Journal Home > Volume 17 , Issue 3

With the development of the miniaturization of electronic equipment and lightweight weapon equipment, there are new requirements for electromagnetic wave absorption material (EMWAM). EMWAM has outstanding electromagnetic wave absorption properties and lightweight characteristics become an important direction of research. In this study, graphene/g-C3N4 (GGCN) EMWAM was first synthesized in situ by simple heat treatment, in which the g-C3N4 had a porous structure and dispersed on the surface of graphene. The impedance matching of the GGCN was well adjusted by decreasing the dielectric constant and attenuation constant due to the g-C3N4 semiconductor property and the graphite-like structure. The EMW loss mechanism of GGCN was also analyzed by simulating GGCN’s electric field mode distribution and resistance loss power density. The analysis result shows that the distribution of g-C3N4 among GGCN sheets can produce more polarization effects and relaxation effects by increasing the lamellar spacing. Furthermore, the polarization loss of GGCN could be increased successfully by porous g-C3N4. Ultimately, the EMW absorption property of GGCN is optimized significantly, and GGCN exhibits excellent EMW absorption performance. When the thickness is 2 mm, the effective absorption bandwidth (EAB) can reach 4.6 GHz, and when the thickness is 4.5 mm, the minimum reflection loss (RLmin) at 4.56 GHz can reach −34.69 dB. Moreover, the practical application of EMWAM was studied by radar cross-section (RCS) simulation, showing that GGCN has a good application prospect.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Facile fabrication of graphene/g-C3N4 for electromagnetic wave absorption

Show Author's information Qiang Su1,2Yunfei He1Dongdong Liu1( )Daguang Li3Long Xia1Xiaoxiao Huang4Bo Zhong1( )
School of Materials Science and Engineering, Harbin Institute of Technology Weihai, Weihai 264209, China
Weihai Yunshan Technology Co., Ltd., Weihai 264200, China
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

With the development of the miniaturization of electronic equipment and lightweight weapon equipment, there are new requirements for electromagnetic wave absorption material (EMWAM). EMWAM has outstanding electromagnetic wave absorption properties and lightweight characteristics become an important direction of research. In this study, graphene/g-C3N4 (GGCN) EMWAM was first synthesized in situ by simple heat treatment, in which the g-C3N4 had a porous structure and dispersed on the surface of graphene. The impedance matching of the GGCN was well adjusted by decreasing the dielectric constant and attenuation constant due to the g-C3N4 semiconductor property and the graphite-like structure. The EMW loss mechanism of GGCN was also analyzed by simulating GGCN’s electric field mode distribution and resistance loss power density. The analysis result shows that the distribution of g-C3N4 among GGCN sheets can produce more polarization effects and relaxation effects by increasing the lamellar spacing. Furthermore, the polarization loss of GGCN could be increased successfully by porous g-C3N4. Ultimately, the EMW absorption property of GGCN is optimized significantly, and GGCN exhibits excellent EMW absorption performance. When the thickness is 2 mm, the effective absorption bandwidth (EAB) can reach 4.6 GHz, and when the thickness is 4.5 mm, the minimum reflection loss (RLmin) at 4.56 GHz can reach −34.69 dB. Moreover, the practical application of EMWAM was studied by radar cross-section (RCS) simulation, showing that GGCN has a good application prospect.

Keywords: simulation analysis, impedance matching, dielectric loss, graphene/g-C3N4, excellent electromagnetic wave absorption

References(60)

[1]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[2]

Xu, H. X.; He, Z. Z.; Li, Y. R.; Wang, Y. R.; Zhang, Z. W.; Dai, X. Q.; Xiong, Z. M.; Geng, W. C.; Liu, P. B. Porous magnetic carbon spheres with adjustable magnetic-composition and synergistic effect for lightweight microwave absorption. Carbon 2023, 213, 118290.

[3]
Zhao, J.; Gu, Z.; Zhang, Q. G. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res., in press, https://doi.org/10.1007/s12274-023-6090-3.
DOI
[4]

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

[5]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[6]

Yang, J. M.; Chen, Y. J.; Yan, X.; Liao, X.; Wang, H.; Liu, C.; Wu, H.; Zhou, Y. Y.; Gao, H.; Xia, Y. Y. et al. Construction of in- situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection. Compos. Sci. Technol. 2023, 240, 110093.

[7]

Ruan, K. P.; Gu, J. W. Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 2022, 55, 4134–4145.

[8]

Liu, P. B.; Wang, Y.; Zhang, G. Z.; Huang, Y.; Zhang, R. X.; Liu, X. H.; Zhang, X. F.; Che, R. C. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 2022, 32, 2202588.

[9]

Wei, C. H.; He, M. K.; Li, M. Q.; Ma, X.; Dang, W. L.; Liu, P. B.; Gu, J. W. Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 2023, 36, 101142.

[10]

Meng, F. B.; Wang, H. G.; Wei; Chen, Z. J.; Li, T.; Li, C. Y.; Xuan, Y.; Zhou, Z. W. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano Res. 2018, 11, 2847–2861.

[11]

Su, Q.; Liu, D. D.; Wang, C. Y.; Xia, L.; Huang, X. X.; Zhong, B. Graphene/BN/Fe/BN nanocomposites for highly efficient electromagnetic wave absorption. ACS Appl. Nano Mater. 2022, 5, 15902–15913.

[12]

Zhang, R. N.; Li, B.; Yang, Y. F.; Wu, N.; Sui, Z. Y.; Ban, Q. F.; Wu, L. L.; Liu, W.; Liu, J. R.; Zeng, Z. H. Ultralight aerogel sphere composed of nanocellulose-derived carbon nanofiber and graphene for excellent electromagnetic wave absorption. Nano Res. 2023, 16, 7931–7940.

[13]

Liu, P. J.; Yao, Z. J.; Zhou, J. T.; Yang, Z. H.; Kong, L. B. Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 2016, 4, 9738–9749.

[14]

Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704–716.

[15]

Wang, F. Y.; Li, X. Z.; Chen, Z. H.; Yu, W.; Loh, K. P.; Zhong, B.; Shi, Y. M.; Xu, Q. H. Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites. Chem. Eng. J. 2021, 405, 126676.

[16]

Sun, G. B.; Wu, H.; Liao, Q. L.; Zhang, Y. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res. 2018, 11, 2689–2704.

[17]

Ren, Z. W.; Zhou, W. C.; Qing, Y. C.; Duan, S. C.; Pan, H. J.; Zhou, Y. Y. Improved mechanical and microwave absorption properties of SiCf/SiC composites with SiO2 filler. Ceram. Int. 2021, 47, 14455–14463.

[18]

Ebrahimi-Tazangi, F.; Hekmatara, S. H.; Seyed-Yazdi, J. Remarkable microwave absorption of GO-SiO2/Fe3O4 via an effective design and optimized composition. J. Alloys Compd. 2021, 854, 157213.

[19]

Chen, J. P.; Jia, H.; Liu, Z.; Kong, Q. Q.; Hou, Z. H.; Xie, L. J.; Sun, G. H.; Zhang, S. C.; Chen, C. M. Construction of C-Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption. Carbon 2020, 164, 59–68.

[20]

Jiang, Y.; Chen, Y.; Liu, Y. J.; Sui, G. X. Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption. Chem. Eng. J. 2018, 337, 522–531.

[21]

Jiang, Z. Y.; Si, H. X.; Chen, X.; Liu, H. M.; Zhang, L.; Zhang, Y. H.; Gong, C. H.; Zhang, J. W. Simultaneous enhancement of impedance matching and the absorption behavior of BN/RGO nanocomposites for efficiency microwave absorption. Compos. Commun. 2020, 22, 100503.

[22]

Pang, H.; Pang, W. H.; Zhang, B.; Ren, N. Excellent microwave absorption properties of the h-BN-GO-Fe3O4 ternary composite. J. Mater. Chem. C 2018, 6, 11722–11730.

[23]

Zhang, G. R.; Li, X. J.; Li, N.; Wu, T. T.; Wang, L. Face-to-face heterojunctions within 2D/2D porous NiCo oxyphosphide/g-C3N4 towards efficient and stable photocatalytic H2 evolution. Nano Res. 2023, 16, 6568–6576.

[24]

Chen, Y. P.; Zhou, Q.; Zhao, G. Q.; Yu, Z. W.; Wang, X. L.; Dou, S. X.; Sun, W. P. Electrochemically inert g-C3N4 promotes water oxidation catalysis. Adv. Funct. Mater. 2018, 28, 1705583.

[25]

Lu, S. S.; Zhang, L. M.; Fan, K.; Xie, J. Y.; Shang, X.; Zhang, J. Q.; Chi, J. Q.; Yang, X. L.; Wang, L.; Chai, Y. M. et al. In situ formation of ultrathin C3N4 layers on metallic WO2 nanorods for efficient hydrogen evolution. Appl. Surf. Sci. 2019, 487, 945–950.

[26]

Zhao, Y. H.; Zhang, Y.; Li, R.; Wang, Z. S.; Lou, Z. C.; Li, Y. J. Facile synthesis of ultralight and porous melamine-formaldehyde (MF) resin-derived magnetic graphite-like C3N4/carbon foam with electromagnetic wave absorption behavior. Crystals 2020, 10, 656.

[27]

Zhang, S. J.; Cheng, B.; Gao, Z. G.; Lan, D.; Zhao, Z. W.; Wei, F. C.; Zhu, Q. S.; Lu, X. P.; Wu, G. L. Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: An overview of recent advances and prospects. J. Alloys Compd. 2022, 893, 162343.

[28]

Xu, L.; Xia, J. X.; Xu, H.; Yin, S.; Wang, K.; Huang, L. Y.; Wang, L. G.; Li, H. M. Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized α-Fe2O3 hollow microspheres with enhanced supercapacitive performance. J. Power Sources 2014, 245, 866–874.

[29]

Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A. J.; Zhang, W. M.; Zhu, Z. H.; Smith, S. C.; Jaroniec, M. et al. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 2011, 133, 20116–20119.

[30]

Rashid, J.; Parveen, N.; Iqbal, A.; Awan, S. U.; Iqbal, N.; Talib, S. H.; Hussain, N.; Akram, B.; Ulhaq, A.; Ahmed, B. et al. Facile synthesis of g-C3N4(0.94)/CeO2(0.05)/Fe3O4(0.01) nanosheets for DFT supported visible photocatalysis of 2-Chlorophenol. Sci. Rep. 2019, 9, 10202.

[31]

Hou, Y.; Zuo, F.; Dagg, A. P.; Liu, J. K.; Feng, P. Y. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoO x nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv. Mater. 2014, 26, 5043–5049.

[32]

Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 2010, 26, 3894–3901.

[33]

Lv, H. L.; Zhang, H. Q.; Ji, G. B. Development of novel graphene/g-C3N4 composite with broad-frequency and light-weight features. Part. Part. Syst. Char. 2016, 33, 656–663.

[34]

Chen, C.; Xi, J. B.; Zhou, E. Z.; Peng, L.; Chen, Z. C.; Gao, C. Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 2017, 10, 26.

[35]

Liu, J. L.; Zhang, L. M.; Wu, H. J. Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F regulation engineering. Adv. Funct. Mater. 2022, 32, 2110496.

[36]

Yuan, M. Y.; Zhao, B.; Yang, C. D.; Pei, K.; Wang, L. Y.; Zhang, R. X.; You, W. B.; Liu, X. H.; Zhang, X. F.; Che, R. C. Remarkable magnetic exchange coupling via constructing Bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. 2022, 32, 2203161.

[37]

Zhong, B.; Cheng, Y. J.; Wang, M.; Bai, Y. Q.; Huang, X. X.; Yu, Y. L.; Wang, H. T.; Wen, G. W. Three dimensional hexagonal boron nitride nanosheet/carbon nanotube composites with light weight and enhanced microwave absorption performance. Compos. Part A: Appl. Sci. Manuf. 2018, 112, 515–524.

[38]

Li, X.; Wen, C. Y.; Yang, L. T.; Zhang, R. X.; Li, Y. S.; Che, R. C. Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance. J. Alloys Compd. 2021, 869, 159365.

[39]

Chen, H. H.; Huang, Z. Y.; Huang, Y.; Zhang, Y.; Ge, Z.; Qin, B.; Liu, Z. F.; Shi, Q.; Xiao, P. S.; Yang, Y. et al. Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 2017, 124, 506–514.

[40]

Wang, Y.; Gao, X.; Fu, Y. Q.; Wu, X. M.; Wang, Q. G.; Zhang, W. Z.; Luo, C. Y. Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Compos. Part B: Eng. 2019, 169, 221–228.

[41]

Papailias, I.; Giannakopoulou, T.; Todorova, N.; Demotikali, D.; Vaimakis, T.; Trapalis, C. Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 2015, 358, 278–286.

[42]

Li, Y. B.; Zhang, H. M.; Liu, P. R.; Wang, D.; Li, Y.; Zhao, H. J. Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small 2013, 9, 3336–3344.

[43]

Yang, W. L.; Gao, H.; Zhao, Y.; Bi, K. Q.; Li, X. L. Facile preparation of nitrogen-doped graphene sponge as a highly efficient oil absorption material. Mater. Lett. 2016, 178, 95–99.

[44]

Jiang, Z. X.; Zhang, X.; Chen, H. S.; Hu, X.; Yang, P. Formation of g-C3N4 nanotubes towards superior photocatalysis performance. ChemCatChem 2019, 11, 4558–4567.

[45]

Yang, W. B.; Jia, L. H.; Wu, P.; Zhai, H. B.; He, J.; Liu, C. J.; Jiang, W. Effect of thermal program on structure–activity relationship of g-C3N4 prepared by urea pyrolysis and its application for controllable production of g-C3N4. J. Solid State Chem. 2021, 304, 122545.

[46]

Su, Q.; He, Y. F.; Liu, D. D.; Jia, K.; Xia, L.; Huang, X. X.; Zhong, B. Facile fabrication of ultra-light N-doped-rGO/g-C3N4 for broadband microwave absorption. J. Colloid Interface Sci. 2023, 650, 47–57.

[47]

Samanta, S.; Yadav, R.; Kumar, A.; Kumar Sinha, A.; Srivastava, R. Surface modified C, O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO2 reduction and H2O2 production. Appl. Catal. B: Environ. 2019, 259, 118054.

[48]

Zhou, L.; Feng, J. R.; Qiu, B. C.; Zhou, Y.; Lei, J. Y.; Xing, M. Y.; Wang, L. Z.; Zhou, Y. B.; Liu, Y. D.; Zhang, J. L. Ultrathin g-C3N4 nanosheet with hierarchical pores and desirable energy band for highly efficient H2O2 production. Appl. Catal. B: Environ. 2020, 267, 118396.

[49]

Fu, J. W.; Zhu, B. C.; Jiang, C. J.; Cheng, B.; You, W.; Yu, J. G. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 2017, 13, 1603938.

[50]

Meng, F. B.; Wang, H. G.; Huang, F.; Guo, Y. F.; Wang, Z. Y.; Hui, D.; Zhou, Z. W. Graphene-based microwave absorbing composites: A review and prospective. Compos. Part B: Eng. 2018, 137, 260–277.

[51]

Jian, X.; Xiao, X. Y.; Deng, L. J.; Tian, W.; Wang, X.; Mahmood, N.; Dou, S. X. Heterostructured nanorings of Fe-Fe3O4@C hybrid with enhanced microwave absorption performance. ACS Appl. Mater. Interfaces 2018, 10, 9369–9378.

[52]

Liu, X.; Ma, Y. T.; Zhang, Q. F.; Zheng, Z. M.; Wang, L. S.; Peng, D. L. Facile synthesis of Fe3O4/C composites for broadband microwave absorption properties. Appl. Surf. Sci. 2018, 445, 82–88.

[53]

Shu, R. W.; Wan, Z. L.; Zhang, J. B.; Wu, Y.; Liu, Y.; Shi, J. J.; Zheng, M. D. Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers. ACS Appl. Mater. Interfaces 2020, 12, 4689–4698.

[54]

Lv, H. L.; Ji, G. B.; Liang, X. H.; Zhang, H. Q.; Du, Y. W. A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C 2015, 3, 5056–5064.

[55]

Yue, L. Q.; Zhong, B.; Xia, L.; Zhang, T.; Yu, Y. L.; Huang, X. X. Three-dimensional network-like structure formed by silicon coated carbon nanotubes for enhanced microwave absorption. J. Colloid Interface Sci. 2021, 582, 177–186.

[56]

Han, C.; Zhang, M.; Cao, W. Q.; Cao, M. S. Electrospinning and in- situ hierarchical thermal treatment to tailor C-NiCo2O4 nanofibers for tunable microwave absorption. Carbon 2021, 171, 953–962.

[57]

Lu, M. M.; Cao, W. Q.; Shi, H. L.; Fang, X. Y.; Yang, J.; Hou, Z. L.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: Mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2014, 2, 10540–10547.

[58]

Zhou, N.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R.; Shi, Z. Solvothermal synthesis of three-dimensional, Fe2O3 NPs-embedded CNT/N-doped graphene composites with excellent microwave absorption performance. RSC Adv. 2017, 7, 45156–45169.

[59]

Qiu, Y.; Yang, H. B.; Hu, F. F.; Lin, Y. Two-dimensional CoNi@mesoporous carbon composite with heterogeneous structure toward broadband microwave absorber. Nano Res. 2022, 15, 7769–7777.

[60]

Kang, Y.; Chu, Z. Y.; Zhang, D. J.; Li, G. Y.; Jiang, Z. H.; Cheng, H. F.; Li, X. D. Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon 2013, 61, 200–208.

File
12274_2023_6231_MOESM1_ESM.pdf (971.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 August 2023
Revised: 20 September 2023
Accepted: 22 September 2023
Published: 02 December 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51872058), the Supporting Program for Innovation Team of Outstanding Youth in Colleges and Universities of Shandong Province (No. 2020KJA005), and the Natural Science Foundation of Shandong Province (No. ZR2022QB156).

Return