AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A functional gel polymer electrolyte based on PVDF-HFP/gelatin toward dendrite-free lithium metal batteries

Xiaoyi Hu1,2Kangli Liu1,2Shijie Zhang1,2Guosheng Shao1,2( )S. Ravi P. Silva3Peng Zhang1,2( )
State Center for International Cooperation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Xingyang 450100, China
Nanoelectronics Center, Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, UK
Show Author Information

Graphical Abstract

The poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)/gelatin gel polymer electrolyte utilizes an PVDF-HFP electrospinning network as structural scaffolds, and gelatin with sol–gel properties and polar groups was loaded at PVDF-HFP, regulating lithium deposition and giving lithium metal batteries excellent cycling performance and safety.

Abstract

The leakage of liquid electrolyte and the formation of lithium dendrites pose challenges to safety and stability of lithium metal batteries (LMBs). The appearance of gel polymer electrolyte (GPE) has obviously improved the safety of traditional LMBs. However, the limited inhibition of GPE on lithium dendrites is detrimental to the safety of LMBs. Herein, a kind of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)/gelatin (GN) GPE with high ionic conductivity, high-temperature resistance, and flame-retardancy, was prepared by electrospinning and soaking method. Utilizing the electrospinning network of PVDF-HFP, its affinity to liquid electrolytes, makes this GPE more beneficial to ions transport and the formation of gel. And, the GN with sol–gel properties, enhances the mechanical property (13.5 MPa) of HFP-GN GPE. Meanwhile, X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) suggest that the attraction of polar groups of GN to Li+ can regulate the distribution of Li+ and protect Li anodes. Consequently, the application of HFP-GN GPEs to LMBs with cathodes of LiFePO4 and LiCoO2 deliver excellent electrochemical performances: after 300 cycles, the LiFePO4/HFP-GN GPE/Li battery keeps a low capacity decay rate of 0.09% at 5 C; after 400 cycles at 2 C, the LiCoO2/HFP-GN GPE/Li cell retains a high capacity retention of 74%. This GPE is demonstrated for the application prospect of safe LMBs.

Electronic Supplementary Material

Download File(s)
12274_2023_6230_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Wang, Z.; Hou, L. P.; Li, Z.; Liang, J. L.; Zhou, M. Y.; Zhao, C. Z.; Zeng, X. Y.; Li, B. Q.; Chen, A. B.; Zhang, X. Q. et al. Highly soluble organic nitrate additives for practical lithium metal batteries. Carbon Energy 2023, 5, e283.

[2]

Arrese-Igor, M.; Martinez-Ibañez, M.; Orue, A.; Pavlenko, E.; Dumont, E.; Armand, M.; Aguesse, F.; Aranguren, P. L. Influence of the operating temperature on the ageing and interfaces of double layer polymer electrolyte solid state Li metal batteries. Nano Res. 2023, 16, 8377–8384.

[3]

Liu, Y. H.; Sun, J. M.; Hu, X. Q.; Li, Y. F.; Du, H.; Wang, K.; Du, Z. Z.; Gong, X.; Ai, W.; Huang, W. Lithiophilic sites dependency of lithium deposition in Li metal host anodes. Nano Energy 2022, 94, 106883.

[4]

Ma, Y. X.; Wan, J. Y.; Yang, Y. F.; Ye, Y. S.; Xiao, X.; Boyle, D. T.; Burke, W.; Huang, Z. J.; Chen, H.; Cui, Y. et al. Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv. Energy Mater. 2022, 12, 2103720.

[5]

Kim, J. H.; Kim, J. M.; Cho, S. K.; Kim, N. Y.; Lee, S. Y. Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries. Nat. Commun. 2022, 13, 2541.

[6]

Xiang, Y. X.; Tao, M. M.; Chen, X. X.; Shan, P. Z.; Zhao, D. H.; Wu, J.; Lin, M.; Liu, X. S.; He, H. J.; Zhao, W. M. et al. Gas induced formation of inactive Li in rechargeable lithium metal batteries. Nat. Commun. 2023, 14, 177.

[7]

Song, J. B.; Liao, K. S.; Si, J.; Zhao, C. L.; Wang, J. P.; Zhou, M. J.; Liang, H. Z.; Gong, J.; Cheng, Y. J.; Gao, J. et al. Phosphonate-functionalized ionic liquid gel polymer electrolyte with high safety for dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 2023, 15, 2901–2910.

[8]

Han, L. F.; Liao, C.; Liu, Y. Y.; Yu, H.; Zhang, S. H.; Zhu, Y. L.; Li, Z. R.; Li, X. J.; Kan, Y. C.; Hu, Y. Non-flammable sandwich-structured TPU gel polymer electrolyte without flame retardant addition for high performance lithium ion batteries. Energy Storage Mater. 2022, 52, 562–572.

[9]

Pei, X. P.; Li, Y. J.; Ou, T.; Liang, X. C.; Yang, Y.; Jia, E. N.; Tan, Y.; Guo, S. J. Li–N interaction induced deep eutectic gel polymer electrolyte for high performance lithium-metal batteries. Angew. Chem., Int. Ed. 2022, 61, e202205075.

[10]

Yang, Q.; Deng, N. P.; Chen, J. Y.; Cheng, B. W.; Kang, W. M. The recent research progress and prospect of gel polymer electrolytes in lithium-sulfur batteries. Chem. Eng. J. 2021, 413, 127427.

[11]

Ren, W. H.; Ding, C. F.; Fu, X. W.; Huang, Y. Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, strategies, and perspectives. Energy Storage Mater. 2021, 34, 515–535.

[12]

Mu, X. W.; Li, X. J.; Liao, C.; Yu, H.; Jin, Y.; Yu, B.; Han, L. F.; Chen, L. K.; Kan, Y. C.; Song, L. et al. Phosphorus-fixed stable interfacial nonflammable gel polymer electrolyte for safe flexible lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2203006.

[13]

Huang, R. L.; Xu, R. C.; Zhang, J. T.; Wang, J. Y.; Zhou, T. Y.; Liu, M. Y.; Wang, X. L. PVDF-HFP-SN-based gel polymer electrolyte for high-performance lithium-ion batteries. Nano Res. 2023, 16, 9480–9487.

[14]

Zhu, J.; Zhang, J. P.; Zhao, R. Q.; Zhao, Y.; Liu, J.; Xu, N.; Wan, X. J.; Li, C. X.; Ma, Y. F.; Zhang, H. T. et al. In situ 3D crosslinked gel polymer electrolyte for ultra-long cycling, high-voltage, and high-safety lithium metal batteries. Energy Storage Mater. 2023, 57, 92–101

[15]

Li, K.; Shen, W.; Xu, T.; Yang, L.; Xu, X. B.; Yang, F. Y.; Zhang, L. J.; Wang, Y. J.; Zhou, Y. N.; Zhong, M. J. et al. Fibrous gel polymer electrolyte for an ultrastable and highly safe flexible lithium-ion battery in a wide temperature range. Carbon Energy 2021, 3, 916–928.

[16]

Ma, C.; Cui, W. F.; Liu, X. Z.; Ding, Y.; Wang, Y. G. In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives. InfoMat 2021, 4, e12232

[17]

Zhao, H. J.; Deng, N. P.; Kang, W. M.; Cheng, B. W. Designing of multilevel-nanofibers-based organic–inorganic hybrid gel electrolyte enabling an innovative lithium-ion battery with superior ionic transport capability and advanced security. Chem. Eng. J. 2020, 390, 124571.

[18]

Hu, Z. Y.; Zhang, Y. F.; Fan, W. Z.; Li, X. W.; Huo, S. K.; Jing, X.; Bao, W.; Zhang, Y.; Cheng, H. S. Flexible, high-temperature-resistant, highly conductive, and porous siloxane-based single-ion conducting electrolyte membranes for safe and dendrite-free lithium-metal batteries. J. Memb. Sci. 2023, 668, 121275.

[19]

Zhou, C.; He, Q.; Li, Z. H.; Meng, J. S.; Hong, X. F.; Li, Y.; Zhao, Y.; Xu, X.; Mai, L. A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries. Chem. Eng. J. 2020, 395, 124979.

[20]

Liu, M.; Deng, N. P.; Ju, J. G.; Fan, L. L.; Wang, L. Y.; Li, Z. J.; Zhao, H. J.; Yang, G.; Kang, W. M.; Yan, J. et al. A review: Electrospun nanofiber materials for lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1905467.

[21]

Zhang, Y. S.; Zhang, X. L.; Silva, S. R. P.; Ding, B.; Zhang, P.; Shao, G. S. Lithium-sulfur batteries meet electrospinning: Recent advances and the key parameters for high gravimetric and volume energy density. Adv. Sci. 2022, 9, 2103879.

[22]

Hou, R. H.; Zhang, S. J.; Zhang, Y. S.; Li, N.; Wang, S. B.; Ding, B.; Shao, G. S.; Zhang, P. A “three-region” configuration for enhanced electrochemical kinetics and high-areal capacity lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2200302.

[23]

Zhang, Y. S.; Zhang, P.; Zhang, S. J.; Wang, Z.; Li, N.; Silva, S. R. P.; Shao, G. S. A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li-S batteries. InfoMat 2021, 3, 790–803

[24]

Liu, K. L.; Zhang, X. D.; Miao, F. J.; Wang, Z.; Zhang, S. J.; Zhang, Y. S.; Zhang, P.; Shao, G. S. In situ electrochemical intercalation-induced phase transition to enhance catalytic performance for lithium-sulfur battery. Small 2021, 17, 2100065

[25]

Zhao, H. J.; Deng, N. P.; Kang, W. M.; Li, Z. J.; Wang, G.; Cheng, B. W. Highly multiscale structural poly(vinylidene fluoridehexafluoropropylene)/poly-m-phenyleneisophthalamide separator with enhanced interface compatibility and uniform lithium-ion flux distribution for dendrite-proof lithium-metal batteries. Energy Storage Mater. 2020, 26, 334–348.

[26]

Zhao, H. J.; Kang, W. M.; Deng, N. P.; Liu, M.; Cheng, B. W. A fresh hierarchical-structure gel poly-m-phenyleneisophthalamide nanofiber separator assisted by electronegative nanoclay-filler towards high-performance and advanced-safety lithium-ion battery. Chem. Eng. J. 2020, 384, 123312.

[27]

Sheng, J. Z.; Zhang, Q.; Sun, C. B.; Wang, J. X.; Zhong, X. W.; Chen, B.; Li, C.; Gao, R. H.; Han, Z. Y.; Zhou, G. M. Crosslinked nanofiber-reinforced solid-state electrolytes with polysulfide fixation effect towards high safety flexible lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2203272.

[28]

Yan, W.; Wei, J.; Chen, T.; Duan, L.; Wang, L.; Xue, X. L.; Chen, R. P.; Kong, W. H.; Lin, H. N.; Li, C. H. et al. Superstretchable, thermostable and ultrahigh-loading lithium-sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy 2021, 80, 105510.

[29]

Zhao, D.; Martinelli, A.; Willfahrt, A.; Fischer, T.; Bernin, D.; Khan, Z. U.; Shahi, M.; Brill, J.; Jonsson, M. P.; Fabiano, S. et al. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles. Nat. Commun. 2019, 10, 1093.

[30]

Lei, D. N.; He, Y. B.; Huang, H. J.; Yuan, Y. F.; Zhong, G. M.; Zhao, Q.; Hao, X. G.; Zhang, D. F.; Lai, C.; Zhang, S. W. et al. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun. 2019, 10, 4244.

[31]

Liang, H. P.; Zarrabeitia, M.; Chen, Z.; Jovanovic, S.; Merz, S.; Granwehr, J.; Passerini, S.; Bresser, D. Polysiloxane-based single-ion conducting polymer blend electrolyte comprising small-molecule organic carbonates for high-energy and high-power lithium-metal batteries. Adv. Energy Mater. 2022, 12, 2200013.

[32]

Kim, J. H.; Go, K.; Lee, K. J.; Kim, H. S. Improved performance of all-solid-state lithium metal batteries via physical and chemical interfacial control. Adv. Sci. 2022, 9, 2103433.

[33]

Schmid, R.; Schmidt, S. K.; Detsch, R.; Horder, H.; Blunk, T.; Schrüfer, S.; Schubert, D. W.; Fischer, L.; Thievessen, I.; Heltmann-Meyer, S. et al. A new printable alginate/hyaluronic acid/gelatin hydrogel suitable for biofabrication of in vitro and in vivo metastatic melanoma models. Adv. Funct. Mater. 2022, 32, 2107993.

[34]

Deng, Y.; Huang, M.; Sun, D.; Hou, Y.; Li, Y.; Dong, T.; Wang, X.; Zhang, L.; Yang, W. Dual physically cross-linked κ-carrageenan-based double network hydrogels with superior self-healing performance for biomedical application. ACS Appl. Mater. Interfaces 2018, 10, 37544–37554.

[35]

Lai, Y. M.; Zhao, Y.; Cai, W. P.; Song, J.; Jia, Y. T.; Ding, B.; Yan, J. H. Constructing ionic gradient and lithiophilic interphase for high-rate Li-metal anode. Small 2019, 15, 1905171.

[36]

Akhtar, N.; Sun, X. G.; Yasir Akram, M.; Zaman, F.; Wang, W. K.; Wang, A. B.; Chen, L.; Zhang, H.; Guan, Y. P.; Huang, Y. Q. A gelatin-based artificial SEI for lithium deposition regulation and polysulfide shuttle suppression in lithium-sulfur batteries. J. Energy Chem. 2021, 52, 310–317.

[37]

Sun, R. M.; Hu, J.; Shi, X. X.; Wang, J.; Zheng, X. Y.; Zhang, Y. X.; Han, B.; Xia, K. S.; Gao, Q.; Zhou, C. G. et al. Water-soluble cross-linking functional binder for low-cost and high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2104858.

[38]

Huang, Y. Y.; Yu, Y. R.; Xu, H. J.; Zhang, X. D.; Wang, Z.; Shao, G. S. First-principles formulation of spinel-like structured Li(4−3 x )Y x Cl4 as promising solid-state electrolytes to enable superb lithium ion conductivity and matching oxidation potentials to high-voltage cathodes. J. Mater. Chem. A 2021, 9, 14969–14976.

[39]

Zhang, X. D.; Wang, Z.; Shao, G. S. Theoretical identification of layered MXene phase Na x Ti4C2O4 as superb anodes for rechargeable sodium-ion batteries. J. Mater. Chem. A 2020, 8, 11177–11187.

[40]

Singh, R.; Janakiraman, S.; Agrawal, A.; Ghosh, S.; Venimadhav, A.; Biswas, K. An amorphous poly(vinylidene fluoride-co-hexafluoropropylene) based gel polymer electrolyte for magnesium ion battery. J. Electroanal. Chem. 2020, 858, 113788.

[41]

Wang, X. L.; Li, G. R.; Li, M. J.; Liu, R. P.; Li, H. B.; Li, T. Y.; Sun, M. Z.; Deng, Y. R.; Feng, M.; Chen, Z. W. Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium-sulfur batteries. J. Energy Chem. 2021, 53, 234–240.

[42]

Jin, Y. M.; Zong, X.; Zhang, X. B.; Jia, Z. G.; Xie, H. J.; Xiong, Y. P. Constructing 3D Li+-percolated transport network in composite polymer electrolytes for rechargeable quasi-solid-state lithium batteries. Energy Storage Mater. 2022, 49, 433–444.

[43]

Jiang, F. N.; Cheng, X. B.; Yang, S. J.; Xie, J.; Yuan, H.; Liu, L.; Huang, J. Q.; Zhang, Q. Thermoresponsive electrolytes for safe lithium-metal batteries. Adv. Mater. 2023, 35, 2209114.

[44]

Liang, Z.; Zheng, G. Y.; Liu, C.; Liu, N.; Li, W. Y.; Yan, K.; Yao, H. B.; Hsu, P. C.; Chu, S.; Cui, Y. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 2015, 15, 2910–2916.

[45]

Wang, M. M.; Wang, J. R.; Si, J. T.; Chen, F.; Cao, K.; Chen, C. H. Bifunctional composite separator with redistributor and anion absorber for dendrites-free and fast-charging lithium metal batteries. Chem. Eng. J. 2022, 430, 132971.

[46]

Ding, J. F.; Xu, R.; Yan, C.; Li, B. Q.; Yuan, H.; Huang, J. Q. A review on the failure and regulation of solid electrolyte interphase in lithium batteries. J. Energy Chem. 2021, 59, 306–319.

[47]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[48]

Li, S.; Wang, X. S.; Li, Q. D.; Liu, Q.; Shi, P. R.; Yu, J.; Lv, W.; Kang, F. Y.; He, Y. B.; Yang, Q. H. A multifunctional artificial protective layer for producing an ultra-stable lithium metal anode in a commercial carbonate electrolyte. J. Mater. Chem. A 2021, 9, 7667–7674.

[49]

Jia, D.; Cui, Y.; Liu, Q.; Zhou, M.; Huang, J.; Liu, R.; Liu, S.; Zheng, B.; Zhu, Y.; Wu, D. Multifunctional polymer bottlebrush-based gel polymer electrolytes for lithium metal batteries. Mater. Today Nano 2021, 15, 100128.

[50]

Shen, W.; Li, K.; Lv, Y. Y.; Xu, T.; Wei, D.; Liu, Z. F. Highly-safe and ultra-stable all-flexible gel polymer lithium ion batteries aiming for scalable applications. Adv. Energy Mater. 2020, 10, 1904281.

[51]

Castillo, J.; Santiago, A.; Judez, X.; Garbayo, I.; Coca Clemente, J. A.; Morant-Miñana, M. C.; Villaverde, A.; González-Marcos, J. A.; Zhang, H.; Armand, M. et al. Safe, flexible, and high-performing gel-polymer electrolyte for rechargeable lithium metal batteries. Chem. Mater. 2021, 33, 8812–8821.

[52]

Fang, R. Y.; Xu, B. Y.; Grundish, N. S.; Xia, Y.; Li, Y. T.; Lu, C. W.; Liu, Y. J.; Wu, N.; Goodenough, J. B. Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries. Angew. Chem., Int. Ed. 2021, 60, 17701–17706.

[53]

Luo, K. L.; Yi, L. G.; Chen, X. Y.; Yang, L.; Zou, C. F.; Tao, X. Y.; Li, H.; Wu, T. J.; Wang, X. Y. PVDF-HFP-modified gel polymer electrolyte for the stable cycling lithium metal batteries. J. Electroanal. Chem. 2021, 895, 115462.

[54]

Kim, D.; Liu, X.; Yu, B. Z.; Mateti, S.; O’Dell, L. A.; Rong, Q. Z.; Chen, Y. Amine-functionalized boron nitride nanosheets: A new functional additive for robust, flexible ion gel electrolyte with high lithium-ion transference number. Adv. Funct. Mater. 2020, 30, 1910813.

[55]

Zhang, S. Z.; Liang, T. B.; Wang, D. H.; Xu, Y. J.; Cui, Y. L.; Li, J. R.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. A stretchable and safe polymer electrolyte with a protecting-layer strategy for solid-state lithium metal batteries. Adv. Sci. 2021, 8, 2003241.

Nano Research
Pages 2790-2799
Cite this article:
Hu X, Liu K, Zhang S, et al. A functional gel polymer electrolyte based on PVDF-HFP/gelatin toward dendrite-free lithium metal batteries. Nano Research, 2024, 17(4): 2790-2799. https://doi.org/10.1007/s12274-023-6230-0
Topics:

529

Views

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 09 August 2023
Revised: 15 September 2023
Accepted: 24 September 2023
Published: 18 November 2023
© Tsinghua University Press 2023
Return