Journal Home > Volume 17 , Issue 2

Energy-absorbing materials are widely used in transportations, sports, and the military applications. Particularly, porous materials, including natural and artificial materials, have attracted tremendous attentions due to their light weight and excellent energy absorption capability. This review summarizes the recent progresses in the natural and artificial energy-absorbing porous materials. First, we review the typical natural porous materials including cuttlebone, bighorn sheep horn, pomelo peel, and sunflower stem pith. The architectures, energy absorption abilities, and mechanisms of these typical natural materials and their bioinspired materials are summarized. Then, we provide a review on the fabrication methods of artificial energy-absorbing porous materials, such as conventional foaming and three-dimensional (3D) printing. Finally, we address the challenges and prospects for the future development of energy-absorbing porous materials. More importantly, our review provides a direct guidance for the design and fabrication of energy-absorbing porous materials required for various engineering applications.


menu
Abstract
Full text
Outline
About this article

Energy-absorbing porous materials: Bioinspired architecture and fabrication

Show Author's information Junheng Zhao1Meng Li1Jiewei Chen1Weiwei Gao2( )Hao Bai1( )
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China

Abstract

Energy-absorbing materials are widely used in transportations, sports, and the military applications. Particularly, porous materials, including natural and artificial materials, have attracted tremendous attentions due to their light weight and excellent energy absorption capability. This review summarizes the recent progresses in the natural and artificial energy-absorbing porous materials. First, we review the typical natural porous materials including cuttlebone, bighorn sheep horn, pomelo peel, and sunflower stem pith. The architectures, energy absorption abilities, and mechanisms of these typical natural materials and their bioinspired materials are summarized. Then, we provide a review on the fabrication methods of artificial energy-absorbing porous materials, such as conventional foaming and three-dimensional (3D) printing. Finally, we address the challenges and prospects for the future development of energy-absorbing porous materials. More importantly, our review provides a direct guidance for the design and fabrication of energy-absorbing porous materials required for various engineering applications.

Keywords: porous materials, bioinspired materials, natural materials, energy-absorbing, natural structures

References(141)

[1]

Chang, C. J.; Venkatesan, M.; Cho, C. J.; Chung, P. Y.; Chandrasekar, J.; Lee, C. H.; Wang, H. T.; Wong, C. M.; Kuo, C. C. Thermoplastic starch with poly(butylene adipate-co-terephthalate) blends foamed by supercritical carbon dioxide. Polymers 2022, 14, 1952.

[2]

Kang, Y. G.; Song, J. M. Structure and compression behavior of macro-composite starch foams. J. Cell. Plast. 2009, 45, 33–49.

[3]

Sohn, J. S.; Kim, H. K.; Kim, S. W.; Ryu, Y.; Cha, S. W. Biodegradable foam cushions as ecofriendly packaging materials. Sustainability 2019, 11, 1731.

[4]

Li, Z. K.; Jia, Y. B.; Bai, S. B. Polysulfone foam with high expansion ratio prepared by supercritical carbon dioxide assisted molding foaming method. RSC Adv. 2018, 8, 2880–2886.

[5]

Önder, A.; Robinson, M. Investigating the feasibility of a new testing method for GFRP/polymer foam sandwich composites used in railway passenger vehicles. Compos. Struct. 2020, 233, 111576.

[6]

Sarika, P. R.; Nancarrow, P.; Khansaheb, A.; Ibrahim, T. Progress in bio-based phenolic foams: Synthesis, properties, and applications. ChemBioEng Rev. 2021, 8, 612–632.

[7]

Maurer, M.; Choi, B. H.; Sehanobish, K.; Vogel, G. Modeling the compressive fracture behavior of foams for energy absorption. J. Cell. Plast. 2011, 47, 373–393.

[8]

Conway, K. M.; Romanick, Z.; Cook, L. M.; Morales, L. A.; Despeaux, J. D.; Ridlehuber, M. L.; Fingar, C.; Doctor, D.; Nikhare, C. P.; Pataky, G. J. The anisotropic yield surface of cellular materials. JOM 2022, 74, 1158–1165.

[9]

Parveez, B.; Jamal, N. A.; Anuar, H.; Ahmad, Y.; Aabid, A.; Baig, M. Microstructure and mechanical properties of metal foams fabricated via melt foaming and powder metallurgy technique: A review. Materials 2022, 15, 5302.

[10]

Tabatabaei, M.; Le, D.; Atluri, S. Nearly exact and highly efficient elastic-plastic homogenization and/or direct numerical simulation of low-mass metallic systems with architected cellular microstructures. J. Mech. Mater. Struct. 2017, 12, 633–665.

[11]

Simone, A. E.; Gibson, L. J. Effects of solid distribution on the stiffness and strength of metallic foams. Acta Mater. 1998, 46, 2139–2150.

[12]

Chen, H. S.; Yang, T.; Wu, Z. L.; Deng, Z. F.; Zhu, Y. H.; Li, L. Quantitative 3D structural analysis of the cellular microstructure of sea urchin spines (II): Large-volume structural analysis. Acta Biomater. 2020, 107, 218–231.

[13]

Meng, J. J.; Zhao, Z. Q.; Cao, X.; Wang, N. The integration of triboelectric nanogenerators and supercapacitors: The key role of cellular materials. Materials 2023, 16, 3751.

[14]

Li, W. B.; Huang, X. D. Lightweight optimization design of structures with multiple cellular materials. Int. J. Appl. Mech. 2022, 14, 2250059.

[15]

Wu, Z. X.; Xu, Y. D.; Šavija, B. Mechanical properties of lightweight cementitious cellular composites incorporating micro-encapsulated phase change material. Materials 2021, 14, 7586.

[16]

Kozhukhova, N.; Kozhukhova, M.; Teslya, A.; Nikulin, I. The effect of different modifying methods on physical, mechanical and thermal performance of cellular geopolymers as thermal insulation materials for building structures. Buildings 2022, 12, 241.

[17]

Torrejon, V. M.; Song, J. M.; Yu, Z.; Hang, S. Gelatin-based cellular solids: Fabrication, structure and properties. J. Cell. Plast. 2022, 58, 797–858.

[18]

Li, D. W.; Bu, X. C.; Xu, Z. P.; Luo, Y. W.; Bai, H. Bioinspired multifunctional cellular plastics with a negative Poisson’s ratio for high energy dissipation. Adv. Mater. 2020, 32, 2001222.

[19]

Yeo, S. J.; Oh, M. J.; Yoo, P. J. Structurally controlled cellular architectures for high-performance ultra-lightweight materials. Adv. Mater. 2019, 31, 1803670.

[20]

Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y. Z.; Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 2012, 3, 1241.

[21]

Sun, L. D.; Gu, H. C.; Liu, X. J.; Ni, H. B.; Li, Q. W.; Zeng, Y.; Chang, N.; Zhang, D.; Chen, H. Y.; Li, Z. Y. et al. 3D-printed cellular tips for tuning fork atomic force microscopy in shear mode. Nat. Commun. 2020, 11, 5732

[22]

Yi, L. J.; Chang, T.; Feng, X. Q.; Zhang, Y. Y.; Wang, J.; Huang, B. Giant energy absorption capacity of graphene-based carbon honeycombs. Carbon 2017, 118, 348–357.

[23]

Zhang, X. Q.; Meng, Q. Y.; Zhang, K. Q.; Zhu, R. Q.; Qu, Z. L.; Li, Y.; He, R. J. 3D-printed bioinspired Al2O3/polyurea dual-phase architecture with high robustness, energy absorption, and cyclic life. Chem. Eng. J. 2023, 463, 142378.

[24]

Amaral-Labat, G.; Gourdon, E.; Fierro, V.; Pizzi, A.; Celzard, A. Acoustic properties of cellular vitreous carbon foams. Carbon 2013, 58, 76–86.

[25]

Wadley, H. N. G. Cellular metals manufacturing. 3.0.CO;2-Y">Adv. Eng. Mater. 2002, 4, 726–733.

[26]

Stephani, G.; Andersen, O.; Göhler, H.; Kostmann, C.; Kümmel, K.; Quadbeck, P.; Reinfried, M.; Studnitzky, T.; Waag, U. Iron based cellular structures—Status and prospects. Adv. Eng. Mater. 2006, 8, 847–852.

[27]

Si, Y.; Yu, J. Y.; Tang, X. M.; Ge, J. L.; Ding, B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 2014, 5, 5802.

[28]

Letellier, M.; Ghaffari Mosanenzadeh, S.; Naguib, H.; Fierro, V.; Celzard, A. Acoustic properties of model cellular vitreous carbon foams. Carbon 2017, 119, 241–250.

[29]

Sadek, H.; Siddique, S. K.; Wang, C. W.; Lee, C. C.; Chang, S. Y.; Ho, R. M. Bioinspired nanonetwork hydroxyapatite from block copolymer templated synthesis for mechanical metamaterials. ACS Nano 2022, 16, 18298–18306.

[30]

Simoes, M.; Harris, J. A.; Ghouse, S.; Hooper, P. A.; McShane, G. J. Process parameter sensitivity of the energy absorbing properties of additively manufactured metallic cellular materials. Mater. Des. 2022, 224, 111398.

[31]

Yang, T.; Jia, Z. A.; Wu, Z. L.; Chen, H. S.; Deng, Z. F.; Chen, L. N.; Zhu, Y. H.; Li, L. High strength and damage-tolerance in echinoderm stereom as a natural bicontinuous ceramic cellular solid. Nat. Commun. 2022, 13, 6083.

[32]

Karthikeyan, V.; Surjadi, J. U.; Li, X. C.; Fan, R.; Theja, V. C. S.; Li, W. J.; Lu, Y.; Roy, V. A. L. Three dimensional architected thermoelectric devices with high toughness and power conversion efficiency. Nat. Commun. 2023, 14, 2069.

[33]

Guell Izard, A.; Bauer, J.; Crook, C.; Turlo, V.; Valdevit, L. Ultrahigh energy absorption multifunctional spinodal nanoarchitectures. Small 2019, 15, 1903834.

[34]

Mao, A. R.; Chen, J. W.; Bu, X. C.; Tian, L. L.; Gao, W. W.; Saiz, E.; Bai, H. Bamboo-inspired structurally efficient materials with a large continuous gradient. Small 2023, 19, 2301144.

[35]

Mudassir, M.; Tarlochan, F.; Mansour, M. A. Nature-inspired cellular structure design for electric vehicle battery compartment: Application to crashworthiness. Appl. Sci. 2020, 10, 4532.

[36]

Afrousheh, M.; Marzbanrad, J.; Göhlich, D. Topology optimization of energy absorbers under crashworthiness using modified hybrid cellular automata (MHCA) algorithm. Struct. Multidiscipl. Optim. 2019, 60, 1021–1034.

[37]

Selivanov, V. V.; Silnikov, M. V.; Markov, V. A.; Popov, Y. V.; Pusev, V. I. Using highly porous aluminum alloys and honeycomb structures in spacecraft landing gear. Acta Astronaut. 2021, 180, 105–109.

[38]

Luo, G. Q.; Zhu, Y. X.; Zhang, R. Z.; Cao, P.; Liu, Q. W.; Zhang, J.; Sun, Y.; Yuan, H.; Guo, W.; Shen, Q. et al. A review on mechanical models for cellular media: Investigation on material characterization and numerical simulation. Polymers 2021, 13, 3283.

[39]

Jiang, D. W.; Wang, Y.; Li, B.; Sun, C. Y.; Guo, Z. H. Environmentally friendly alternative to polyester polyol by corn straw on preparation of rigid polyurethane composite. Compos. Commun. 2020, 17, 109–114.

[40]

You, J. G.; Jiang, Z. W.; Jiang, H. Q.; Qiu, J.; Li, M. G.; Xing, H. P.; Xue, J.; Tang, T. A “plasticizing-foaming-reinforcing” approach for creating thermally insulating PVC/polyurea blend foams with shape memory function. Chem. Eng. J. 2022, 450, 138071.

[41]

Chen, G. W.; Luo, H. Y.; Yang, H. Y.; Zhang, T.; Li, S. J. Water effects on the deformation and fracture behaviors of the multi-scaled cellular fibrous bamboo. Acta Biomater. 2018, 65, 203–215.

[42]

Raney, J. R.; Compton, B. G.; Mueller, J.; Ober, T. J.; Shea, K.; Lewis, J. A. Rotational 3D printing of damage-tolerant composites with programmable mechanics. Proc. Natl. Acad. Sci. USA 2018, 115, 1198–1203.

[43]

Yu, Z. L.; Yang, N.; Zhou, L. C.; Ma, Z. Y.; Zhu, Y. B.; Lu, Y. Y.; Qin, B.; Xing, W. Y.; Ma, T.; Li, S. C. et al. Bioinspired polymeric woods. Sci. Adv. 2018, 4, eaat7223.

[44]

Ferraro, C.; Garcia-Tuñon, E.; Rocha, V. G.; Barg, S.; Fariñas, M. D.; Alvarez-Arenas, T. E. G.; Sernicola, G.; Giuliani, F.; Saiz, E. Light and strong SiC networks. Adv. Funct. Mater. 2016, 26, 1636–1645.

[45]

Yu, Z. L.; Qin, B.; Ma, Z. Y.; Gao, Y. C.; Guan, Q. F.; Yang, H. B.; Yu, S. H. Emerging bioinspired artificial woods. Adv. Mater. 2021, 33, 2001086.

[46]

Xue, J. Z.; Gao, H. L.; Wang, X. Y.; Qian, K. Y.; Yang, Y.; He, T.; He, C. X.; Lu, Y.; Yu, S. H. Bioinspired unidirectional silk fibroin-silver compound nanowire composite scaffold via interface-mediated in situ synthesis. Angew. Chem., Int. Ed. 2019, 58, 14152–14156.

[47]

Weinkamer, R.; Fratzl, P. Mechanical adaptation of biological materials—The examples of bone and wood. Mater. Sci. Eng. C 2011, 31, 1164–1173.

[48]
Li, M.; Dai, X. G.; Wang, M. N.; Bai, H. Bioinspired macroporous materials of MXene nanosheets: Ice-templated assembly and multifunctional applications. Small Methods, in press, https://doi.org/10.1002/smtd.202300213.
DOI
[49]

Li, M.; Dai, X. G.; Gao, W. W.; Bai, H. Ice-templated fabrication of porous materials with bioinspired architecture and functionality. Acc. Mater. Res. 2022, 3, 1173–1185.

[50]

Li, M.; Wang, M. N.; Zhao, N. F.; Bai, H. Scalable fabrication of high-performance bulk nacre-mimetic materials on a nanogrooved surface. ACS Nano 2022, 16, 14737–14744.

[51]

Bu, X. C.; Bai, H. Recent progress of bio-inspired camouflage materials: From visible to infrared range. Chem. Res. Chin. Univ. 2023, 39, 19–29.

[52]

Li, M.; Zhao, N. F.; Wang, M. N.; Dai, X. G.; Bai, H. Conch-shell-inspired tough ceramic. Adv. Funct. Mater. 2022, 32, 2205309.

[53]

Xu, Z. P.; Wu, M. R.; Gao, W. W.; Bai, H. A sustainable single-component “silk nacre”. Sci. Adv. 2022, 8, eabo0946.

[54]

Shao, Z. Y.; Tao, T. T.; Xu, H. F.; Chen, C.; Lee, I. S.; Chung, S.; Dong, Z. H.; Li, W. D.; Ma, L.; Bai, H. et al. Recent progress in biomaterials for heart valve replacement: Structure, function, and biomimetic design. View 2021, 2, 20200142.

[55]

Lee, E.; Jia, Z. A.; Yang, T.; Li, L. Multiscale mechanical design of the lightweight, stiff, and damage-tolerant cuttlebone: A computational study. Acta Biomater. 2022, 154, 312–323.

[56]

Kanimba, E.; Yang, T.; Huxtable, S. T.; Li, L.; Tian, Z. T. Thermomechanical analysis of a bio-inspired lightweight multifunctional structure. Adv. Eng. Mater. 2020, 22, 2000371.

[57]

Cadman, J.; Zhou, S. W.; Chen, Y. H.; Li, Q. Cuttlebone: Characterisation, application and development of biomimetic materials. J. Bionic Eng. 2012, 9, 367–376.

[58]

Mao, A. R.; Zhao, N. F.; Liang, Y. H.; Bai, H. Mechanically efficient cellular materials inspired by cuttlebone. Adv. Mater. 2021, 33, 2007348.

[59]

Yang, C. X.; Li, Q. M. Advanced lattice material with high energy absorption based on topology optimisation. Mech. Mater. 2020, 148, 103536.

[60]

Yang, T.; Jia, Z. A.; Chen, H. S.; Deng, Z. F.; Liu, W. K.; Chen, L. N.; Li, L. Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish. Proc. Natl. Acad. Sci. USA 2020, 117, 23450–23459.

[61]

Cui, C. Y.; Chen, L.; Feng, S.; Cui, X. G.; Lu, J. Z. Novel cuttlebone-inspired hierarchical bionic structure enabled high energy absorption. Thin Wall. Struct. 2023, 186, 110693.

[62]

Zhang, X. Y.; Guo, A. R.; Ma, X. H.; Du, H. Y.; Yan, L. W.; Hou, F.; Liu, J. C. Cuttlefish-bone-structure-like lamellar porous fiber-based ceramics with enhanced mechanical performances. ACS Appl. Mater. Interfaces 2023, 15, 13121–13130.

[63]

Wu, F.; Sun, B. H. Study on functional mechanical performance of array structures inspired by cuttlebone. J. Mech. Behav. Biomed. Mater. 2022, 136, 105459.

[64]

Du, F. Y.; Zhu, W. K.; Yang, R. Z.; Zhang, Y.; Wang, J. W.; Li, W. H.; Zuo, W. Q.; Zhang, L. Z.; Chen, L. Y.; She, W. et al. Bioinspired super thermal insulating, strong and low carbon cement aerogel for building envelope. Adv. Sci. 2023, 10, 2300340.

[65]

Wijerathne, B.; Liao, T.; Ostrikov, K.; Sun, Z. Q. Bioinspired robust mechanical properties for advanced materials. Small Struct. 2022, 3, 2100228.

[66]

He, M.; Li, Y.; Yin, J.; Sun, Q. L.; Xiong, W.; Li, S. M.; Yang, L.; Hao, L. Compressive performance and fracture mechanism of bio-inspired heterogeneous glass sponge lattice structures manufactured by selective laser melting. Mater. Des. 2022, 214, 110396.

[67]

Fernandes, M. C.; Aizenberg, J.; Weaver, J. C.; Bertoldi, K. Mechanically robust lattices inspired by deep-sea glass sponges. Nat. Mater. 2021, 20, 237–241.

[68]

Woesz, A.; Weaver, J. C.; Kazanci, M.; Dauphin, Y.; Aizenberg, J.; Morse, D. E.; Fratzl, P. Micromechanical properties of biological silica in skeletons of deep-sea sponges. J. Mater. Res. 2006, 21, 2068–2078.

[69]

Weaver, J. C.; Aizenberg, J.; Fantner, G. E.; Kisailus, D.; Woesz, A.; Allen, P.; Fields, K.; Porter, M. J.; Zok, F. W.; Hansma, P. K. et al. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. J. Struct. Biol. 2007, 158, 93–106.

[70]

Sharma, D.; Hiremath, S. S. Bio-inspired repeatable lattice structures for energy absorption: Experimental and finite element study. Compos. Struct. 2022, 283, 115102.

[71]

Li, L. H.; Guo, C.; Chen, Y. T.; Chen, Y. H. Optimization design of lightweight structure inspired by glass sponges (Porifera, Hexacinellida) and its mechanical properties. Bioinspir. Biomim. 2020, 15, 036006.

[72]

Baumeister, J.; Banhart, J.; Weber, M. Aluminium foams for transport industry. Mater. Des. 1997, 18, 217–220.

[73]

Fan, T.; Xue, S. S.; Zhu, W. B.; Zhang, Y. Y.; Li, Y. Q.; Chen, Z. K.; Huang, P.; Fu, S. Y. Multifunctional polyurethane composite foam with outstanding anti-impact capacity for soft body armors. ACS Appl. Mater. Interfaces 2022, 14, 13778–13789.

[74]

Martin, U.; Ehinger, D.; Krüger, L.; Martin, S.; Mottitschka, T.; Weigelt, C.; Aneziris, C. G.; Herrmann, M. Cellular energy absorbing TRIP-Steel/Mg-PSZ composite: Honeycomb structures fabricated by a new extrusion powder technology. Adv. Mater. Sci. Eng. 2010, 2010, 269537.

[75]

Vesenjak, M.; Krstulović-Opara, L.; Ren, Z.; Öchsner, A.; Domazet, Ž. Experimental study of open-cell cellular structures with elastic filler material. Exp. Mech. 2009, 49, 501–509.

[76]

Xu, F. X.; Zhang, X.; Zhang, H. A review on functionally graded structures and materials for energy absorption. Eng. Struct. 2018, 171, 309–325.

[77]

Tay, Y. Y.; Lim, C. S.; Lankarani, H. M. A finite element analysis of high-energy absorption cellular materials in enhancing passive safety of road vehicles in side-impact accidents. Int. J. Crashworthines. 2014, 19, 288–300.

[78]

Tomin, M.; Kmetty, Á. Polymer foams as advanced energy absorbing materials for sports applications—A review. J. Appl. Polym. Sci. 2022, 139, 51714.

[79]

Avalle, M.; Belingardi, G. A mechanical model of cellular solids for energy absorption. Adv. Eng. Mater. 2019, 21, 1800457.

[80]

Park, J. H.; Jung, H. K.; Lee, J. R. Development and evaluation of fall impact protection pads using additive manufacturing. Materials 2019, 12, 3440.

[81]

Fuller, L. H.; Donahue, S. W. Material properties of bighorn sheep ( Ovis canadensis) horncore bone with implications for energy absorption during impacts. J. Mech. Behav. Biomed. Mater. 2021, 114, 104224.

[82]

Wheatley, B. B.; Gilmore, E. C.; Fuller, L. H.; Drake, A. M.; Donahue, S. W. How the geometry and mechanics of bighorn sheep horns mitigate the effects of impact and reduce the head injury criterion. Bioinspir. Biomim. 2023, 18, 026005.

[83]

Huang, W.; Zaheri, A.; Jung, J. Y.; Espinosa, H. D.; McKittrick, J. Hierarchical structure and compressive deformation mechanisms of bighorn sheep ( Ovis canadensis) horn. Acta Biomater. 2017, 64, 1–14.

[84]

Zhang, Y. C.; Huang, W.; Hayashi, C.; Gatesy, J.; McKittrick, J. Microstructure and mechanical properties of different keratinous horns. J. R. Soc. Interface 2018, 15, 20180093.

[85]

Tombolato, L.; Novitskaya, E. E.; Chen, P. Y.; Sheppard, F. A.; McKittrick, J. Microstructure, elastic properties and deformation mechanisms of horn keratin. Acta Biomate. 2010, 6, 319–330.

[86]

Kitchener, A. An analysis of the forces of fighting of the blackbuck ( Antilope cervicapra) and the bighorn sheep ( Ovis canadensis) and the mechanical design of the horn of bovids. J. Zool. 1988, 214, 1–20.

[87]

McKittrick, J.; Chen, P. Y.; Tombolato, L.; Novitskaya, E. E.; Trim, M. W.; Hirata, G. A.; Olevsky, E. A.; Horstemeyer, M. F.; Meyers, M. A. Energy absorbent natural materials and bioinspired design strategies: A review. Mater. Sci. Eng. C 2010, 30, 331–342.

[88]

Yang, L. K.; Jin, Q.; Guo, R. F.; Shen, P. Exploiting bio-inspired high energy-absorbent metal/ceramic composites through emulsion-ice-templating and melt infiltration. Materialia 2020, 14, 100884.

[89]

Huang, W.; Zaheri, A.; Yang, W.; Kisailus, D.; Ritchie, R. O.; Espinosa, H.; McKittrick, J. How water can affect keratin: Hydration-driven recovery of bighorn sheep ( Ovis canadensis) horns. Adv. Funct. Mater. 2019, 29, 1901077.

[90]

Trim, M. W.; Horstemeyer, M. F.; Rhee, H.; El Kadiri, H.; Williams, L. N.; Liao, J.; Walters, K. B.; McKittrick, J.; Park, S. J. The effects of water and microstructure on the mechanical properties of bighorn sheep ( Ovis canadensis) horn keratin. Acta Biomater. 2011, 7, 1228–1240.

[91]

Kitchener, A. Effect of water on the linear viscoelasticity of horn sheath keratin. J. Mater. Sci. Lett. 1987, 6, 321–322.

[92]

Thielen, M.; Speck, T.; Seidel, R. Viscoelasticity and compaction behaviour of the foam-like pomelo ( Citrus maxima) peel. J. Mater. Sci. 2013, 48, 3469–3478.

[93]

Thielen, M.; Speck, T.; Seidel, R. Impact behaviour of freeze-dried and fresh pomelo ( Citrus maxima) peel: Influence of the hydration state. R. Soc. Open Sci. 2015, 2, 140322.

[94]

Jentzsch, M.; Becker, S.; Thielen, M.; Speck, T. Functional anatomy, impact behavior and energy dissipation of the peel of Citrus × limon: A comparison of Citrus × limon and Citrus maxima. Plants 2022, 11, 991.

[95]

Seidel, R.; Thielen, M.; Schmitt, C.; Bührig-Polaczek, A.; Fleck, C.; Speck, T. Fruit walls and nut shells as an inspiration for the design of bio-inspired impact resistant hierarchically structured materials. Des. Nat. V 2010, 138, 421–430.

[96]

Yang, B. S.; Chen, W. H.; Xin, R. L.; Zhou, X. H.; Tan, D.; Ding, C.; Wu, Y.; Yin, L.; Chen, C. Y.; Wang, S. et al. Pomelo peel-inspired 3D-printed porous structure for efficient absorption of compressive strain energy. J. Bionic Eng. 2022, 19, 448–457.

[97]

Thielen, M.; Schmitt, C. N. Z.; Eckert, S.; Speck, T.; Seidel, R. Structure–function relationship of the foam-like pomelo peel ( Citrus maxima)—An inspiration for the development of biomimetic damping materials with high energy dissipation. Bioinspir Biomim 2013, 8, 025001.

[98]

Wang, B.; Pan, B.; Lubineau, G. Morphological evolution and internal strain mapping of pomelo peel using X-ray computed tomography and digital volume correlation. Mater. Des. 2018, 137, 305–315.

[99]

Ortiz, J.; Zhang, G. L.; McAdams, D. A. A model for the design of a pomelo peel bioinspired foam. J. Mech. Des. 2018, 140, 114501.

[100]

Li, T. T.; Wang, H. Y.; Huang, S. Y.; Lou, C. W.; Lin, J. H. Bioinspired foam composites resembling pomelo peel: Structural design and compressive, bursting and cushioning properties. Compos. Part B Eng. 2019, 172, 290–298.

[101]

Wang, L.; Zhang, C. L.; Zhao, F.; Fu, J. H.; Sun, C. K.; Liu, J. Integrating design of flexible surface and gradient porosity interlayer for improving impact resistance and thermal isolation. Adv. Eng. Mater. 2022, 24, 2100963.

[102]

Xu, Y. C.; Huang, Y. Z.; Yan, H.; Gu, Z. D.; Zhao, T. Y.; Zhang, R.; Pan, B.; Dong, L. T.; Liu, M. J.; Jiang, L. Sunflower-pith-inspired anisotropic auxetic mechanics from dual-gradient cellular structures. Matter 2023, 6, 1569–1584.

[103]

Abbas, M. S.; Mcgregor, F.; Fabbri, A.; Ferroukhi, M. Y. The use of pith in the formulation of lightweight bio-based composites: Impact on mechanical and hygrothermal properties. Constr. Build. Mater. 2020, 259, 120573.

[104]

Sun, S. N.; Mathias, J. D.; Toussaint, E.; Grédiac, M. Hygromechanical characterization of sunflower stems. Ind. Crops Prod. 2013, 46, 50–59.

[105]

Wen, J.; Wang, Q.; Jin, Q. H.; Pan, Z. L. Study on the structure, composition and performance of natural polymer. Funct. Mater. Lett. 2010, 3, 207–212.

[106]

Wu, J. C.; Zhang, Y.; Yang, F.; Jiang, F.; Xu, X. L.; Tan, Y. Q.; Su, L. A hybrid architectural metamaterial combing plate lattice and hollow-truss lattice with advanced mechanical performances. Addit. Manuf. 2023, 76, 103764

[107]

Wegst, U. G. K. Bending efficiency through property gradients in bamboo, palm, and wood-based composites. J. Mech. Behav. Biomed. Mater. 2011, 4, 744–755.

[108]

Yin, K. Y.; Mylo, M. D.; Speck, T.; Wegst, U. G. K. Bamboo-inspired tubular scaffolds with functional gradients. J. Mech. Behav. Biomed. Mater. 2020, 110, 103826.

[109]

Habibi, M. K.; Samaei, A. T.; Gheshlaghi, B.; Lu, J.; Lu, Y. Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: Underlying mechanisms. Acta Biomater. 2015, 16, 178–186.

[110]

Wang, H. Y.; Li, T. T.; Ren, H. T.; Peng, H. K.; Huang, S. Y.; Lin, Q.; Lin, J. H.; Lou, C. W. Expanded vermiculite-filled polyurethane foam-core bionic composites: Preparation and thermal, compression, and dynamic cushion properties. Polymers 2019, 11, 1028.

[111]

Zhai, W. T.; Jiang, J. J.; Park, C. B. A review on physical foaming of thermoplastic and vulcanized elastomers. Polym. Rev. 2022, 62, 95–141.

[112]

Zakaria, Z.; Ariff, Z. M.; Sipaut, C. S. Effects of parameter changes on the structure and properties of low-density polyethylene foam. J. Vinyl Addit. Technol. 2009, 15, 120–128.

[113]

Liu, H.; Han, C. Y.; Dong, L. S. Study on the cell structure and compressive behavior of biodegradable poly(ε-caprolactone) foam. Polym. Eng. Sci. 2008, 48, 2432–2438.

[114]

Lu, T. Y.; Li, J. X.; Han, X. K.; Liu, R. Y.; Cai, C. C.; Wang, H. Effect of blowing agent concentration of ultra-low density NBR/PVC composite foams on compressive behavior and energy-absorption characteristics. J. Vinyl Addit. Technol. 2022, 28, 640–648.

[115]

Zhang, Y. H.; Lu, B.; Lv, F. Z.; Guo, W. M.; Ji, J. H.; Chu, P. K.; Zhang, C. G. Effect of processing conditions on poly(butylene succinate) foam materials. J. Appl. Polym. Sci. 2012, 126, 756–761.

[116]

Li, X.; Liu, Y.; Ye, J. W.; An, X. G.; Cao, Z. N.; Liu, X. B. Innovative surface modification of TiH2 to fabricate aluminum foam with enhanced mechanical properties. Mater. Lett. 2018, 210, 350–353.

[117]

Shi, S. Q.; Sun, W. B.; Zhang, X. R.; Zhu, X. Y.; Liu, J. A. Compressive property and energy absorption capacity of Mg-ceramic-Ni foamsat various temperatures. Metals 2022, 12, 689.

[118]

Yang, D. H.; Yang, S. R.; Wang, H.; Ma, A. B.; Jiang, J. H.; Chen, J. Q.; Wang, D. L. Compressive properties of cellular Mg foams fabricated by melt-foaming method. Mater. Sci. Eng. A 2010, 527, 5405–5409.

[119]

Liu, J. A.; Chen, C. W.; Huang, K.; Yan, Y. Y.; Zhang, C. L.; Jia, S. Compressive property of aluminum-epoxy resin-cenosphere interpenetrating phase composites foams. Mater. Res. Express 2019, 6, 1165c8.

[120]

Xia, X. C.; Zhao, W. M.; Feng, X. Z.; Feng, H.; Zhang, X. Effect of homogenizing heat treatment on the compressive properties of closed-cell Mg alloy foams. Mater. Des. 2013, 49, 19–24.

[121]

Suethao, S.; Shah, D. U.; Smitthipong, W. Recent progress in processing functionally graded polymer foams. Materials 2020, 13, 4060.

[122]

Hu, J. S.; Gu, R. X.; Mi, H. Y.; Jing, X.; Antwi-Afari, M. F.; Dong, B. B.; Liu, C. T.; Shen, C. Y. Self-reinforced thermoplastic polyurethane wrinkled foams with high energy absorption realized by gas cooling assisted supercritical CO2 foaming. Ind. Eng. Chem. Res. 2022, 61, 4832–4841.

[123]

Zhu, X. S.; Li, X. J.; Mi, H. Y.; Jing, X.; Dong, B. B.; He, P.; Liu, C. T.; Shen, C. Y. Graphene oxide/thermoplastic polyurethane wrinkled foams with enhanced compression performance fabricated by dynamic supercritical CO2 foaming. J. Appl. Polym. Sci. 2022, 139, e52485.

[124]

Larsen, Å.; Neldin, C. Physical extruder foaming of poly(lactic acid)-processing and foam properties. Polym. Eng. Sci. 2013, 53, 941–949.

[125]

Fan, D. L.; Shi, Z. Y.; Li, N. X.; Qiu, J.; Xing, H. P.; Jiang, Z. W.; Li, M. G.; Tang, T. Novel method for preparing a high-performance auxetic foam directly from polymer resin by a one-pot CO2 foaming process. ACS Appl. Mater. Interfaces 2020, 12, 48040–48048.

[126]

Jun, L.; Qin, Z. W.; Mi, H. Y.; Dong, B. B.; Liua, C.; Shena, C. Fabrication of thermoplastic polyurethane foams with wrinkled pores and superior energy absorption properties by CO2 foaming and fast chilling. Macromol. Mater. Eng. 2022, 307, 2100600.

[127]

Wang, Y. M.; Li, J.; Xie, Y. B.; Hu, J. S.; Zhu, X. S.; Sun, S. J.; Jing, X.; Mi, H. Y.; Liu, C. T.; Shen, C. Y. Fabrication of wrinkled thermoplastic polyurethane foams by dynamic supercritical carbon dioxide foaming. J. Supercrit. Fluids 2022, 180, 105429.

[128]

Koohbor, B.; Blourchian, A.; Uddin, K. Z.; Youssef, G. Characterization of energy absorption and strain rate sensitivity of a novel elastomeric polyurea foam. Adv. Eng. Mater. 2021, 23, 2000797.

[129]

Traugutt, N. A.; Mistry, D.; Luo, C. Q.; Yu, K.; Ge, Q.; Yakacki, C. M. Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing. Adv. Mater. 2020, 32, 2000797.

[130]

Dwyer, C. M.; Carrillo, J. G.; De la Peña, J. A. D.; Santiago, C. C.; MacDonald, E.; Rhinehart, J.; Williams, R. M.; Burhop, M.; Yelamanchi, B.; Cortes, P. Impact performance of 3D printed spatially varying elastomeric lattices. Polymers 2023, 15, 1178.

[131]

Jiang, Y. L.; Shi, K.; Zhou, L. N.; He, M. M.; Zhu, C.; Wang, J. C.; Li, J. H.; Li, Y. B.; Liu, L. M.; Sun, D. et al. 3D-printed auxetic-structured intervertebral disc implant for potential treatment of lumbar herniated disc. Bioact. Mater. 2023, 20, 528–538

[132]

Luo, C. Q.; Chung, C.; Traugutt, N. A.; Yakacki, C. M.; Long, K. N.; Yu, K. 3D printing of liquid crystal elastomer foams for enhanced energy dissipation under mechanical insult. ACS Appl. Mater. Interfaces 2021, 13, 12698–12708.

[133]

Li, X. W.; Yu, X.; Zhao, M.; Li, Z. D.; Wang, Z. G.; Zhai, W. Multi-level bioinspired microlattice with broadband sound-absorption capabilities and deformation-tolerant compressive response. Adv. Funct. Mater. 2023, 33, 2210160.

[134]

Mistry, D.; Traugutt, N. A.; Sanborn, B.; Volpe, R. H.; Chatham, L. S.; Zhou, R.; Song, B.; Yu, K.; Long, K. N.; Yakacki, C. M. Soft elasticity optimises dissipation in 3D-printed liquid crystal elastomers. Nat. Commun. 2021, 12, 6677.

[135]

Tian, Y. Y.; Chen, K. J.; Zheng, H.; Kripalani, D. R.; Zeng, Z. H.; Jarlöv, A.; Chen, J. Y.; Bai, L. C.; Ong, A.; Du, H. J. et al. Additively manufactured dual-faced structured fabric for shape-adaptive protection. Adv. Sci. 2023, 10, 2301567.

[136]

Feng, X. B.; Surjadi, J. U.; Fan, R.; Li, X. C.; Zhou, W. Z.; Zhao, S. J.; Lu, Y. Microalloyed medium-entropy alloy (MEA) composite nanolattices with ultrahigh toughness and cyclability. Mater. Today 2021, 42, 10–16.

[137]

Zhang, X.; Yao, J. H.; Liu, B.; Yan, J.; Lu, L.; Li, Y.; Gao, H. J.; Li, X. Y. Three-dimensional high-entropy alloy-polymer composite nanolattices that overcome the strength-recoverability trade-off. Nano Lett. 2018, 18, 4247–4256.

[138]

Cheng, H. W.; Zhu, X. X.; Cheng, X. W.; Cai, P. Z.; Liu, J.; Yao, H. J.; Zhang, L.; Duan, J. L. Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultra-high energy absorption capacity. Nat. Commun. 2023, 14, 1243.

[139]

Gao, L. B.; Song, J.; Jiao, Z. B.; Liao, W. B.; Luan, J. H.; Surjadi, J. U.; Li, J. Y.; Zhang, H. T.; Sun, D.; Liu, C. T. et al. High-entropy alloy (HEA)-coated nanolattice structures and their mechanical properties. Adv. Eng. Mater. 2018, 20, 1700625.

[140]

Garcia-Taormina, A. R.; Kurpiers, C. M.; Schwaiger, R.; Hodge, A. M. Coatings for core–shell composite micro-lattice structures: Varying sputtering parameters. Adv. Eng. Mater. 2022, 24, 2101264.

[141]

Surjadi, J. U.; Feng, X. B.; Fan, R.; Lin, W. T.; Li, X. C.; Lu, Y. Hollow medium-entropy alloy nanolattices with ultrahigh energy absorption and resilience. NPG Asia Mater. 2021, 13, 36.

Publication history
Copyright
Acknowledgements

Publication history

Received: 22 July 2023
Revised: 18 September 2023
Accepted: 20 September 2023
Published: 02 December 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22075244), the Zhejiang Provincial Innovation Center of Advanced Chemicals Technology (No. ACTIC-2022-004), the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (No. 2021SZ-TD009), the Zhejiang Provincial Natural Science Foundation of China (No. LZ22E030001), and the Science and Technology Program of Institute of Zhejiang University- Quzhou (Nos. IZQ2021KJ2001 and IZQ2022KJ3013).

Return