Journal Home > Volume 17 , Issue 4

Semiconductive metal–organic frameworks (MOFs) have attracted great interest for the electronic applications. However, dark currents of present hybrid organic–inorganic materials are 1000–10,000 times higher than those of commercial inorganic detectors, leading to poor charge transportation. Here, we demonstrate a ZIF-8 (Zn(mim)2, mim = 2-methylimidazolate) wafer with ultra-low dark current of 1.27 pA·mm−2 under high electric fields of 322 V·mm−1. The isostatic pressing preparation process provides ZIF-8 wafers with good transmittance. Besides, the presence of redox-active metals and small spatial separation between components promotes the charge hopping. The ZIF-8-based semiconductor detector shows promising X-ray detection sensitivity of 70.82 μC·Gy−1·cm−2 with low doses exposures, contributing to superior X-ray imaging capability with a relatively high spatial resolution of 1.2 lp·mm−1. Simultaneously, good peak discrimination with the energy resolution of ~ 43.78% is disclosed when the detector is illuminated by uncollimated 241Am@5.48 MeV α-particles. These results provide a broad prospect of MOFs for future radiation detection applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Metal–organic framework wafer enabled fast response radiation detection with ultra-low dark current

Show Author's information Meng XuJianxi Liu( )Wei WuYang ChenDonghao MaSixin ChenWanqi JieMenghua Zhu( )Yadong Xu( )
State Key Laboratory of Solidification Processing, MIIT Key Laboratory of Radiation Detection Materials and Devices, & School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Semiconductive metal–organic frameworks (MOFs) have attracted great interest for the electronic applications. However, dark currents of present hybrid organic–inorganic materials are 1000–10,000 times higher than those of commercial inorganic detectors, leading to poor charge transportation. Here, we demonstrate a ZIF-8 (Zn(mim)2, mim = 2-methylimidazolate) wafer with ultra-low dark current of 1.27 pA·mm−2 under high electric fields of 322 V·mm−1. The isostatic pressing preparation process provides ZIF-8 wafers with good transmittance. Besides, the presence of redox-active metals and small spatial separation between components promotes the charge hopping. The ZIF-8-based semiconductor detector shows promising X-ray detection sensitivity of 70.82 μC·Gy−1·cm−2 with low doses exposures, contributing to superior X-ray imaging capability with a relatively high spatial resolution of 1.2 lp·mm−1. Simultaneously, good peak discrimination with the energy resolution of ~ 43.78% is disclosed when the detector is illuminated by uncollimated 241Am@5.48 MeV α-particles. These results provide a broad prospect of MOFs for future radiation detection applications.

Keywords: lead-free, MOFs, fast response, X-ray detection and imaging, dark current, α-particles

References(36)

[1]

Hu, M. X.; Jia, S. S.; Liu, Y. C.; Cui, J.; Zhang, Y. X.; Su, H.; Cao, S. Q.; Mo, L. H.; Chu, D. P.; Zhao, G. T. et al. Large and dense organic–inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity. ACS Appl. Mater. Interfaces 2020, 12, 16592–16600.

[2]

Zheng, X. J.; Zhao, W.; Wang, P.; Tan, H. R.; Saidaminov, M. I.; Tie, S.; Chen, L. G.; Peng, Y. F.; Long, J. D.; Zhang, W. H. Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites. J. Energy Chem. 2020, 49, 299–306.

[3]

Ankah, G. N.; Büchele, P.; Poulsen, K.; Rauch, T.; Tedde, S. F.; Gimmler, C.; Schmidt, O.; Kraus, T. PbS quantum dot based hybrid-organic photodetectors for X-ray sensing. Org. Electron. 2016, 33, 201–206.

[4]

Ciavatti, A.; Cramer, T.; Carroli, M.; Basiricò, L.; Fuhrer, R.; De Leeuw, D. M.; Fraboni, B. Dynamics of direct X-ray detection processes in high-Z Bi2O3 nanoparticles-loaded PFO polymer-based diodes. Appl. Phys. Lett. 2017, 111, 183301.

[5]

Guo, Y. X.; Yin, X. T.; Liu, J.; Wen, S.; Wu, Y. T.; Que, W. X. Inorganic CsPbIBr2-based perovskite solar cells: Fabrication technique modification and efficiency improvement. Sol. RRL 2019, 3, 1900135.

[6]

Brinkmann, K. O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R. et al. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells. Nat. Commun. 2017, 8, 13938.

[7]

Intaniwet, A.; Mills, C. A.; Shkunov, M.; Sellin, P. J.; Keddie, J. L. Heavy metallic oxide nanoparticles for enhanced sensitivity in semiconducting polymer X-ray detectors. Nanotechnology 2012, 23, 235502.

[8]

Mills, C. A.; Al-Otaibi, H.; Intaniwet, A.; Shkunov, M.; Pani, S.; Keddie, J. L.; Sellin, P. J. Enhanced X-ray detection sensitivity in semiconducting polymer diodes containing metallic nanoparticles. J. Phys. D Appl. Phys. 2013, 46, 275102.

[9]

Büchele, P.; Richter, M.; Tedde, S. F.; Matt, G. J.; Ankah, G. N.; Fischer, R.; Biele, M.; Metzger, W.; Lilliu, S.; Bikondoa, O. et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat. Photonics 2015, 9, 843–848

[10]

Frey, J. B.; Belev, G.; Tousignant, O.; Mani, H.; Laperriere, L.; Kasap, S. O. Dark current in multilayer stabilized amorphous selenium based photoconductive X-ray detectors. J. Appl. Phys. 2012, 112, 014502.

[11]

Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.

[12]

Miner, E. M.; Dincă, M. Metal–organic frameworks: Evolved oxygen evolution catalysts. Nat. Energy 2016, 1, 16186.

[13]

Li, Z. H.; Liu, J. X.; Feng, L.; Liu, X.; Xu, Y. D.; Zhou, F.; Liu, W. M. Coupling tandem MOFs in metal–insulator–metal resonator advanced chemo-sieving sensing. Nano Today 2023, 48, 101726.

[14]

Li, Z. H.; Liu, J. X.; Feng, L.; Pan, Y.; Tang, J.; Li, H.; Cheng, G. H.; Li, Z. Y.; Shi, J. Q.; Xu, Y. D. et al. Monolithic MOF-based metal–insulator–metal resonator for filtering and sensing. Nano Lett. 2023, 23, 637–644.

[15]

Li, Z. H.; Liu, J. X.; Wu, H. Z.; Tang, J.; Li, Z. Y.; Xu, Y. D.; Zhou, F.; Liu, W. M. Photonic crystals constructed by isostructural metal–organic framework films. Nano Res. 2023, 16, 9569–9576.

[16]

Liu, J. J.; Song, X. Y.; Zhang, T.; Liu, S. Y.; Wen, H. R.; Chen, L. 2D conductive metal–organic frameworks: An emerging platform for electrochemical energy storage. Angew. Chem. 2021, 133, 5672–5684

[17]

Zheng, S. S.; Li, X. R.; Yan, B. Y.; Hu, Q.; Xu, Y. X.; Xiao, X.; Xue, H. G.; Pang, H. Transition-metal (Fe, Co, Ni) based metal–organic frameworks for electrochemical energy storage. Adv. Energy Mater. 2017, 7, 1602733.

[18]

Sun, L.; Campbell, M. G.; Dincă, M. Electrically conductive porous metal–organic frameworks. Angew. Chem., Int. Ed. 2016, 55, 3566–3579.

[19]

Wang, Y. X.; Liu, X.; Li, X. Y.; Zhai, F. W.; Yan, S. Q.; Liu, N.; Chai, Z. F.; Xu, Y. D.; Ouyang, X. OP.; Wang, S. A. Direct radiation detection by a semiconductive metal–organic framework. J. Am. Chem. Soc. 2019, 141, 8030–8034.

[20]

Cheng, L. W.; Liang, C. Y.; Liu, W.; Wang, Y. X.; Chen, B.; Zhang, H. L.; Wang, Y. L.; Chai, Z. F.; Wang, S. A. Three-dimensional polycatenation of a uranium-based metal–organic cage: Structural complexity and radiation detection. J. Am. Chem. Soc. 2020, 142, 16218–16222.

[21]

Lu, J.; Xin, X. H.; Lin, Y. J.; Wang, S. H.; Xu, J. G.; Zheng, F. K.; Guo, G. C. Efficient X-ray scintillating lead(II)-based MOFs derived from rigid luminescent naphthalene motifs. Dalton Trans. 2019, 48, 1722–1731.

[22]

Li, Z.; Chang, S. Q.; Zhang, H. Q.; Hu, Y.; Huang, Y. L.; An, L.; Ren, S. Q. Cu-based metal–organic frameworks for highly sensitive X-ray detectors. Chem. Commun. 2021, 57, 8612–8615.

[23]

Li, Z.; Chang, S. Q.; Zhang, H. Q.; Hu, Y.; Huang, Y. L.; Au, L.; Ren, S. Q. Flexible lead-free X-ray detector from metal–organic frameworks. Nano Lett. 2021, 21, 6983–6989.

[24]

Cheng, L. W.; Liang, C. Y.; Li, B. Y.; Qin, H. M.; Mi, P. H.; Chen, B.; Yan, Y. Z.; Dai, X.; Zhang, C.; Wang, Y. L. et al. Millimeter-scale semiconductive metal–organic framework single crystal for X-ray imaging. Cell Rep. Phys. Sci. 2022, 3, 101004.

[25]

Doty, F. P.; Bauer, C. A.; Skulan, A. J.; Grant, P. G.; Allendorf, M. D. Scintillating metal–organic frameworks: A new class of radiation detection materials. Adv. Mater. 2009, 21, 95–101.

[26]

Zhang, Z. X.; Luo, X. S.; Wang, B.; Zhang, J. B. Electron transport improvement of perovskite solar cells via a ZIF-8-derived porous carbon skeleton. ACS Appl. Energy Mater. 2019, 2, 2760–2768.

[27]

Sun, Q. H.; Xu, Y. D.; Zhang, H. J.; Xiao, B.; Liu, X.; Dong, J. P.; Cheng, Y. B.; Zhang, B. B.; Jie, W. Q.; Kanatzidis, M. G. Optical and electronic anisotropies in perovskitoid crystals of Cs3Bi2I9 studies of nuclear radiation detection. J. Mater. Chem. A 2018, 6, 23388–23395.

[28]

Xie, L. S.; Skorupskii, G.; Dincă, M. Electrically conductive metal–organic frameworks. Chem. Rev. 2020, 120, 8536–8580.

[29]

Boroumand, F.; Zhu, M.; Dalton, A. B.; Keddie, J. L.; Sellin, P. J.; Gutierrez, J. J. Direct X-ray detection with conjugated polymer devices. Appl. Phys. Lett. 2007, 91, 033509.

[30]

Intaniwet, A.; Mills, C. A.; Sellin, P. J.; Shkunov, M.; Keddie, J. L. Achieving a stable time response in polymeric radiation sensors under charge injection by X-rays. ACS Appl. Mater. Interfaces 2010, 2, 1692–1699.

[31]

Intaniwet, A.; Keddie, J. L.; Shkunov, M.; Sellin, P. J. High charge-carrier mobilities in blends of poly(triarylamine) and TIPS-pentacene leading to better performing X-ray sensors. Org. Electron. 2011, 12, 1903–1908.

[32]

Gelinck, G. H.; Kumar, A.; Moet, D.; van der Steen, J. L. P. J.; van Breemen, A. J. J. M.; Shanmugam, S.; Langen, A.; Gilot, J.; Groen, P.; Andriessen, R. et al. X-ray detector-on-plastic with high sensitivity using low cost, solution-processed organic photodiodes. IEEE Trans. Electron Devices 2016, 63, 197–204

[33]

Thirimanne, H. M.; Jayawardena, K. D. G. I.; Parnell, A. J.; Bandara, R. M. I.; Karalasingam, A.; Pani, S.; Huerdler, J. E.; Lidzey, D. G.; Tedde, S. F.; Nisbet, A. et al. High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response. Nat. Commun. 2018, 9, 2926.

[34]

Thompson, M.; Ellison, S. L. R.; Wood, R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC technical report). Pure Appl. Chem. 2002, 74, 835–855.

[35]

Clairand, I.; Bordy, J. M.; Carinou, E.; Daures, J.; Debroas, J.; Denozière, M.; Donadille, L.; Ginjaume, M.; Itié, C.; Koukorava, C. et al. Use of active personal dosemeters in interventional radiology and cardiology: Tests in laboratory conditions and recommendations-ORAMED project. Radiat. Meas. 2011, 46, 1252–1257.

[36]

Wang, J. X.; Gutiérrez-Arzaluz, L.; Wang, X. J.; Almalki, M.; Yin, J.; Czaban-Jóźwiak, J.; Shekhah, O.; Zhang, Y. H.; Bakr, O. M.; Eddaoudi, M. et al. Nearly 100% energy transfer at the interface of metal–organic frameworks for X-ray imaging scintillators. Matter 2022, 5, 253–265.

File
12274_2023_6217_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 August 2023
Revised: 18 September 2023
Accepted: 18 September 2023
Published: 20 October 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundations of China (Nos. U2032170 and 62104194). The project was also supported by the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2021GXLH-01-03), the ND Basic Research Funds (No. G2022WD), and the Research Fund of the State Key Laboratory of Solidification Processing (NPU), China (No. 2022-TS-07).

Return