect on electrocatalysis and fills in the gap in fundamental physical principles that are behind measured electrocatalytic activity, which offers substantial implications for the rational design of cost-effective multifunctional electrocatalysts with Mott–Schottky effect.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In-situ transformed Mott–Schottky heterointerface in silver/manganese oxide nanorods boosting oxygen reduction, oxygen evolution, and hydrogen evolution reactions

Show Author's information Ruiqi Cheng1Kaiqi Li2Huanxin Li3Fengzhan Sun4Xiaoqian He4Tianshuo Zhao1Jiao Zhang1( )Chaopeng Fu1( )
Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

The development of non-platinum group metal (non-PGM) and efficient multifunctional electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) with high activity and stability remains a great challenge. Herein, by in-situ transforming silver manganese composite oxide heterointerface into boosted Mott–Schottky heterointerface through a facile carbon reduction strategy, a nanorod-like silver/manganese oxide with superior multifunctional catalytic activities for ORR, OER and HER and stability was obtained. The nanorod-like silver/manganese oxide with Mott–Schottky heterointerface (designated as Ag/Mn3O4) exhibits an ORR half-wave potential of 0.831 V (vs. RHE) in 0.1 M KOH, an OER overpotential of 338 mV and a HER overpotential of 177 mV at the current density of 10 mA·cm−2 in 1 M KOH, contributing to its noble-metal benchmarks comparable performance in aqueous aluminum-air (Al-air) battery and laboratorial overall water splitting electrolytic cell. Moreover, in-situ electrochemical Raman and synchrotron radiation spectroscopic measurements were conducted to further illustrate the catalytic mechanism of Ag/Mn3O4 Mott–Schottky heterointerface towards various electrocatalytic reactions. At the heterointerface, the Ag phase serves as the electron donor and the active phase for ORR and HER, while the Mn3O4 phase serves as the electron acceptor and the active phase for OER, respectively. This work deepens the understanding of the Mott–Schottky effect on electrocatalysis and fills in the gap in fundamental physical principles that are behind measured electrocatalytic activity, which offers substantial implications for the rational design of cost-effective multifunctional electrocatalysts with Mott–Schottky effect.

Keywords: electrocatalyst, water splitting, heterointerface, Al-air battery, electron donor–acceptor pair

References(64)

[1]

Jiang, H.; Sun, Y. J.; You, B. Dynamic electrodeposition on bubbles: An effective strategy toward porous electrocatalysts for green hydrogen cycling. Acc. Chem. Res. 2023, 56, 1421–1432.

[2]

Chong, L. N.; Gao, G. P.; Wen, J. G.; Li, H. X.; Xu, H. P.; Green, Z.; Sugar, J. D.; Kropf, A. J.; Xu, W. Q.; Lin, X. M. et al. La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis. Science 2023, 380, 609–616.

[3]

Li, H. X.; Wen, Y. L.; Jiang, M.; Yao, Y.; Zhou, H. H.; Huang, Z. Y.; Li, J. W.; Jiao, S. Q.; Kuang, Y. F.; Luo, S. L. Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2011289.

[4]

Li, K. Q.; Cheng, R. Q.; Xue, Q. Y.; Meng, P. Y.; Zhao, T. S.; Jiang, M.; Guo, M. L.; Li, H. X.; Fu, C. P. In-situ construction of Co/CoSe Schottky heterojunction with interfacial electron redistribution to facilitate oxygen electrocatalysis bifunctionality for zinc-air batteries. Chem. Eng. J. 2022, 450, 137991.

[5]

Sun, F. Z.; Wang, G.; Ding, Y. Q.; Wang, C.; Yuan, B. B.; Lin, Y. Q. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584.

[6]

Quílez-Bermejo, J.; García-Dalí, S.; Daouli, A.; Zitolo, A.; Canevesi, R. L. S.; Emo, M.; Izquierdo, M. T.; Badawi, M.; Celzard, A.; Fierro, V. Advanced design of metal nanoclusters and single atoms embedded in C1N1-derived carbon materials for ORR, HER, and OER. Adv. Funct. Mater. 2023, 33, 2300405.

[7]

Cheng, R. Q.; Li, K. Q.; Li, Z.; Jiang, M.; Wang, F.; Yang, Z. H.; Zhao, T. S.; Meng, P. Y.; Fu, C. P. Rational design of boron-nitrogen coordinated active sites towards oxygen reduction reaction in aluminum-air batteries with robust integrated air cathode. J. Power Sources 2023, 556, 232476.

[8]

Li, Z.; Zhang, Y.; Feng, Y.; Cheng, C. Q.; Qiu, K. W.; Dong, C. K.; Liu, H.; Du, X. W. Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions. Adv. Funct. Mater. 2019, 29, 1903444.

[9]

Li, Y.; Talib, S. H.; Liu, D. Q.; Zong, K.; Saad, A.; Song, Z. Q.; Zhao, J.; Liu, W.; Liu, F. D.; Ji, Q. Q. et al. Improved oxygen evolution reaction performance in Co0.4Mn0.6O2 nanosheets through triple-doping (Cu, P, N) strategy and its application to Zn-air battery. Appl. Catal. B Environ. 2023, 320, 122023.

[10]

Zhu, J. B.; Xiao, M. L.; Li, G. R.; Li, S.; Zhang, J.; Liu, G. H.; Ma, L.; Wu, T. P.; Lu, J.; Yu, A. P. et al. A triphasic bifunctional oxygen electrocatalyst with tunable and synergetic interfacial structure for rechargeable Zn-air batteries. Adv. Energy Mater. 2020, 10, 1903003.

[11]

Li, K. Q.; Wang, C. Q.; Li, H. X.; Wen, Y. L.; Wang, F.; Xue, Q. Y.; Huang, Z. Y.; Fu, C. P. Heterostructural interface in Fe3C-TiN quantum dots boosts oxygen reduction reaction for Al-air batteries. ACS Appl. Mater. Interfaces 2021, 13, 47440–47448.

[12]

Albu, Z.; Alzaid, F.; AlQahtani, S.; Al Abass, N.; Alenazey, F.; Allehyani, I.; AlOtaibi, B. Improving water oxidation performance by implementing heterointerfaces between ceria and metal-oxide nanoparticles. J. Colloid Interface Sci. 2021, 587, 39–46.

[13]

Jiang, L.; Zhang, Y. J.; Luo, X. H.; Yu, L.; Li, H. X.; Li, Y. J. Se and O co-insertion induce the transition of MoS2 from 2H to 1T phase for designing high-active electrocatalyst of hydrogen evolution reaction. Chem. Eng. J. 2021, 425, 130611.

[14]

Zhang, L. L.; Lei, Y. T.; Xu, W. J.; Wang, D.; Zhao, Y. F.; Chen, W. X.; Xiang, X.; Pang, X. C.; Zhang, B.; Shang, H. S. Highly active and durable nitrogen-doped CoP/CeO2 nanowire heterostructures for overall water splitting. Chem. Eng. J. 2023, 460, 141119.

[15]

Yang, X. X.; Zheng, X. C.; Li, H. X.; Luo, B. C.; He, Y. K.; Yao, Y.; Zhou, H. H.; Yan, Z. H.; Kuang, Y. F.; Huang, Z. Y. Non-noble-metal catalyst and Zn/graphene film for low-cost and ultra-long-durability solid-state Zn-air batteries in harsh electrolytes. Adv. Funct. Mater. 2022, 32, 2200397.

[16]

Kaltak, M.; Fernández-Serra, M.; Hybertsen, M. S. Charge localization and ordering in A2Mn8O16 hollandite group oxides: Impact of density functional theory approaches. Phys. Rev. Mater. 2017, 1, 075401.

[17]

Zhou, Y. M.; Chu, B. X.; Sun, Z. J.; Dong, L. H.; Wang, F.; Li, B.; Fan, M. G.; Chen, Z. J. Surface reconstruction and charge distribution enabling Ni/W5N4 Mott–Schottky heterojunction bifunctional electrocatalyst for efficient urea-assisted water electrolysis at a large current density. Appl. Catal. B: Environ. 2023, 323, 122168.

[18]

Wang, X.; Li, M.; Wang, P.; Sun, D. M.; Ding, L. F.; Li, H.; Tang, Y. W.; Fu, G. T. Spin-selective coupling in Mott–Schottky Er2O3-Co boosts electrocatalytic oxygen reduction. Small Methods 2023, 7, 2300100.

[19]

Chen, T.; Guo, S. Q.; Yang, J.; Xu, Y. D.; Sun, J.; Wei, D. L.; Chen, Z. X.; Zhao, B.; Ding, W. P. Nitrogen-doped carbon activated in situ by embedded nickel through the Mott–Schottky effect for the oxygen reduction reaction. ChemPhysChem 2017, 18, 3454–3461.

[20]

Yao, Y.; Wu, J. X.; Feng, Q. X.; Zeng, K.; Wan, J.; Zhang, J. C.; Mao, B. Y.; Hu, K.; Chen, L. M.; Zhang, H. et al. Spontaneous internal electric field in heterojunction boosts bifunctional oxygen electrocatalysts for zinc-air batteries: Theory, experiment, and application. Small 2023, 19, 2302015.

[21]

Su, H.; Zhang, K. X.; Zhang, B.; Wang, H. H.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Activating cobalt nanoparticles via the Mott–Schottky effect in nitrogen-rich carbon shells for base-free aerobic oxidation of alcohols to esters. J. Am. Chem. Soc. 2017, 139, 811–818.

[22]

Yang, H. Q.; Wang, B. D.; Kou, S. Q.; Lu, G. L.; Liu, Z. N. Mott–Schottky heterojunction of Co/Co2P with built-in electric fields for bifunctional oxygen electrocatalysis and zinc-air battery. Chem. Eng. J. 2021, 425, 131589.

[23]

Sun, Z. H.; Wang, Y. K.; Zhang, L. B.; Wu, H.; Jin, Y. C.; Li, Y. H.; Shi, Y. C.; Zhu, T. X.; Mao, H.; Liu, J. M. et al. Simultaneously realizing rapid electron transfer and mass transport in jellyfish-like Mott–Schottky nanoreactors for oxygen reduction reaction. Adv. Funct. Mater. 2020, 30, 1910482.

[24]

Li, G. X.; Jiang, M.; Liao, Q.; Ding, R. D.; Gao, Y. H.; Jiang, L. W.; Zhang, D. N.; Chen, S. G.; He, H. Directly anchoring Ag single atoms on α-MnO2 nanorods as efficient oxygen reduction catalysts for Mg-air fuel cell. J. Alloys Compd. 2021, 858, 157672.

[25]

Wang, J. W.; Xie, H.; Shu, D. B.; Chen, T. H.; Liu, H. B.; Zou, X. H.; Chen, D. The promotion of NH3-SCR performance and its mechanism on Sm modified birnessite. Fuel 2024, 356, 129604.

[26]

Wu, S. P.; Liu, H. M.; Huang, Z.; Xu, H. L.; Shen, W. O-vacancy-rich porous MnO2 nanosheets as highly efficient catalysts for propane catalytic oxidation. Appl. Catal. B Environ. 2022, 312, 121387.

[27]

Li, T. F.; Hu, Y. J.; Liu, K. H.; Yin, J. W.; Li, Y.; Fu, G. T.; Zhang, Y. W.; Tang, Y. W. Hollow yolk-shell nanoboxes assembled by Fe-doped Mn3O4 nanosheets for high-efficiency electrocatalytic oxygen reduction in Zn-Air battery. Chem. Eng. J. 2022, 427, 131992.

[28]

Liu, K.; Huang, X. B.; Wang, H. Y.; Li, F. Z.; Tang, Y. G.; Li, J. S.; Shao, M. H. Co3O4-CeO2/C as a highly active electrocatalyst for oxygen reduction reaction in Al-air batteries. ACS Appl. Mater. Interfaces 2016, 8, 34422–34430.

[29]

Liang, S. H.; Teng, F.; Bulgan, G.; Zong, R. L.; Zhu, Y. F. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J. Phys. Chem. C 2008, 112, 5307–5315.

[30]

Jia, J. B.; Zhang, P. Y.; Chen, L. Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl. Catal. B Environ. 2016, 189, 210–218.

[31]

Sharma, R.; Dar, S. A.; Mishra, A. K. Structure, electronic, magnetic and optical properties of cubic Hf1− x (TM) x O2 (X = 0, 0.25, TM = Mn, Fe, Co, Ni): A first principle investigation. J. Alloys Compd. 2019, 791, 983–993.

[32]

Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.

[33]

Xue, Z. H.; Han, J. T.; Feng, W. J.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Tuning the adsorption energy of methanol molecules along Ni-N-doped carbon phase boundaries by the Mott–Schottky effect for gas-phase methanol dehydrogenation. Angew. Chem., Int. Ed. 2018, 57, 2697–2701.

[34]

Li, X. X.; Pan, Y.; Yi, H.; Hu, J. C.; Yang, D. L.; Lv, F. Z.; Li, W. D.; Zhou, J. P.; Wu, X. J.; Lei, A. W. et al. Mott–Schottky effect leads to alkyne semihydrogenation over Pd-nanocube@N-doped carbon. ACS Catal. 2019, 9, 4632–4641.

[35]

Zou, X. J.; Dong, Y. Y.; Ke, J.; Ge, H.; Chen, D.; Sun, H. J.; Cui, Y. B. Cobalt monoxide/tungsten trioxide p-n heterojunction boosting charge separation for efficient visible-light-driven gaseous toluene degradation. Chem. Eng. J. 2020, 400, 125919.

[36]

Gu, W. W.; Song, Y.; Liu, J. J.; Wang, F. Lanthanum-based compounds: Electronic band-gap-dependent electrocatalytic materials for oxygen reduction reaction. Chem.—Eur. J. 2017, 23, 10126–10132.

[37]

Li, K. Q.; Cheng, R. Q.; Xue, Q. Y.; Zhao, T. S.; Wang, F.; Fu, C. P. Construction of a Co/MnO Mott–Schottky heterostructure to achieve interfacial synergy in the oxygen reduction reaction for aluminum-air batteries. ACS Appl. Mater. Interfaces 2023, 15, 9150–9159.

[38]

Bolar, S.; Shit, S.; Murmu, N. C.; Samanta, P.; Kuila, T. Activation strategy of MoS2 as HER electrocatalyst through doping-induced lattice strain, band gap engineering, and active crystal plane design. ACS Appl. Mater. Interfaces 2021, 13, 765–780.

[39]

Ji, B. F.; Gou, J. L.; Zheng, Y. P.; Pu, X. H.; Wang, Y. H.; Kidkhunthod, P.; Tang, Y. B. Coordination chemistry of large-sized yttrium single-atom catalysts for oxygen reduction reaction. Adv. Mater. 2023, 35, 2300381.

[40]

Wu, L.; Li, S. X.; Li, L. X.; Zhang, H.; Tao, L.; Geng, X.; Yang, H. M.; Zhou, W. M.; Sun, C. G.; Ju, D. Y. et al. Modest modulation on the electronic structure of Co9S8 by vanadium doping for high-performance rechargeable Zn-air batteries. Appl. Catal. B Environ. 2023, 324, 122250.

[41]

Kim, H. W.; Bukas, V. J.; Park, H.; Park, S.; Diederichsen, K. M.; Lim, J.; Cho, Y. H.; Kim, J.; Kim, W.; Han, T. H. et al. Mechanisms of two-electron and four-electron electrochemical oxygen reduction reactions at nitrogen-doped reduced graphene oxide. ACS Catal. 2020, 10, 852–863.

[42]

Yu, F. S.; Zhan, J. Y.; Chen, D. T.; Guo, J. Y.; Zhang, S. B.; Zhang, L. H. Electronic states regulation induced by the synergistic effect of Cu clusters and Cu-S1N3 sites boosting electrocatalytic performance. Adv. Funct. Mater. 2023, 33, 2214425.

[43]

Li, X. Y.; Wu, X. S.; Zhao, Y.; Lin, Y. X.; Zhao, J. H.; Wu, C. Q.; Liu, H. J.; Shan, L.; Yang, L.; Song, L. et al. Promoting oxygen reduction reaction by inducing out-of-plane polarization in a metal phthalocyanine catalyst. Adv. Mater. 2023, 35, 2302467.

[44]

Yasin, G.; Ali, S.; Ibraheem, S.; Kumar, A.; Tabish, M.; Mushtaq, M. A.; Ajmal, S.; Arif, M.; Khan, M. A.; Saad, A. et al. Simultaneously engineering the synergistic-effects and coordination-environment of dual-single-atomic iron/cobalt-sites as a bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. ACS Catal. 2023, 13, 2313–2325.

[45]

Wang, H. Q.; Sun, C. H.; Zhu, E. Z.; Shi, C. Y.; Yu, J.; Xu, M. L. Core–shell MOF-derived Fe3C-Co-NC as high-performance ORR/OER bifunctional catalyst. J. Alloys Compd. 2023, 948, 169728.

[46]

Cho, S.; Yim, G.; Koh, J.; Jang, H.; Park, J. T. One-pot synthesis of Pt@TiO2 core–shell nanoparticles for stable hydrogen evolution reaction in acidic and alkaline media. Mater. Today Chem. 2023, 32, 101644.

[47]

Zhang, Y. Y.; Chen, S. T.; Zhang, Y. X.; Li, R. J.; Zhao, B.; Peng, T. Y. Hydrogen-bond regulation of the microenvironment of Ni(II)-porphyrin bifunctional electrocatalysts for efficient overall water splitting. Adv. Mater. 2023, 35, 2210727.

[48]

Cai, W. Z.; Zhou, C.; Hu, X. M.; Jiao, T. W.; Liu, Y. J.; Li, L.; Li, J.; Kitano, M.; Hosono, H.; Wu, J. Z. Quasi-two-dimensional intermetallic electride cerusi for efficient alkaline hydrogen evolution. ACS Catal. 2023, 13, 4752–4759.

[49]

Wang, S. Q.; Xu, B. L.; Huo, W. Y.; Feng, H. C.; Zhou, X. F.; Fang, F.; Xie, Z. H.; Shang, J. K.; Jiang, J. Q. Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Appl. Catal. B Environ. 2022, 313, 121472.

[50]

Yang, L. W.; Wu, X. L.; Huang, G. S.; Qiu, T.; Yang, Y. M. In situ synthesis of Mn-doped ZnO multileg nanostructures and Mn-related Raman vibration. J. Appl. Phys. 2005, 97, 014308.

[51]

Savinova, E. R.; Kraft, P.; Pettinger, B.; Doblhofer, K. In situ Raman spectroscopy studies of the interface between silver(111) electrodes and alkaline NaF electrolytes. J. Electroanal. Chem. 1997, 430, 47–56.

[52]

Waterhouse, G. I. N.; Bowmaker, G. A.; Metson, J. B. Oxygen chemisorption on an electrolytic silver catalyst: A combined TPD and Raman spectroscopic study. Appl. Surf. Sci. 2003, 214, 36–51.

[53]

Ren, L. P.; Dai, W. L.; Yang, X. L.; Cao, Y.; Xie, Z. K.; Fan, K. N. Transformation of various oxygen species on the surface of electrolytic silver characterized by in situ Raman spectroscopy. Chin. J. Catal. 2006, 27, 115–118.

[54]

Zhong, H. X.; Ly, K. H.; Wang, M. C.; Krupskaya, Y.; Han, X. C.; Zhang, J. C.; Zhang, J.; Kataev, V.; Büchner, B.; Weidinger, I. M. et al. A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 10677–10682.

[55]

Dong, J. C.; Su, M.; Briega-Martos, V.; Li, L.; Le, J. B.; Radjenovic, P.; Zhou, X. S.; Feliu, J. M.; Tian, Z. Q.; Li, J. F. Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt( hkl) surfaces. J. Am. Chem. Soc. 2020, 142, 715–719.

[56]

Benedetti, A. V.; Nakazato, R. Z.; Sumodjo, P. T. A.; Cabot, P. L.; Centellas, F. A.; Garrido, J. A. Potentiodynamic behaviour of Cu A1 Ag alloys in NaOH: A comparative study related to the pure metals electrochemistry. Electrochim. Acta 1991, 36, 1409–1421.

[57]

Yang, Y. A.; Wang, Y. Y.; Zhang, X. Y.; Qi, G. H.; Xu, S. P.; Xu, W. Q. A facile method of removing several common surface-enhanced Raman scattering probe molecules adsorbed on Ag with sodium borohydride solution. J. Opt. 2015, 17, 075003.

[58]

Koleva, V.; Stefov, V.; Cahil, A.; Najdoski, M.; Šoptrajanov, B.; Engelen, B.; Lutz, H. D. Infrared and Raman studies of manganese dihydrogen phosphate dihydrate, Mn(H2PO4)2·2H2O. I: Region of the vibrations of the phosphate ions and external modes of the water molecules. J. Mol. Struct. 2009, 917, 117–124.

[59]

Su, H.; Zhou, W. L.; Zhou, W.; Li, Y. L.; Zheng, L. R.; Zhang, H.; Liu, M. H.; Zhang, X. X.; Sun, X.; Xu, Y. Z. et al. In- situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation. Nat. Commun. 2021, 12, 6118

[60]

Yu, P.; Wang, L.; Sun, F. F.; Xie, Y.; Liu, X.; Ma, J. Y.; Wang, X. W.; Tian, C. G.; Li, J. H.; Fu, H. G. Co Nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv. Mater. 2019, 31, 1901666.

[61]

Luo, L.; Fu, L.; Liu, H. F.; Xu, Y. X.; Xing, J. L.; Chang, C. R.; Yang, D. Y.; Tang, J. W. Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light. Nat. Commun. 2022, 13, 2930.

[62]

Talukder, N.; Wang, Y. D.; Nunna, B. B.; Lee, E. S. Nitrogen-doped graphene nanomaterials for electrochemical catalysis/reactions: A review on chemical structures and stability. Carbon 2021, 185, 198–214.

[63]

Ni, S.; Qu, H. N.; Xing, H. F.; Xu, Z. H.; Zhu, X. Y.; Yuan, M. L.; Wang, L.; Yu, J. M.; Li, Y. Q.; Yang, L. R. et al. Donor–acceptor couples of metal and metal oxides with enriched Ni3+ active sites for oxygen evolution. ACS Appl. Mater. Interfaces 2021, 13, 17501–17510.

[64]

Yang, M. J.; Zhang, Y.; Jian, J. H.; Fang, L.; Li, J.; Fang, Z. S.; Yuan, Z. K.; Dai, L. M.; Chen, X. D.; Yu, D. S. Donor–acceptor nanocarbon ensembles to boost metal-free all-pH hydrogen evolution catalysis by combined surface and dual electronic modulation. Angew. Chem., Int. Ed. 2019, 58, 16217–16222.

File
12274_2023_6240_MOESM1_ESM.pdf (5.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 July 2023
Revised: 19 September 2023
Accepted: 01 October 2023
Published: 31 October 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 52274302) and Natural Science Foundation of Shanghai (Nos. 21ZR1429400 and 22ZR1429700).

Return