Journal Home > Volume 17 , Issue 2

Nature provides a wealth of bio-inspiration for advanced material research. Assembling various nanomaterials into biomimetic microtextures with bioinspired functionalities has spurred increasing research interests and facilitated technological advances in various applications. In recent years, two-dimensional materials (2DMs) have emerged as important building block units in the biomimicry field due to their distinct chemical, physical, electrical, electrochemical, and catalytic properties. In this review article, various mechanically driven assembly approaches are summarized to fabricate various genealogies of biomimetic 2DM microtextures with bio-inspired multifunctionality. First, sequential deformation strategies are discussed to programmably construct higher dimensional 2DM microtextures, ranging from wrinkles/crumples (one-time deformation) to multiscale hierarchies (multiple deformations). Next, the current progress using higher dimensional 2DM microtextures to imitate different biological structures and/or induce bio-inspired multifunctionality is systematically summarized. Four showcases of bio-inspiration and biomimicry using different 2DM nanosheets are highlighted: (1) wrinkle patterns of an earthworm that spur the design of strain sensors with programmable working ranges and sensitivities, (2) wrinkle appearance of a Shar-Pei dog that motivates the fabrication of stretchable energy storage devices, (3) hierarchical scale textures of a desert lizard that inspire cation-induced gelation platforms for 2DM aerogels, and (4) wrinkle skin of an elephant that influences the development of 2DM protective skin for soft robots. Finally, challenges and future opportunities of adopting 2DM nanosheets to assemble biomimetic microstructures with synergistic functionalities are discussed.


menu
Abstract
Full text
Outline
About this article

Mechanically driven assembly of biomimetic 2D-material microtextures with bioinspired multifunctionality

Show Author's information Yang Li1,2,§Lin Jing3,§Joshua M. Little1Haochen Yang1Tsai-Chun Chung1Po-Yen Chen1,2( )
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA
Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

§ Yang Li and Lin Jing contributed equally to this work.

Abstract

Nature provides a wealth of bio-inspiration for advanced material research. Assembling various nanomaterials into biomimetic microtextures with bioinspired functionalities has spurred increasing research interests and facilitated technological advances in various applications. In recent years, two-dimensional materials (2DMs) have emerged as important building block units in the biomimicry field due to their distinct chemical, physical, electrical, electrochemical, and catalytic properties. In this review article, various mechanically driven assembly approaches are summarized to fabricate various genealogies of biomimetic 2DM microtextures with bio-inspired multifunctionality. First, sequential deformation strategies are discussed to programmably construct higher dimensional 2DM microtextures, ranging from wrinkles/crumples (one-time deformation) to multiscale hierarchies (multiple deformations). Next, the current progress using higher dimensional 2DM microtextures to imitate different biological structures and/or induce bio-inspired multifunctionality is systematically summarized. Four showcases of bio-inspiration and biomimicry using different 2DM nanosheets are highlighted: (1) wrinkle patterns of an earthworm that spur the design of strain sensors with programmable working ranges and sensitivities, (2) wrinkle appearance of a Shar-Pei dog that motivates the fabrication of stretchable energy storage devices, (3) hierarchical scale textures of a desert lizard that inspire cation-induced gelation platforms for 2DM aerogels, and (4) wrinkle skin of an elephant that influences the development of 2DM protective skin for soft robots. Finally, challenges and future opportunities of adopting 2DM nanosheets to assemble biomimetic microstructures with synergistic functionalities are discussed.

Keywords: two-dimensional (2D) materials, mechanically driven assembly, biomimetic microtextures, functional nanocomposite, bio-inspired multifunctionality

References(118)

[1]

Xu, L. P.; Peng, J. T.; Liu, Y. B.; Wen, Y. Q.; Zhang, X. J.; Jiang, L.; Wang, S. T. Nacre-inspired design of mechanical stable coating with underwater superoleophobicity. ACS Nano 2013, 7, 5077–5083.

[2]
Yao, H. B.; Ge, J.; Mao, L. B.; Yan, Y. X.; Yu, S. H. 25th anniversary article: Artificial carbonate nanocrystals and layered structural nanocomposites inspired by nacre: Synthesis, fabrication and applications. Adv. Mater. 2014 , 26, 163–188.
DOI
[3]

Wang, J. F.; Cheng, Q. F.; Tang, Z. Y. Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem. Soc. Rev. 2012, 41, 1111–1129.

[4]

Collins, C. M.; Safiuddin, M. Lotus-leaf-inspired biomimetic coatings: Different types, key properties, and applications in infrastructures. Infrastructures 2022, 7, 46.

[5]

Lin, J. Y.; Cai, Y.; Wang, X. F.; Ding, B.; Yu, J. Y.; Wang, M. R. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf. Nanoscale 2011, 3, 1258–1262.

[6]

Yoo, D.; Kim, S. J.; Joung, Y.; Jang, S.; Choi, D.; Kim, D. S. Lotus leaf-inspired droplet-based electricity generator with low-adhesive superhydrophobicity for a wide operational droplet volume range and boosted electricity output. Nano Energy 2022, 99, 107361.

[7]

Lee, J.; Jung, Y.; Lee, M. J.; Hwang, J. S.; Guo, J.; Shin, W.; Min, J. K.; Pyun, K. R.; Lee, H.; Lee, Y. et al. Biomimetic reconstruction of butterfly wing scale nanostructures for radiative cooling and structural coloration. Nanoscale Horiz. 2022, 7, 1054–1064.

[8]

Tada, H.; Mann, S. E.; Miaoulis, I. N.; Wong, P. Y. Effects of a butterfly scale microstructure on the iridescent color observed at different angles. Opt. Express 1999, 5, 87–92.

[9]

Fu, Q.; Beall, G. H.; Smith, C. M. Nature-inspired design of strong, tough glass-ceramics. MRS Bull. 2017, 42, 220–225.

[10]

Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.

[11]

Munch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Tough, bio-inspired hybrid materials. Science 2008, 322, 1516–1520.

[12]

Zhang, Q.; Wang, Y. F.; Lv, Y. W.; Yu, S. X.; Ma, R. J. Bioinspired zero-energy thermal-management device based on visible and infrared thermochromism for all-season energy saving. Proc. Natl. Acad. Sci. USA 2022, 119, e2207353119.

[13]

McConney, M. E.; Anderson, K. D.; Brott, L. L.; Naik, R. R.; Tsukruk, V. V. Bioinspired material approaches to sensing. Adv. Funct. Mater. 2009, 19, 2527–2544.

[14]

Chang, T. H.; Tian, Y.; Li, C. S.; Gu, X. Y.; Li, K. R.; Yang, H. T.; Sanghani, P.; Lim, C. M.; Ren, H. L.; Chen, P. Y. Stretchable graphene pressure sensors with Shar-Pei-like hierarchical wrinkles for collision-aware surgical robotics. ACS Appl. Mater. Interfaces 2019, 11, 10226–10236.

[15]

Li, Y.; Gomez-Mingot, M.; Fogeron, T.; Fontecave, M. Carbon dioxide reduction: A bioinspired catalysis approach. Acc. Chem. Res. 2021, 54, 4250–4261.

[16]
Bertaglia, T.; Faria, L. C. I.; dos Santos Clarindo, J. E.; Crespilho, F. N. Bioinspired batteries: Using nature-inspired materials in greener and safer energy storage technologies. In Advances in Bioelectrochemistry Volume 4: Biodevice, Bioelectrosynthesis and Bioenergy. Crespilho, F. N., Ed.; Springer: Cham, 2022; pp 63–87.
DOI
[17]

Mei, J.; Liao, T.; Peng, H.; Sun, Z. Q. Bioinspired materials for energy storage. Small Methods 2022, 6, 2101076.

[18]

Liu, Y. P.; Zhang, S. Y.; He, J.; Wang, Z. M.; Liu, Z. W. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 2019, 11, 13.

[19]

Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater Sci. 2015, 73, 44–126.

[20]

Akinwande, D.; Brennan, C. J.; Bunch, J. S.; Egberts, P.; Felts, J. R.; Gao, H. J.; Huang, R.; Kim, J. S.; Li, T.; Li, Y. et al. A review on mechanics and mechanical properties of 2D materials-graphene and beyond. Extreme Mech. Lett. 2017, 13, 42–77.

[21]

Hao, J. L.; Wang, W. J.; Zhao, J. W.; Che, H. L.; Chen, L.; Sui, X. Construction and application of bioinspired nanochannels based on two-dimensional materials. Chin. Chem. Lett. 2022, 33, 2291–2300.

[22]

Bagheri, S.; Chilcott, R.; Luo, S. Y.; Sinitskii, A. Bifunctional amine- and thiol-modified Ti3C2T x MXene for trace detection of heavy metals. Langmuir 2022, 38, 12924–12934.

[23]

Zheng, K. Y.; Li, K. R.; Chang, T. H.; Xie, J. P.; Chen, P. Y. Synergistic antimicrobial capability of magnetically oriented graphene oxide conjugated with gold nanoclusters. Adv. Funct. Mater. 2019, 29, 1904603.

[24]

Zheng, K. Y.; Li, S.; Jing, L.; Chen, P. Y.; Xie, J. P. Synergistic antimicrobial titanium carbide (MXene) conjugated with gold nanoclusters. Adv. Healthcare Mater. 2020, 9, 2001007.

[25]

Mukherjee, R.; Thomas, A. V.; Krishnamurthy, A.; Koratkar, N. Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 2012, 6, 7867–7878.

[26]

Goh, K.; Karahan, H. E.; Wei, L.; Bae, T. H.; Fane, A. G.; Wang, R.; Chen, Y. Carbon nanomaterials for advancing separation membranes: A strategic perspective. Carbon 2016, 109, 694–710.

[27]

Konkena, B.; Vasudevan, S. Glass, gel, and liquid crystals: Arrested states of graphene oxide aqueous dispersions. J. Phys. Chem. C 2014, 118, 21706–21713.

[28]

Maiti, U. N.; Lim, J.; Lee, K. E.; Lee, W. J.; Kim, S. O. Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv. Mater. 2014, 26, 615–619.

[29]

Bai, H.; Li, C.; Wang, X. L.; Shi, G. Q. A pH-sensitive graphene oxide composite hydrogel. Chem. Commun. 2010, 46, 2376–2378.

[30]

Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 2011, 21, 6494–6497.

[31]

Chen, Y.; Zhang, X.; Yu, P.; Ma, Y. W. Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors. J. Power Sources 2010, 195, 3031–3035.

[32]

Huang, S. Y.; Wu, G. P.; Chen, C. M.; Yang, Y.; Zhang, S. C.; Lu, C. X. Electrophoretic deposition and thermal annealing of a graphene oxide thin film on carbon fiber surfaces. Carbon 2013, 52, 613–616.

[33]

Wu, Z. S.; Pei, S. F.; Ren, W. C.; Tang, D. M.; Gao, L. B.; Liu, B. L.; Li, F.; Liu, C.; Cheng, H. M. Field emission of single-layer graphene films prepared by electrophoretic deposition. Adv. Mater. 2009, 21, 1756–1760.

[34]

Jiang, H. J.; Zheng, L.; Liu, Z.; Wang, X. W. Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat 2020, 2, 1077–1094.

[35]

Liu, K.; Wu, J. Q. Mechanical properties of two-dimensional materials and heterostructures. J. Mater. Res. 2016, 31, 832–844.

[36]

Lu, X. Cellulose nanocrystals for wrinkled fabric. BioResources 2019, 14, 7632–7635.

[37]

Zang, J. F.; Cao, C. Y.; Feng, Y. Y.; Liu, J.; Zhao, X. H. Stretchable and high-performance supercapacitors with crumpled graphene papers. Sci. Rep. 2014, 4, 6492.

[38]

Hwang, M. T.; Heiranian, M.; Kim, Y.; You, S.; Leem, J.; Taqieddin, A.; Faramarzi, V.; Jing, Y. H.; Park, I.; van der Zande, A. M. et al. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat. Commun. 2020, 11, 1543.

[39]

Tan, Y. L.; Chu, Z. Y.; Jiang, Z. H.; Hu, T. J.; Li, G. Y.; Song, J. Gyrification-inspired highly convoluted graphene oxide patterns for ultralarge deforming actuators. ACS Nano 2017, 11, 6843–6852.

[40]

Choi, J.; Kim, H. J.; Wang, M. C.; Leem, J.; King, W. P.; Nam, S. W. Three-dimensional integration of graphene via swelling, shrinking, and adaptation. Nano Lett. 2015, 15, 4525–4531.

[41]

Chen, P. Y.; Sodhi, J.; Qiu, Y.; Valentin, T. M.; Steinberg, R. S.; Wang, Z. Y.; Hurt, R. H.; Wong, I. Y. Multiscale graphene topographies programmed by sequential mechanical deformation. Adv. Mater. 2016, 28, 3564–3571.

[42]

Chueh, W. C.; Hao, Y.; Jung, W. C.; Haile, S. M. High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes. Nat. Mater. 2012, 11, 155–161.

[43]

Yang, H. T.; Xiao, X.; Li, Z. P.; Li, K. R.; Cheng, N.; Li, S.; Low, J. H.; Jing, L.; Fu, X. M.; Achavananthadith, S. et al. Wireless Ti3C2T x MXene strain sensor with ultrahigh sensitivity and designated working windows for soft exoskeletons. ACS Nano 2020, 14, 11860–11875.

[44]

Chen, P. Y.; Zhang, M. K.; Liu, M. C.; Wong, I. Y.; Hurt, R. H. Ultrastretchable graphene-based molecular barriers for chemical protection, detection, and actuation. ACS Nano 2018, 12, 234–244.

[45]
Jing, L.; Hsiao, L. Y.; Li, S.; Yang, H. T.; Ng, P. L. P.; Ding, M.; Van Truong, T.; Gao, S. P.; Li, K. R.; Guo, Y. X. et al. 2D-material-integrated hydrogels as multifunctional protective skins for soft robots. Mater. Horiz. 2021 , 8, 2065–2078.
DOI
[46]

Chang, T. H.; Zhang, T. R.; Yang, H. T.; Li, K. R.; Tian, Y.; Lee, J. Y.; Chen, P. Y. Controlled crumpling of two-dimensional titanium carbide (MXene) for highly stretchable, bendable, efficient supercapacitors. ACS Nano 2018, 12, 8048–8059.

[47]

Zhou, Y.; Hu, X. C.; Fan, Q. Z.; Wen, H. R. Three-dimensional crumpled graphene as an electro-catalyst support for formic acid electro-oxidation. J. Mater. Chem. A 2016, 4, 4587–4591.

[48]

Tang, X. Y.; Yang, W. D.; Yin, S. R.; Tai, G. J.; Su, M.; Yang, J.; Shi, H. F.; Wei, D. P.; Yang, J. Controllable graphene wrinkle for a high-performance flexible pressure sensor. ACS Appl. Mater. Interfaces 2021, 13, 20448–20458.

[49]

Jung, W. B.; Cho, K. M.; Lee, W. K.; Odom, T. W.; Jung, H. T. Universal method for creating hierarchical wrinkles on thin-film surfaces. ACS Appl. Mater. Interfaces 2018, 10, 1347–1355.

[50]

Huang, Z. Y.; Hong, W.; Suo, Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 2005, 53, 2101–2118.

[51]

Lin, H.; Li, Y. F.; Zhu, J. H. Cross-linked GO membranes assembled with GO nanosheets of differently sized lateral dimensions for organic dye and chromium separation. J. Membr. Sci. 2020, 598, 117789.

[52]

Hu, X. Y.; Dou, Y. Y.; Li, J. J.; Liu, Z. F. Buckled structures: Fabrication and applications in wearable electronics. Small 2019, 15, 1804805.

[53]

Li, S. P.; Han, M. D.; Rogers, J. A.; Zhang, Y. H.; Huang, Y. G.; Wang, H. L. Mechanics of buckled serpentine structures formed via mechanics-guided, deterministic three-dimensional assembly. J. Mech. Phys. Solids 2019, 125, 736–748.

[54]

Zhang, Q. T.; Yin, J. Spontaneous buckling-driven periodic delamination of thin films on soft substrates under large compression. J. Mech. Phys. Solids 2018, 118, 40–57.

[55]

Nolte, A. J.; Chung, J. Y.; Davis, C. S.; Stafford, C. M. Wrinkling-to-delamination transition in thin polymer films on compliant substrates. Soft Matter 2017, 13, 7930–7937.

[56]

Kim, D. I.; Ahn, H. S.; Choi, D. H. Effect of surface hydrophilicity and water vapor pressure on the interfacial shear strength of adsorbed water layer. Appl. Phys. Lett. 2004, 84, 1919–1921.

[57]

Schumacher, A.; Kruse, N.; Prins, R.; Meyer, E.; Lüthi, R.; Howald, L.; Güntherodt, H. J.; Scandella, L. Influence of humidity on friction measurements of supported MoS2 single layers. J. Vac. Sci. Technol. B 1996, 14, 1264–1267.

[58]

Jing, L.; Xie, Q.; Li, H. L.; Li, K. R.; Yang, H. T.; Ng, P. L. P.; Li, S.; Li, Y.; Teo, E. H. T.; Wang, X. N. et al. Multigenerational crumpling of 2D materials for anticounterfeiting patterns with deep learning authentication. Matter 2020, 3, 2160–2180.

[59]
Brun, J. J.; De Danieli, S. Earthworms: Our partners for Resilient, Living Soil in the Mountains [Online]. Interreg Alpine Space Booklet. https://www.readkong.com/page/earthworms-our-partners-for-resilient-living-soil-in-the-1709162 (accessed Jun 26, 2023).
[60]
Hodgson, L. Earthworms Are Bad News for North American Forests [Online]. Laidback Gardener. https://laidbackgardener.blog/2021/01/04/earthworms-are-bad-news-for-north-american-forests/ (accessed Jun 26, 2023).
[61]

Hu, Y.; Wei, B. R.; Yang, D. P.; Ma, D. K.; Huang, S. M. Chameleon-inspired brilliant and sensitive mechano-chromic photonic skins for self-reporting the strains of earthworms. ACS Appl. Mater. Interfaces 2022, 14, 11672–11680.

[62]

Calderón, A. A.; Ugalde, J. C.; Chang, L. L.; Zagal, J. C.; Pérez-Arancibia, N. O. An earthworm-inspired soft robot with perceptive artificial skin. Bioinspir. Biomim. 2019, 14, 056012.

[63]

Karipoth, P.; Christou, A.; Pullanchiyodan, A.; Dahiya, R. Bioinspired inchworm- and earthworm-like soft robots with intrinsic strain sensing. Adv. Intell. Syst. 2022, 4, 2100092.

[64]

Qiu, A. D.; Li, P. L.; Yang, Z. K.; Yao, Y.; Lee, I.; Ma, J. A path beyond metal and silicon: Polymer/nanomaterial composites for stretchable strain sensors. Adv. Funct. Mater. 2019, 29, 1806306.

[65]

Yang, R. L.; Song, H. Z.; Zhou, Z.; Yang, S. D.; Tang, X.; He, J. K.; Liu, S. Y.; Zeng, Z. P.; Yang, B. R.; Gui, X. C. Ultra-sensitive, multi-directional flexible strain sensors based on an MXene film with periodic wrinkles. ACS Appl. Mater. Interfaces 2023, 15, 8345–8354.

[66]

Yang, H. T.; Li, J. L.; Xiao, X.; Wang, J. H.; Li, Y. F.; Li, K. R.; Li, Z. P.; Yang, H. C.; Wang, Q.; Yang, J. et al. Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nat. Commun. 2022, 13, 5311.

[67]

Wang, M. C.; Chun, S. G.; Han, R. S.; Ashraf, A.; Kang, P.; Nam, S. W. Heterogeneous, three-dimensional texturing of graphene. Nano Lett. 2015, 15, 1829–1835.

[68]

CFhu, Z. M.; Jiao, W. C.; Huang, Y. F.; Zheng, Y. T.; Wang, R. G.; He, X. D. Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring. J. Mater. Chem. A 2021, 9, 9634–9643.

[69]

Zang, J. F.; Ryu, S.; Pugno, N.; Wang, Q. M.; Tu, Q.; Buehler, M. J.; Zhao, X. H. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 2013, 12, 321–325.

[70]

Zhou, Y. H.; Maleski, K.; Anasori, B.; Thostenson, J. O.; Pang, Y. K.; Feng, Y. Y.; Zeng, K. X.; Parker, C. B.; Zauscher, S.; Gogotsi, Y. et al. Ti3C2T x MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano 2020, 14, 3576–3586.

[71]

Myny, K. The development of flexible integrated circuits based on thin-film transistors. Nat. Electron. 2018, 1, 30–39.

[72]

Guo, H. S.; Priimagi, A.; Zeng, H. Optically controlled latching and launching in soft actuators. Adv. Funct. Mater. 2022, 32, 2108919.

[73]

Gong, X. F.; Yang, Q.; Zhi, C. Y.; Lee, P. S. Stretchable energy storage devices: From materials and structural design to device assembly. Adv. Energy Mater. 2021, 11, 2003308.

[74]

Li, L.; Lou, Z.; Chen, D.; Jiang, K.; Han, W.; Shen, G. Z. Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small 2018, 14, 1702829.

[75]

Song, W. J.; Yoo, S.; Song, G.; Lee, S.; Kong, M.; Rim, J.; Jeong, U.; Park, S. Recent progress in stretchable batteries for wearable electronics. Batteries Supercaps 2019, 2, 181–199.

[76]

Weng, W.; Sun, Q.; Zhang, Y.; He, S. S.; Wu, Q. Q.; Deng, J.; Fang, X.; Guan, G. Z.; Ren, J.; Peng, H. S. A gum-like lithium-ion battery based on a novel arched structure. Adv. Mater. 2015, 27, 1363–1369.

[77]

Liu, W.; Chen, J.; Chen, Z.; Liu, K.; Zhou, G. M.; Sun, Y. M.; Song, M. S.; Bao, Z. N.; Cui, Y. Stretchable lithium-ion batteries enabled by device-scaled wavy structure and elastic-sticky separator. Adv. Energy Mater. 2017, 7, 1701076.

[78]

Wirthl, D.; Pichler, R.; Drack, M.; Kettlguber, G.; Moser, R.; Gerstmayr, R.; Hartmann, F.; Bradt, E.; Kaltseis, R.; Siket, C. M. et al. Instant tough bonding of hydrogels for soft machines and electronics. Sci. Adv. 2017, 3, e1700053.

[79]

Ma, L. T.; Chen, S. M.; Wang, D. H.; Yang, Q.; Mo, F. N.; Liang, G. J.; Li, N.; Zhang, H. Y.; Zapien, J. A.; Zhi, C. Y. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 2019, 9, 1803046.

[80]

Li, Y.; Yang, H. T.; Zhang, T. R.; Li, S.; Li, S.; He, S. M.; Chen, T. L.; Lee, J. Y.; Zhao, Y. S.; Chen, P. Y. Stretchable Zn-ion hybrid battery with reconfigurable V2CT x and Ti3C2T x MXene electrodes as a magnetically actuated soft robot. Adv. Energy Mater. 2021, 11, 2101862.

[81]

Li, S.; Chang, T. H.; Li, Y.; Ding, M.; Yang, J.; Chen, P. Y. Stretchable Ti3C2T x MXene microsupercapacitors with high areal capacitance and quasi-solid-state multivalent neutral electrolyte. J. Mater. Chem. A 2021, 9, 4664–4672.

[82]

Comanns, P.; Buchberger, G.; Buchsbaum, A.; Baumgartner, R.; Kogler, A.; Bauer, S.; Baumgartner, W. Directional, passive liquid transport: The texas horned lizard as a model for a biomimetic “liquid diode”. J. R. Soc. Interface 2015, 12, 20150415.

[83]

Comanns, P.; Effertz, C.; Hischen, F.; Staudt, K.; Böhme, W.; Baumgartner, W. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards. Beilstein J. Nanotechnol. 2011, 2, 204–214.

[84]

Deng, Y. Q.; Shang, T. X.; Wu, Z. T.; Tao, Y.; Luo, C.; Liang, J. C.; Han, D. L.; Lyu, R. Y.; Qi, C. S.; Lv, W. et al. Fast gelation of Ti3C2T x MXene initiated by metal ions. Adv. Mater. 2019, 31, 1902432.

[85]

Yang, W. S.; Pan, M. F.; Huang, C.; Zhao, Z. Q.; Wang, J. M.; Zeng, H. B. Graphene oxide-based noble-metal nanoparticles composites for environmental application. Compos. Commun. 2021, 24, 100645.

[86]

Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681.

[87]

Ding, M.; Li, S.; Guo, L.; Jing, L.; Gao, S. P.; Yang, H. T.; Little, J. M.; Dissanayake, T. U.; Li, K. R.; Yang, J. et al. Metal ion-induced assembly of MXene aerogels via biomimetic microtextures for electromagnetic interference shielding, capacitive deionization, and microsupercapacitors. Adv. Energy Mater. 2021, 11, 2101494.

[88]

Little, J. M.; Sun, J. Y.; Kamali, A.; Chen, A.; Leff, A. C.; Li, Y.; Borden, L. K.; Dissanayake, T. U.; Essumang, D.; Oseleononmen, B. O. et al. Noble metal ion-directed assembly of 2D materials for heterostructured catalysts and metallic micro-texturing. Adv. Funct. Mater. 2023, 33, 2215222.

[89]

Lin, Z. H.; Liu, J.; Peng, W.; Zhu, Y. Y.; Zhao, Y.; Jiang, K.; Peng, M.; Tan, Y. W. Highly stable 3D Ti3C2T x MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 2020, 14, 2109–2117.

[90]

Schulz, A. K.; Boyle, M.; Boyle, C.; Sordilla, S.; Rincon, C.; Hooper, S.; Aubuchon, C.; Reidenberg, J. S.; Higgins, C.; Hu, D. L. Skin wrinkles and folds enable asymmetric stretch in the elephant trunk. Proc. Natl. Acad. Sci. USA 2022, 119, e2122563119.

[91]

Delmerico, J.; Mintchev, S.; Giusti, A.; Gromov, B.; Melo, K.; Horvat, T.; Cadena, C.; Hutter, M.; Ijspeert, A.; Floreano, D. et al. The current state and future outlook of rescue robotics. J. Field Robot. 2019, 36, 1171–1191.

[92]

Yang, G. Z.; Bellingham, J.; Dupont, P. E.; Fischer, P.; Floridi, L.; Full, R.; Jacobstein, N.; Kumar, V.; McNutt, M.; Merrifield, R. et al. The grand challenges of science robotics. Sci. Robot. 2018, 3, eaar7650.

[93]
Lösch, R.; Grehl, S.; Donner, M.; Buhl, C.; Jung, B. Design of an autonomous robot for mapping, navigation, and manipulation in underground mines. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, 2018, pp 1407–1412.
DOI
[94]

Wang, C. J.; Sim, K.; Chen, J.; Kim, H.; Rao, Z.; Li, Y. H.; Chen, W. Q.; Song, J. Z.; Verduzco, R.; Yu, C. J. Soft ultrathin electronics innervated adaptive fully soft robots. Adv. Mater. 2018, 30, 1706695.

[95]

Wallin, T. J.; Pikul, J.; Shepherd, R. F. 3D printing of soft robotic systems. Nat. Rev. Mater. 2018, 3, 84–100.

[96]

Chen, Y. F.; Zhao, H. C.; Mao, J.; Chirarattananon, P.; Helbling, E. F.; Hyun, N. S. P.; Clarke, D. R.; Wood, R. J. Controlled flight of a microrobot powered by soft artificial muscles. Nature 2019, 575, 324–329.

[97]

Sinatra, N. R.; Teeple, C. B.; Vogt, D. M.; Parker, K. K.; Gruber, D. F.; Wood, R. J. Ultragentle manipulation of delicate structures using a soft robotic gripper. Sci. Robot. 2019, 4, eaax5425.

[98]

Abondance, S.; Teeple, C. B.; Wood, R. J. A dexterous soft robotic hand for delicate in-hand manipulation. IEEE Robot. Autom. Lett. 2020, 5, 5502–5509.

[99]

Ding, M.; Jing, L.; Yang, H.; Machnicki, C. E.; Fu, X.; Li, K.; Wong, I. Y.; Chen, P. Y. Multifunctional soft machines based on stimuli-responsive hydrogels: From freestanding hydrogels to smart integrated systems. Mater. Today Adv. 2020, 8, 100088.

[100]

Rich, S. I.; Wood, R. J.; Majidi, C. Untethered soft robotics. Nat. Electron. 2018, 1, 102–112.

[101]

Mishra, A. K.; Wallin, T. J.; Pan, W. Y.; Xu, A.; Wang, K. Y.; Giannelis, E. P.; Mazzolai, B.; Shepherd, R. F. Autonomic perspiration in 3D-printed hydrogel actuators. Sci. Robot. 2020, 5, eaaz3918.

[102]

Jing, L.; Li, K. R.; Yang, H. T.; Chen, P. Y. Recent advances in integration of 2D materials with soft matter for multifunctional robotic materials. Mater. Horiz. 2020, 7, 54–70.

[103]

Chang, T. H.; Tian, Y.; Wee, D. L. Y.; Ren, H. L.; Chen, P. Y. Crumpling and unfolding of montmorillonite hybrid nanocoatings as stretchable flame-retardant skin. Small 2018, 14, 1800596.

[104]

Li, Y.; Tian, X.; Gao, S. P.; Jing, L.; Li, K. R.; Yang, H. T.; Fu, F. F.; Lee, J. Y.; Guo, Y. X.; Ho, J. S. et al. Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 2020, 30, 1907451.

[105]

Li, K. R.; Li, Z. P.; Xiong, Z.; Wang, Y. X.; Yang, H. T.; Xu, W. X.; Jing, L.; Ding, M.; Zhu, J.; Ho, J. S. et al. Thermal camouflaging MXene robotic skin with bio-inspired stimulus sensation and wireless communication. Adv. Funct. Mater. 2022, 32, 2110534.

[106]

Luo, Y.; Shepard, G. D.; Ardelean, J. V.; Rhodes, D. A.; Kim, B.; Barmak, K.; Hone, J. C.; Strauf, S. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 2018, 13, 1137–1142.

[107]

Lee, J.; Yun, S. J.; Seo, C.; Cho, K.; Kim, T. S.; An, G. H.; Kang, K.; Lee, H. S.; Kim, J. Switchable, tunable, and directable exciton funneling in periodically wrinkled WS2. Nano Lett. 2021, 21, 43–50.

[108]

Cho, C.; Wong, J.; Taqieddin, A.; Biswas, S.; Aluru, N. R.; Nam, S. W.; Atwater, H. A. Highly strain-tunable interlayer excitons in MoS2/WSe2 heterobilayers. Nano Lett. 2021, 21, 3956–3964.

[109]

Wang, W. J.; Hao, J. L.; Sun, Q.; Zhao, M. Q.; Liu, H. Y.; Li, C.; Sui, X. Carbon nanofibers membrane bridged with graphene nanosheet and hyperbranched polymer for high-performance osmotic energy harvesting. Nano Res. 2023, 16, 1205–1211.

[110]

Cheng, R.; Wu, Y.; Wang, B.; Zeng, J. S.; Li, J. P.; Xu, J.; Gao, W. H.; Chen, K. F. Fireproof ultrastrong all-natural cellulose nanofiber/montmorillonite-supported MXene nanocomposites with electromagnetic interference shielding and thermal management multifunctional applications. J. Mater. Chem. A 2023, 11, 18323–18335.

[111]

Xing, C. Y.; Tian, Y.; Yu, Z. J.; Li, Z. H.; Meng, B.; Peng, Z. C. Cellulose nanofiber-reinforced MXene membranes as stable friction layers and effective electrodes for high-performance triboelectric nanogenerators. ACS Appl. Mater. Interfaces 2022, 14, 36741–36752.

[112]

Wang, J.; Ma, X. Y.; Zhou, J. L.; Du, F. L.; Teng, C. Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano 2022, 16, 6700–6711.

[113]

Li, K. R.; Chang, T. H.; Li, Z. P.; Yang, H. T.; Fu, F. F.; Li, T. T.; Ho, J. S.; Chen, P. Y. Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 2019, 9, 1901687.

[114]

Jiao, E. X.; Wu, K.; Liu, Y. C.; Lu, M. P.; Zhang, H. Z.; Zheng, H. T.; Xu, C. A.; Shi, J.; Lu, M. G. Robust bioinspired MXene-based flexible films with excellent thermal conductivity and photothermal properties. Compos. Part A 2021, 143, 106290.

[115]

Bian, F. K.; Sun, L. Y.; Cai, L. J.; Wang, Y.; Zhao, Y. J. Bioinspired MXene-integrated colloidal crystal arrays for multichannel bioinformation coding. Proc. Natl. Acad. Sci. USA 2020, 117, 22736–22742.

[116]

Chang, T. H.; Li, K. R.; Yang, H. T.; Chen, P. Y. Multifunctionality and mechanical actuation of 2D materials for skin-mimicking capabilities. Adv. Mater. 2018, 30, 1802418.

[117]

Chen, P. Y.; Liu, M. C.; Wang, Z. Y.; Hurt, R. H.; Wong, I. Y. From flatland to spaceland: Higher dimensional patterning with two-dimensional materials. Adv. Mater. 2017, 29, 1605096.

[118]
Mas-Ballesté, R.; Gómez-Navarro, C.; Gómez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale 2011 , 3, 20–30.
DOI
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 June 2023
Revised: 22 August 2023
Accepted: 19 September 2023
Published: 02 December 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors acknowledge the financial support provided by the Start-Up Fund of University of Maryland, College Park (KFS No.: 2957431 to P.-Y. Chen). Fundings for this research were provided by Energy Innovation Seed Grant from Maryland Energy Innovation Institute (MEI^2) (KFS No.: 2957597 to P.-Y. Chen). This material is based upon work supported by the Air Force Office of Scientific Research under award number FA2386-21-1-4065 (KFS No.: 5284212 to P.-Y. Chen). Y. L. acknowledges the financial support provided by the Maryland Robotics Center (MRC) for a research fellowship.

Return