Journal Home > Volume 16 , Issue 12

Metals are essential components of both micronutrients and macronutrients in living organisms and are involved in a variety of immune processes in the forms of free ions or protein-coupled complexes (metalloproteins). Multiple aspects of the immune system, from the structural and functional control of immune-related proteins to the cellular responses to immunotherapy, could be affected by metals. Therefore, the employment of metal for the regulation of immunity, termed as metalloimmunology, is gaining interest as a prevalent and efficacious approach to combating cancer. However, the manipulation of metalloimmunology using traditional drugs presents several challenges, including limited bioavailability, adverse effects, and a lack of targeting specificity. This review provides an overview of the latest findings in metal and metal-regulatory therapeutic agents for the treatment of cancer. Essential trace metal elements, such as iron, zinc, copper, manganese, magnesium, and calcium, as well as heavy metal drugs and their mechanisms of action, will be discussed with a particular focus on their roles in regulating the tumor-immune interplay. The latest nanotechnology employed in the administration of metal-regulatory drugs and the design concepts for tailored therapeutic interventions will be discussed. These concepts and information offer promising clinical possibilities of modulating cancer immunology by targeting metal metabolism.


menu
Abstract
Full text
Outline
About this article

Regulating metalloimmunology with nanomedicine for cancer therapy

Show Author's information Saibo Ma1,3,§Lin Chen2,§Muhammad Hamza2Jing Chang1,3( )Motao Zhu2,4( )
College of Marine Life Science, Ocean University of China, Qingdao 266003, China
CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266235, China
University of Chinese Academy of Sciences, Beijing 100049, China

§ Saibo Ma and Lin Chen contributed equally to this work.

Abstract

Metals are essential components of both micronutrients and macronutrients in living organisms and are involved in a variety of immune processes in the forms of free ions or protein-coupled complexes (metalloproteins). Multiple aspects of the immune system, from the structural and functional control of immune-related proteins to the cellular responses to immunotherapy, could be affected by metals. Therefore, the employment of metal for the regulation of immunity, termed as metalloimmunology, is gaining interest as a prevalent and efficacious approach to combating cancer. However, the manipulation of metalloimmunology using traditional drugs presents several challenges, including limited bioavailability, adverse effects, and a lack of targeting specificity. This review provides an overview of the latest findings in metal and metal-regulatory therapeutic agents for the treatment of cancer. Essential trace metal elements, such as iron, zinc, copper, manganese, magnesium, and calcium, as well as heavy metal drugs and their mechanisms of action, will be discussed with a particular focus on their roles in regulating the tumor-immune interplay. The latest nanotechnology employed in the administration of metal-regulatory drugs and the design concepts for tailored therapeutic interventions will be discussed. These concepts and information offer promising clinical possibilities of modulating cancer immunology by targeting metal metabolism.

Keywords: cancer immunotherapy, metalloimmunology, metal metabolism, nano-enabled delivery system, cGAS-STING pathway, ferroptosis and cuprotosis

References(215)

[1]

Maret, W. The metals in the biological periodic system of the elements: Concepts and conjectures. Int. J. Mol. Sci. 2016, 17, 66.

[2]

Chellan, P.; Sadler, P. J. The elements of life and medicines. The elements of life and medicines. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 2015 , 373, 20140182.

[3]

Brini, M.; Calì, T.; Ottolini, D.; Carafoli, E. The plasma membrane calcium pump in health and disease. FEBS J 2013, 280, 5385–5397.

[4]

Ko, Y. H.; Hong, S.; Pedersen, P. L. Chemical mechanism of ATP synthase. Magnesium plays a pivotal role in formation of the transition state where ATP is synthesized from ADP and inorganic phosphate. J. Biol. Chem. 1999, 274, 28853–28856.

[5]

Maret, W. Zinc biochemistry: From a single zinc enzyme to a key element of life. Adv. Nutr. 2013, 4, 82–91.

[6]

Zhang, K.; Qi, C.; Cai, K. Y. Manganese-based tumor immunotherapy. Adv. Mater. 2023 ; 35(19): 2205409.

[7]

Lv, M. Z.; Chen, M. X.; Zhang, R.; Zhang, W.; Wang, C. G.; Zhang, Y.; Wei, X. M.; Guan, Y. K.; Liu, J. J.; Feng, K. C. et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 2020, 30, 966–979.

[8]

Yamanaka, R.; Shindo, Y.; Oka, K. Magnesium is a key player in neuronal maturation and neuropathology. Int. J. Mol. Sci. 2019, 20, 3439.

[9]

Wolf, F. I.; Maier, J. A. M.; Nasulewicz, A.; Feillet-Coudray, C.; Simonacci, M.; Mazur, A.; Cittadini, A. Magnesium and neoplasia: From carcinogenesis to tumor growth and progression or treatment. Arch. Biochem. Biophys. 2007, 458, 24–32.

[10]

Vela, D. Iron in the tumor microenvironment. Adv. Exp. Med. Biol. 2020, 1259, 39–51.

[11]

Lymburner, S.; McLeod, S.; Purtzki, M.; Roskelley, C.; Xu, Z. M. Zinc inhibits magnesium-dependent migration of human breast cancer MDA-MB-231 cells on fibronectin. J. Nutr. Biochem. 2013, 24, 1034–1040.

[12]

Stelling, M. P.; Motta, J. M.; Mashid, M.; Johnson, W. E.; Pavão, M. S.; Farrell, N. P. Metal ions and the extracellular matrix in tumor migration. FEBS J. 2019, 286, 2950–2964.

[13]

Ruiz, L. M.; Libedinsky, A.; Elorza, A. A. Role of copper on mitochondrial function and metabolism. Front. Mol. Biosci. 2021, 8, 711227.

[14]

D'Andrea, L. D.; Romanelli, A.; Di Stasi, R.; Pedone, C. Bioinorganic aspects of angiogenesis. Dalton Trans. 2010, 39, 7625–7636.

[15]

Hung, K. W.; Kumar, T. K. S.; Kathir, K. M.; Xu, P.; Ni, F.; Ji, H. H.; Chen, M. C.; Yang, C. C.; Lin, F. P.; Chiu, I. M.; Yu, C. Solution structure of the ligand binding domain of the fibroblast growth factor receptor: Role of heparin in the activation of the receptor. Biochemistry 2005, 44, 15787–15798.

[16]

Grasso, G.; Santoro, A. M.; Magrì, A.; La Mendola, D.; Tomasello, M. F.; Zimbone, S.; Rizzarelli, E. The inorganic perspective of VEGF: Interactions of Cu2+ with peptides encompassing a recognition domain of the VEGF receptor. J. Inorg. Biochem. 2016, 159, 149–158.

[17]

Saghiri, M. A.; Asatourian, A.; Orangi, J.; Sorenson, C. M.; Sheibani, N. Functional role of inorganic trace elements in angiogenesis-Part I: N, Fe, Se, P, Au, and Ca. Crit. Rev. Oncol./Hematol. 2015, 96, 129–142.

[18]

Dongiovanni, P.; Valenti, L.; Ludovica Fracanzani, A.; Gatti, S.; Cairo, G.; Fargion, S. Iron depletion by deferoxamine up-regulates glucose uptake and insulin signaling in hepatoma cells and in rat liver. Am. J. Pathol. 2008, 172, 738–747.

[19]

Motz, G. T.; Coukos, G. Deciphering and reversing tumor immune suppression. Immunity 2013, 39, 61–73.

[20]

Bagnato, A.; Rosanò, L. The endothelin axis in cancer. Int. J. Biochem. Cell Biol. 2008, 40, 1443–1451.

[21]

Buckanovich, R. J.; Facciabene, A.; Kim, S.; Benencia, F.; Sasaroli, D.; Balint, K.; Katsaros, D.; O'Brien-Jenkins, A.; Gimotty, P. A.; Coukos, G. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat. Med. 2008, 14, 28–36.

[22]

Lanitis, E.; Dangaj, D.; Irving, M.; Coukos, G. Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann. Oncol. 2017, 28, XII18–XII32.

[23]

Chen, S. C.; Wu, P. C.; Wang, C. Y.; Kuo, P. L. Evaluation of cytotoxic T lymphocyte-mediated anticancer response against tumor interstitium-simulating physical barriers. Sci. Rep. 2020, 10, 13662.

[24]

Deng, J.; Fleming, J. B. Inflammation and myeloid cells in cancer progression and metastasis. Front. Cell Dev. Biol. 2022, 9, 759691.

[25]

Gregory, A. D.; Houghton, A. M. Tumor-associated neutrophils: New targets for cancer therapy. Cancer Res. 2011, 71, 2411–2416.

[26]

Noy, R.; Pollard, J. W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014, 41, 49–61.

[27]

Alizadeh, A. A.; Aranda, V.; Bardelli, A.; Blanpain, C.; Bock, C.; Borowski, C.; Caldas, C.; Califano, A.; Doherty, M.; Elsner, M. et al. Toward understanding and exploiting tumor heterogeneity. Nat. Med. 2015, 21, 846–853.

[28]

Porru, M.; Pompili, L.; Caruso, C.; Biroccio, A.; Leonetti, C. Targeting KRAS in metastatic colorectal cancer: Current strategies and emerging opportunities. J. Exp. Clin. Cancer Res. 2018, 37, 57.

[29]

Papalexi, E.; Mimitou, E. P.; Butler, A. W.; Foster, S.; Bracken, B.; Mauck III, W. M.; Wessels, H. H.; Hao, Y. H.; Yeung, B. Z.; Smibert, P. et al. Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens. Nat. Genet. 2021, 53, 322–331.

[30]

Bai, R. L.; Chen, N. F.; Li, L. Y.; Du, N. W.; Bai, L.; Lv, Z.; Tian, H. M.; Cui, J. W. Mechanisms of cancer resistance to immunotherapy. Front. Oncol. 2020, 10, 1290.

[31]

Tie, Y.; Tang, F.; Wei, Y. Q.; Wei, X. W. Immunosuppressive cells in cancer: Mechanisms and potential therapeutic targets. J. Hematol. Oncol. 2022, 15, 61.

[32]

Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 2020, 11, 3801.

[33]

Marei, H. E.; Hasan, A.; Pozzoli, G.; Cenciarelli, C. Cancer immunotherapy with immune checkpoint inhibitors (ICIs): Potential, mechanisms of resistance, and strategies for reinvigorating T cell responsiveness when resistance is acquired. Cancer Cell Int. 2023, 23, 64.

[34]
Sterner, R. C.; Sterner, R. M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021 , 11, 69.
[35]

Mikkilineni, L.; Kochenderfer, J. N. CAR T cell therapies for patients with multiple myeloma. Nat. Rev. Clin. Oncol. 2021, 18, 71–84.

[36]

Nair, R.; Westin, J. CAR T-cells. Adv. Exp. Med. Biol. 2020, 1244, 215–233.

[37]

Wang, C. G.; Zhang, R.; Wei, X. M.; Lv, M. Z.; Jiang, Z. F. Metalloimmunology: The metal ion-controlled immunity. Adv. Immunol. 2020, 145, 187–241.

[38]

Gao, H.; Dai, W.; Zhao, L.; Min, J. X.; Wang, F. D. The role of zinc and zinc homeostasis in macrophage function. J. Immunol. Res. 2018, 2018, 6872621.

[39]

Haase, H.; Rink, L. Zinc signals and immune function. Biofactors 2014, 40, 27–40.

[40]

Kitamura, H.; Morikawa, H.; Kamon, H.; Iguchi, M.; Hojyo, S.; Fukada, T.; Yamashita, S.; Kaisho, T.; Akira, S.; Murakami, M. et al. Toll-like receptor-mediated regulation of zinc homeostasis influences dendritic cell function. Nat. Immunol. 2006, 7, 971–977.

[41]

Yu, M. C.; Lee, W. W.; Tomar, D.; Pryshchep, S.; Czesnikiewicz-Guzik, M.; Lamar, D. L.; Li, G. J.; Singh, K.; Tian, L.; Weyand, C. M. et al. Regulation of T cell receptor signaling by activation-induced zinc influx. J. Exp. Med. 2011, 208, 775–785.

[42]

Du, M. J.; Chen, Z. J. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 2018 , 361, 704–709.

[43]

Fetherolf, M. M.; Boyd, S. D.; Taylor, A. B.; Kim, H. J.; Wohlschlegel, J. A.; Blackburn, N. J.; Hart, P. J.; Winge, D. R.; Winkler, D. D. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site. J. Biol. Chem. 2017, 292, 12025–12040.

[44]

Lötscher, J.; Martí i Líndez, A. A.; Kirchhammer, N.; Cribioli, E.; Giordano Attianese, G. M. P.; Trefny, M. P.; Lenz, M.; Rothschild, S. I.; Strati, P.; Künzli, M. et al. Magnesium sensing via LFA-1 regulates CD8+ T cell effector function. Cell 2022, 185, 585–602.e29.

[45]

Zanzen, U.; Bovenkamp-Langlois, L.; Klysubun, W.; Hormes, J.; Prange, A. The interaction of copper ions with Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli: An X-ray absorption near-edge structure (XANES) spectroscopy study. Arch. Microbiol. 2018, 200, 401–412.

[46]

Solier, S.; Müller, S.; Cañeque, T.; Versini, A.; Mansart, A.; Sindikubwabo, F.; Baron, L.; Emam, L.; Gestraud, P.; Pantoș, G. D. et al. A druggable copper-signalling pathway that drives inflammation. Nature 2023, 617, 386–394.

[47]

Chen, L. Y.; Min, J. X.; Wang, F. D. Copper homeostasis and cuproptosis in health and disease. Sig. Transduct. Target. Ther. 2022, 7, 378.

[48]

Bogdan, A. R.; Miyazawa, M.; Hashimoto, K.; Tsuji, Y. Regulators of iron homeostasis: New players in metabolism, cell death, and disease. Trends Biochem. Sci. 2016, 41, 274–286.

[49]

Lill, R.; Freibert, S. A. Mechanisms of mitochondrial iron-sulfur protein biogenesis. Annu. Rev. Biochem. 2020, 89, 471–499.

[50]

Ye, Y. Q.; Kuang, X. W.; Xie, Z. Z.; Liang, L.; Zhang, Z.; Zhang, Y. C.; Ma, F. Y.; Gao, Q.; Chang, R. M.; Lee, H. H. et al. Small-molecule MMP2/MMP9 inhibitor SB-3CT modulates tumor immune surveillance by regulating PD-L1. Genome Med. 2020, 12, 83.

[51]

Venkataramani, V. Iron homeostasis and metabolism: Two sides of a coin. Adv. Exp. Med. Biol. 2021, 1301, 25–40.

[52]

Blatt, J.; Stitely, S. Antineuroblastoma activity of desferoxamine in human cell lines. Cancer Res. 1987, 47, 1749–1750.

[53]

Reddel, R. R.; Hedley, D. W.; Sutherland, R. L. Cell cycle effects of iron depletion on T-47D human breast cancer cells. Exp. Cell Res. 1985, 161, 277–284.

[54]

Lui, G. Y. L.; Obeidy, P.; Ford, S. J.; Tselepis, C.; Sharp, D. M.; Jansson, P. J.; Kalinowski, D. S.; Kovacevic, Z.; Lovejoy, D. B.; Richardson, D. R. The iron chelator, deferasirox, as a novel strategy for cancer treatment: Oral activity against human lung tumor xenografts and molecular mechanism of action. Mol. Pharmacol. 2013, 83, 179–190.

[55]

Albalawi, F.; Hussein, M. Z.; Fakurazi, S.; Masarudin, M. J. Engineered nanomaterials: The challenges and opportunities for nanomedicines. Int. J. Nanomedicine 2021, 16, 161–184.

[56]

Maine, E.; Thomas, V. J.; Bliemel, M.; Murira, A.; Utterback, J. The emergence of the nanobiotechnology industry. Nat. Nanotechnol. 2014, 9, 2–5.

[57]

Hajipour, M. J.; Saei, A. A.; Walker, E. D.; Conley, B.; Omidi, Y.; Lee, K. B.; Mahmoudi, M. Nanotechnology for targeted detection and removal of bacteria: Opportunities and challenges. Adv. Sci. 2021, 8, 2100556.

[58]

Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach. Nat. Rev. Drug Discov. 2009, 8, 579–591.

[59]

Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

[60]

Wilczewska, A. Z.; Niemirowicz, K.; Markiewicz, K. H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012, 64, 1020–1037.

[61]

Kumar, P.; Yadav, A.; Patel, S. N.; Islam, M.; Pan, Q.; Merajver, S. D.; Teknos, T. N. Tetrathiomolybdate inhibits head and neck cancer metastasis by decreasing tumor cell motility, invasiveness and by promoting tumor cell anoikis. Mol. Cancer 2010, 9, 206.

[62]

Yoshii, J.; Yoshiji, H.; Kuriyama, S.; Ikenaka, Y.; Noguchi, R.; Okuda, H.; Tsujinoue, H.; Nakatani, T.; Kishida, H.; Nakae, D. et al. The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells. Int. J. Cancer 2001, 94, 768–773.

[63]

Fu, S. Q.; Naing, A.; Fu, C.; Kuo, M. T.; Kurzrock, R. Overcoming platinum resistance through the use of a copper-lowering agent. Mol. Cancer Ther. 2012, 11, 1221–1225.

[64]

Cui, L. Y.; Gouw, A. M.; LaGory, E. L.; Guo, S. H.; Attarwala, N.; Tang, Y.; Qi, J.; Chen, Y. S.; Gao, Z.; Casey, K. M. et al. Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nat. Biotechnol. 2021, 39, 357–367.

[65]

Lowndes, S. A.; Adams, A.; Timms, A.; Fisher, N.; Smythe, J.; Watt, S. M.; Joel, S.; Donate, F.; Hayward, C.; Reich, S. et al. Phase I study of copper-binding agent ATN-224 in patients with advanced solid tumors. Clin. Cancer Res. 2008, 14, 7526–7534.

[66]

Sandoval-Acuña, C.; Torrealba, N.; Tomkova, V.; Jadhav, S. B.; Blazkova, K.; Merta, L.; Lettlova, S.; Adamcová, M. K.; Rosel, D.; Brábek, J. et al. Targeting mitochondrial iron metabolism suppresses tumor growth and metastasis by inducing mitochondrial dysfunction and mitophagy. Cancer Res. 2021, 81, 2289–2303.

[67]

Ford, S. J.; Obeidy, P.; Lovejoy, D. B.; Bedford, M.; Nichols, L.; Chadwick, C.; Tucker, O.; Lui, G. Y. L.; Kalinowski, D. S.; Jansson, P. J. et al. Deferasirox (ICL670A) effectively inhibits oesophageal cancer growth in vitro and in vivo. Br. J. Pharmacol. 2013, 168, 1316–1328.

[68]

Dixon, K. M.; Lui, G. Y. L.; Kovacevic, Z.; Zhang, D.; Yao, M.; Chen, Z.; Dong, Q.; Assinder, S. J.; Richardson, D. R. Dp44mT targets the AKT, TGF- β and ERK pathways via the metastasis suppressor NDRG1 in normal prostate epithelial cells and prostate cancer cells. Br. J. Cancer 2013, 108, 409–419.

[69]

Stuart, C. H.; Singh, R.; Smith, T. L.; D'Agostino, R. Jr.; Caudell, D.; Balaji, K. C.; Gmeiner, W. H. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn2+ chelator TPEN inducing oxidative stress in prostate cancer cells. Nanomedicine 2016 , 11, 1207–1222.

[70]

Koppenol, W. H.; Hider, R. H. Iron and redox cycling. Do's and don'ts. Free Radic. Biol. Med. 2019, 133, 3–10.

[71]

Muckenthaler, M. U.; Rivella, S.; Hentze, M. W.; Galy, B. A red carpet for iron metabolism. Cell 2017, 168, 344–361.

[72]

Ganz, T. Iron and infection. Int. J. Hematol. 2018, 107, 7–15.

[73]

Camaschella, C. Iron deficiency: New insights into diagnosis and treatment. Hematology 2015, 2015, 8–13.

[74]

Aisen, P.; Enns, C.; Wessling-Resnick, M. Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol. 2001, 33, 940–959.

[75]

Koskenkorva-Frank, T. S.; Weiss, G.; Koppenol, W. H.; Burckhardt, S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: Insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic. Biol. Med. 2013, 65, 1174–1194.

[76]

Yuan, H.; Han, Z.; Chen, Y. C.; Qi, F.; Fang, H. B.; Guo, Z. J.; Zhang, S. R.; He, W. J. Ferroptosis photoinduced by new cyclometalated iridium(III) complexes and its synergism with apoptosis in tumor cell inhibition. Angew. Chem., Int. Ed. 2021, 60, 8174–8181.

[77]

Ni, S.; Yuan, Y.; Kuang, Y. B.; Li, X. L. Iron metabolism and immune regulation. Front. Immunol. 2022, 13, 816282.

[78]

Dixon, S. J.; Lemberg, K. M.; Lamprecht, M. R.; Skouta, R.; Zaitsev, E. M.; Gleason, C. E.; Patel, D. N.; Bauer, A. J.; Cantley, A. M.; Yang, W. S. et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072.

[79]

Wen, Q. R.; Liu, J.; Kang, R.; Zhou, B. R.; Tang, D. L. The release and activity of HMGB1 in ferroptosis. Biochem. Biophys. Res. Commun. 2019, 510, 278–283.

[80]

Dai, E. Y.; Han, L.; Liu, J.; Xie, Y. C.; Kroemer, G.; Klionsky, D. J.; Zeh, H. J.; Kang, R.; Wang, J.; Tang, D. L. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy 2020, 16, 2069–2083.

[81]

Dai, E. Y.; Han, L.; Liu, J.; Xie, Y. C.; Zeh, H. J.; Kang, R.; Bai, L. L.; Tang, D. L. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat. Commun. 2020, 11, 6339.

[82]

Lei, G.; Zhuang, L.; Gan, B. Y. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer 2022, 22, 381–396.

[83]

Wang, W. M.; Green, M.; Choi, J. E.; Gijón, M.; Kennedy, P. D.; Johnson, J. K.; Liao, P.; Lang, X. T.; Kryczek, I.; Sell, A. et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 2019 , 569, 270–274.

[84]

Sato, H.; Fujiwara, K.; Sagara, J.; Bannai, S. Induction of cystine transport activity in mouse peritoneal macrophages by bacterial lipopolysaccharide. Biochem. J. 1995, 310, 547–551.

[85]

Chasapis, C. T.; Ntoupa, P. S. A.; Spiliopoulou, C. A.; Stefanidou, M. E. Recent aspects of the effects of zinc on human health. Arch. Toxicol. 2020, 94, 1443–1460.

[86]

Malemud, C. J. Matrix metalloproteinases (MMPs) in health and disease: An overview. Front. Biosci. 2006, 11, 1696–1701.

[87]

Marchant, D. J.; Bellac, C. L.; Moraes, T. J.; Wadsworth, S. J.; Dufour, A.; Butler, G. S.; Bilawchuk, L. M.; Hendry, R. G.; Robertson, A. G.; Cheung, C. T. et al. A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity. Nat. Med. 2014, 20, 493–502.

[88]

He, M. K.; Le, Y.; Zhang, Y. F.; Ouyang, H. Y.; Jian, P. E.; Yu, Z. S.; Wang, L. J.; Shi, M. Matrix metalloproteinase 12 expression is associated with tumor FOXP3+ regulatory T cell infiltration and poor prognosis in hepatocellular carcinoma. Oncol. Lett. 2018, 16, 475–482.

[89]

Düsterhöft, S.; Lokau, J.; Garbers, C. The metalloprotease ADAM17 in inflammation and cancer. Pathol. -Res. Pract. 2019, 215, 152410.

[90]

Wang, K.; Xuan, Z. X.; Liu, X. Y.; Zheng, M. L.; Yang, C.; Wang, H. Y. Immunomodulatory role of metalloproteinase ADAM17 in tumor development. Front. Immunol. 2022, 13, 1059376.

[91]

Bonaventura, P.; Benedetti, G.; Albarède, F.; Miossec, P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015, 14, 277–285.

[92]

Tuerk, M. J.; Fazel, N. Zinc deficiency. Curr. Opin. Gastroenterol. 2009, 25, 136–143.

[93]

Wessels, I.; Haase, H.; Engelhardt, G.; Rink, L.; Uciechowski, P. Zinc deficiency induces production of the proinflammatory cytokines IL-1β and TNFα in promyeloid cells via epigenetic and redox-dependent mechanisms. J. Nutr. Biochem. 2013, 24, 289–297.

[94]

Knutson, K. L.; Disis, M. L. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol., Immunother. 2005, 54, 721–728.

[95]

Kitabayashi, C.; Fukada, T.; Kanamoto, M.; Ohashi, W.; Hojyo, S.; Atsumi, T.; Ueda, N.; Azuma, I.; Hirota, H.; Murakami, M. et al. Zinc suppresses Th17 development via inhibition of STAT3 activation. Int. Immunol. 2010, 22, 375–386.

[96]

Prasad, A. S. Effects of zinc deficiency on Th1 and Th2 cytokine shifts. J. Infect. Dis. 2000, 182, S62–S68.

[97]

Sandstead, H. H.; Prasad, A. S.; Penland, J. G.; Beck, F. W. J.; Kaplan, J.; Egger, N. G.; Alcock, N. W.; Carroll, R. M.; Ramanujam, V. M. S.; Dayal, H. H. et al. Zinc deficiency in Mexican American children: Influence of zinc and other micronutrients on T cells, cytokines, and antiinflammatory plasma proteins. Am. J. Clin. Nutr. 2008, 88, 1067–1073.

[98]

Haase, H.; Rink, L. The immune system and the impact of zinc during aging. Immun. Ageing 2009, 6, 9.

[99]

Baltaci, S. B.; Mogulkoc, R.; Baltaci, A. K.; Emsen, A.; Artac, H. The effect of zinc and melatonin supplementation on immunity parameters in breast cancer induced by DMBA in rats. Arch. Physiol. Biochem. 2018, 124, 247–252.

[100]

Yang, K. T.; Han, W. B.; Jiang, X. M.; Piffko, A.; Bugno, J.; Han, C. H.; Li, S. R.; Liang, H.; Xu, Z. W.; Zheng, W. X. et al. Zinc cyclic di-AMP nanoparticles target and suppress tumours via endothelial STING activation and tumour-associated macrophage reinvigoration. Nat. Nanotechnol. 2022, 17, 1322–1331.

[101]

Olivares, M.; Uauy, R. Copper as an essential nutrient. Am. J. Clin. Nutr. 1996, 63, 791s–796s.

[102]

Turnlund, J. R.; Keyes, W. R.; Anderson, H. L.; Acord, L. L. Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am. J. Clin. Nutr. 1989, 49, 870–878.

[103]

Kim, B. E.; Nevitt, T.; Thiele, D. J. Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol. 2008, 4, 176–185.

[104]

Lutsenko, S. Human copper homeostasis: A network of interconnected pathways. Curr. Opin. Chem. Biol. 2010, 14, 211–217.

[105]

Kaiafa, G. D.; Saouli, Z.; Diamantidis, M. D.; Kontoninas, Z.; Voulgaridou, V.; Raptaki, M.; Arampatzi, S.; Chatzidimitriou, M.; Perifanis, V. Copper levels in patients with hematological malignancies. Eur. J. Intern. Med. 2012, 23, 738–741.

[106]

Lowndes, S. A.; Harris, A. L. The role of copper in tumour angiogenesis. J. Mammary Gland Biol. Neoplasia 2005, 10, 299–310.

[107]

Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R. D. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022, 375, 1254–1261.

[108]

Rowland, E. A.; Snowden, C. K.; Cristea, I. M. Protein lipoylation: An evolutionarily conserved metabolic regulator of health and disease. Curr. Opin. Chem. Biol. 2018, 42, 76–85.

[109]

Antoniades, V.; Sioga, A.; Dietrich, E. M.; Meditskou, S.; Ekonomou, L.; Antoniades, K. Is copper chelation an effective anti-angiogenic strategy for cancer treatment. Med. Hypotheses 2013, 81, 1159–1163.

[110]

Wang, Q. B.; Jing, Z. Y.; Hu, X. M.; Lu, W. X.; Wang, P. Synthesis, structure, and heterogeneous Fenton reaction of new Cu(II)-based discrete Cu2L x coordination complexes. CrystEngComm 2021, 23, 216–220.

[111]

Li, H. M.; Liu, Y. F.; Li, S. L.; Zhang, S. L.; Huang, B.; Cui, R.; Liu, Y.; Jiang, P. Cu-Doped black phosphorus quantum dots as multifunctional Fenton nanocatalyst for boosting synergistically enhanced H2O2-guided and photothermal chemodynamic cancer therapy. Nanoscale 2022, 14, 3788–3800.

[112]

Tong, K. K.; Hannigan, B. M.; McKerr, G.; Strain, J. J. The effects of copper deficiency on human lymphoid and myeloid cells: An in vitro model. Br. J. Nutr. 1996, 75, 97–108.

[113]

Muñoz, C.; López, M.; Olivares, M.; Pizarro, F.; Arredondo, M.; Araya, M. Differential response of interleukin-2 production to chronic copper supplementation in healthy humans. Eur. Cytokine Netw. 2005, 16, 261–265.

[114]

Voli, F.; Valli, E.; Lerra, L.; Kimpton, K.; Saletta, F.; Giorgi, F. M.; Mercatelli, D.; Rouaen, J. R. C.; Shen, S.; Murray, J. E. et al. Intratumoral Copper modulates PD-L1 expression and influences tumor immune evasion. Cancer Res. 2020, 80, 4129–4144.

[115]

Horning, K. J.; Caito, S. W.; Tipps, K. G.; Bowman, A. B.; Aschner, M. Manganese is essential for neuronal health. Annu. Rev. Nutr. 2015, 35, 71–108.

[116]

Yang, G. B.; Ji, J. S.; Liu, Z. Multifunctional MnO2 nanoparticles for tumor microenvironment modulation and cancer therapy. WIREs Nanomed. Nanobiotechnol. 2021, 13, e1720.

[117]

Sun, Z. L.; Wang, Z. Y.; Wang, T.; Wang, J. J.; Zhang, H. T.; Li, Z. Y.; Wang, S. R.; Sheng, F. G.; Yu, J.; Hou, Y. L. Biodegradable MnO-based nanoparticles with engineering surface for tumor therapy: Simultaneous Fenton-like ion delivery and immune activation. ACS Nano 2022, 16, 11862–11875.

[118]

Hou, L.; Tian, C. Y.; Yan, Y. S.; Zhang, L. W.; Zhang, H. J.; Zhang, Z. Z. Manganese-based nanoactivator optimizes cancer immunotherapy via enhancing innate immunity. ACS Nano 2020, 14, 3927–3940.

[119]

Curtsinger, J. M.; Lins, D. C.; Mescher, M. F. CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells to (CD44low, Ly-6C-) to TCR/CD8 signaling in response to antigen. J. Immunol. 1998 , 160, 3236–3243.

[120]

Yang, G. B.; Xu, L. G.; Chao, Y.; Xu, J.; Sun, X. Q.; Wu, Y. F.; Peng, R.; Liu, Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 2017, 8, 902.

[121]

Schürpf, T.; Springer, T. A. Regulation of integrin affinity on cell surfaces. EMBO J. 2011, 30, 4712–4727.

[122]

Oyanagi, K.; Kawakami, E.; Kikuchi-Horie, K.; Ohara, K.; Ogata, K.; Takahama, S.; Wada, M.; Kihira, T.; Yasui, M. Magnesium deficiency over generations in rats with special references to the pathogenesis of the Parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. Neuropathology 2006, 26, 115–128.

[123]

Komiya, Y.; Su, L. T.; Chen, H. C.; Habas, R.; Runnels, L. W. Magnesium and embryonic development. Magnes. Res. 2014, 27, 1–8.

[124]

Romani, A. M. P. Cellular magnesium homeostasis. Arch. Biochem. Biophys. 2011, 512, 1–23.

[125]

Wolf, F. I.; Trapani, V. Cell (patho)physiology of magnesium. Clin. Sci. 2008, 114, 27–35.

[126]

de Baaij, J. H. F.; Hoenderop, J. G. J.; Bindels, R. J. M. Magnesium in man: Implications for health and disease. Physiol. Rev. 2015, 95, 1–46.

[127]

Qu, X. H.; Jin, F. C.; Hao, Y. Q.; Li, H. W.; Tang, T. T.; Wang, H.; Yan, W. L.; Dai, K. R. Magnesium and the risk of cardiovascular events: A meta-analysis of prospective cohort studies. PLoS One 2013, 8, e57720.

[128]

Costello, R. B.; Nielsen, F. Interpreting magnesium status to enhance clinical care: Key indicators. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 504–511.

[129]

Larsson, S. C.; Orsini, N.; Wolk, A. Dietary magnesium intake and risk of stroke: A meta-analysis of prospective studies. Am. J. Clin. Nutr. 2012, 95, 362–366.

[130]

Sakaguchi, Y.; Fujii, N.; Shoji, T.; Hayashi, T.; Rakugi, H.; Isaka, Y. Hypomagnesemia is a significant predictor of cardiovascular and non-cardiovascular mortality in patients undergoing hemodialysis. Kidney Int. 2014, 85, 174–181.

[131]

Schulze, M. B.; Schulz, M.; Heidemann, C.; Schienkiewitz, A.; Hoffmann, K.; Boeing, H. Fiber and magnesium intake and incidence of type 2 diabetes: A prospective study and meta-analysis. Arch. Intern. Med. 2007, 167, 956–965.

[132]

Nasulewicz, A.; Wietrzyk, J.; Wolf, F. I.; Dzimira, S.; Madej, J.; Maier, J. A. M.; Rayssiguier, Y.; Mazur, A.; Opolski, A. Magnesium deficiency inhibits primary tumor growth but favors metastasis in mice. Biochim. Biophys. Acta (BBA)- Mol. Basis Dis. 2004, 1739, 26–32.

[133]

Kanellopoulou, C.; George, A. B.; Masutani, E.; Cannons, J. L.; Ravell, J. C.; Yamamoto, T. N.; Smelkinson, M. G.; Jiang, P. D.; Matsuda-Lennikov, M.; Reilley, J. et al. Mg2+ regulation of kinase signaling and immune function. J. Exp. Med. 2019, 216, 1828–1842.

[134]

Mazur, A.; Maier, J. A. M.; Rock, E.; Gueux, E.; Nowacki, W.; Rayssiguier, Y. Magnesium and the inflammatory response: Potential physiopathological implications. Arch. Biochem. Biophys. 2007, 458, 48–56.

[135]

Li, D.; Molldrem, J. J.; Ma, Q. LFA-1 regulates CD8+ T cell activation via T cell receptor-mediated and LFA-1-mediated Erk1/2 signal pathways. J. Biol. Chem. 2009, 284, 21001–21010.

[136]
Gérard, A.; Cope, A. P.; Kemper, C.; Alon, R.; Köchl, R. LFA-1 in T cell priming, differentiation, and effector functions. Trends Immunol. 2021 , 42, 706–722.
[137]

Kiyoi, H.; Morris, J. D.; Oh, I.; Maeda, Y.; Minami, H.; Miyamoto, T.; Sakura, T.; Iida, H.; Tuglus, C. A.; Chen, Y. Q. et al. Phase 1b/2 study of blinatumomab in Japanese adults with relapsed/refractory acute lymphoblastic leukemia. Cancer Sci. 2020, 111, 1314–1323.

[138]

Abramson, J. S.; Palomba, M. L.; Gordon, L. I.; Lunning, M. A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D. G.; Andreadis, C. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020, 396, 839–852.

[139]

Locke, F. L.; Ghobadi, A.; Jacobson, C. A.; Miklos, D. B.; Lekakis, L. J.; Oluwole, O. O.; Lin, Y.; Braunschweig, I.; Hill, B. T.; Timmerman, J. M. et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019, 20, 31–42.

[140]

Carafoli, E. Calcium signaling: A tale for all seasons. Proc. Natl. Acad. Sci. USA 2002, 99, 1115–1122.

[141]

Sarode, G. S.; Sarode, S. C.; Patil, S. Multifaceted role of calcium in cancer. J. Contemp. Dent. Pract. 2017, 18, 1–2.

[142]

Vig, M.; Kinet, J. P. Calcium signaling in immune cells. Nat. Immunol. 2009, 10, 21–27.

[143]

Chen, J. Q.; Yao, Y. D.; Gong, C.; Yu, F. Y.; Su, S. C.; Chen, J. N.; Liu, B. D.; Deng, H.; Wang, F. S.; Lin, L. et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 2011 , 19, 541–555.

[144]

Raghavan, M.; Wijeyesakere, S. J.; Peters, L. R.; Del Cid, N. Calreticulin in the immune system: Ins and outs. Trends Immunol 2013, 34, 13–21.

[145]

Murakami, T.; Ockinger, J.; Yu, J. J.; Byles, V.; McColl, A.; Hofer, A. M.; Horng, T. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl. Acad. Sci. USA 2012, 109, 11282–11287.

[146]

Sharma, B. R.; Kanneganti, T. D. NLRP3 inflammasome in cancer and metabolic diseases. Nat. Immunol. 2021 , 22, 550–559.

[147]

Gong, N. Q.; Zhang, Y. X.; Teng, X. C.; Wang, Y. C.; Huo, S. D.; Qing, G.; Ni, Q. K.; Li, X. L.; Wang, J. J.; Ye, X. X. et al. Proton-driven transformable nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 2020, 15, 1053–1064.

[148]

Yarbro, C. H. Carboplatin: A clinical review. Semin. Oncol. Nurs. 1989, 5, 63–69.

[149]

Kouchi, Y.; Maeda, Y.; Ohuchida, A.; Ohsawa, M. Immunotoxic effect of low dose cisplatin in mice. J. Toxicol. Sci. 1996, 21, 227–233.

[150]

Fournel, L.; Wu, Z. R.; Stadler, N.; Damotte, D.; Lococo, F.; Boulle, G.; Ségal-Bendirdjian, E.; Bobbio, A.; Icard, P.; Trédaniel, J. et al. Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer. Cancer Lett. 2019, 464, 5–14.

[151]

Stein, A.; Arnold, D. Oxaliplatin: A review of approved uses. Expert Opin. Pharmacother. 2012, 13, 125–137.

[152]

Wheate, N. J.; Walker, S.; Craig, G. E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010, 39, 8113–8127.

[153]

Galanski, M. S.; Jakupec, M. A.; Keppler, B. K. Update of the preclinical situation of anticancer platinum complexes: Novel design strategies and innovative analytical approaches. Curr. Med. Chem. 2005, 12, 2075–2094.

[154]

Fine, J. H.; Chen, P.; Mesci, A.; Allan, D. S. J.; Gasser, S.; Raulet, D. H.; Carlyle, J. R. Chemotherapy-induced genotoxic stress promotes sensitivity to natural killer cell cytotoxicity by enabling missing-self recognition. Cancer Res. 2010, 70, 7102–7113.

[155]

Markasz, L.; Skribek, H.; Uhlin, M.; Otvos, R.; Flaberg, E.; Eksborg, S.; Olah, E.; Stuber, G.; Szekely, L. Effect of frequently used chemotherapeutic drugs on cytotoxic activity of human cytotoxic T-lymphocytes. J. Immunother. 2008, 31, 283–293.

[156]

Zhang, Z.; Tsai, P. C.; Ramezanli, T.; Michniak-Kohn, B. B. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. WIREs Nanomed. Nanobiotechnol. 2013, 5, 205–218.

[157]

Freimann, K.; Arukuusk, P.; Kurrikoff, K.; Pärnaste, L.; Raid, R.; Piirsoo, A.; Pooga, M.; Langel, Ü. Formulation of stable and homogeneous cell-penetrating peptide nf55 nanoparticles for efficient gene delivery in vivo. Mol. Ther. Nucleic Acids. 2018, 10, 28–35.

[158]

Lang, J. Y.; Zhao, X.; Wang, X. C.; Zhao, Y.; Li, Y. Y.; Zhao, R. F.; Cheng, K. M.; Li, Y.; Han, X. X.; Zheng, X. W. et al. Targeted Co-delivery of the iron chelator deferoxamine and a HIF1α inhibitor impairs pancreatic tumor growth. ACS Nano 2019, 13, 2176–2189.

[159]

Hao, S. H.; Yu, J.; He, W. M.; Huang, Q.; Zhao, Y.; Liang, B. S.; Zhang, S. Y.; Wen, Z. W.; Dong, S. M.; Rao, J. J. et al. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia 2017, 19, 1022–1032.

[160]

Li, K.; Xu, K.; He, Y.; Yang, Y. L.; Tan, M. J.; Mao, Y. L.; Zou, Y. N.; Feng, Q.; Luo, Z.; Cai, K. Y. Oxygen self-generating nanoreactor mediated ferroptosis activation and immunotherapy in triple-negative breast cancer. ACS Nano 2023, 17, 4667–4687.

[161]

Ding, F. X.; Li, F.; Tang, D. S.; Wang, B.; Liu, J. Y.; Mao, X. Y.; Yin, J. Y.; Xiao, H. H.; Wang, J.; Liu, Z. Q. Restoration of the immunogenicity of tumor cells for enhanced cancer therapy via nanoparticle-mediated copper chaperone inhibition. Angew. Chem., Int. Ed. 2022, 61, e202203546.

[162]

Lei, L. L.; Dong, Z.; Xu, L.; Yang, F. R.; Yin, B. L.; Wang, Y. J.; Yue, R. Y.; Guan, G. Q.; Xu, J. T.; Song, G. S. et al. Metal-fluorouracil networks with disruption of mitochondrion enhanced ferroptosis for synergistic immune activation. Theranostics 2022, 12, 6207–6222.

[163]

Cen, D.; Ge, Q. W.; Xie, C. K.; Zheng, Q.; Guo, J. S.; Zhang, Y. Q.; Wang, Y. F.; Li, X.; Gu, Z.; Cai, X. J. ZnS@BSA nanoclusters potentiate efficacy of cancer immunotherapy. Adv. Mater. 2021, 33, 2104037.

[164]

Zhang, L. X.; Zhao, J.; Hu, X.; Wang, C. H.; Jia, Y. B.; Zhu, C. J.; Xie, S. Z.; Lee, J.; Li, F. Y.; Ling, D. S. A peritumorally injected immunomodulating adjuvant elicits robust and safe metalloimmunotherapy against solid tumors. Adv. Mater. 2022, 34, 2206915.

[165]

Zheng, C. X.; Song, Q. L.; Zhao, H. J.; Kong, Y. Y.; Sun, L. L.; Liu, X. X.; Feng, Q. H.; Wang, L. A nanoplatform to boost multi-phases of cancer-immunity-cycle for enhancing immunotherapy. J. Controlled Release 2021, 339, 403–415.

[166]

Sun, X. Q.; Zhang, Y.; Li, J. Q.; Park, K. S.; Han, K.; Zhou, X. W.; Xu, Y.; Nam, J.; Xu, J.; Shi, X. Y. et al. Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nat. Nanotechnol. 2021, 16, 1260–1270.

[167]

Li, Y. H.; Gong, S. H.; Pan, W.; Chen, Y. Y.; Liu, B.; Li, N.; Tang, B. A tumor acidity activatable and Ca2+-assisted immuno-nanoagent enhances breast cancer therapy and suppresses cancer recurrence. Chem. Sci. 2020, 11, 7429–7437.

[168]

Hallaway, P. E.; Eaton, J. W.; Panter, S. S.; Hedlund, B. E. Modulation of deferoxamine toxicity and clearance by covalent attachment to biocompatible polymers. Proc. Natl. Acad. Sci. USA 1989, 86, 10108–10112.

[169]

Hershko, C. Oral iron chelators: New opportunities and new dilemmas. Haematologica 2006, 91, 1307–1312.

[170]

Sang, Y. J.; Deng, Q. Q.; Cao, F. F.; Liu, Z. W.; You, Y. W.; Liu, H.; Ren, J. S.; Qu, X. G. Remodeling macrophages by an iron nanotrap for tumor growth suppression. ACS Nano 2021, 15, 19298–19309.

[171]

Li, S. X.; Chen, D. J.; Zheng, F. Y.; Zhou, H. F.; Jiang, S. X.; Wu, Y. J. Water-soluble and lowly toxic sulphur quantum dots. Adv. Funct. Mater. 2014, 24, 7133–7138.

[172]

Jung, M.; Mertens, C.; Brüne, B. Macrophage iron homeostasis and polarization in the context of cancer. Immunobiology 2015, 220, 295–304.

[173]

Trujillo-Alonso, V.; Pratt, E. C.; Zong, H. L.; Lara-Martinez, A.; Kaittanis, C.; Rabie, M. O.; Longo, V.; Becker, M. W.; Roboz, G. J.; Grimm, J. et al. FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels. Nat. Nanotechnol. 2019 , 14, 616–622.

[174]

Wang, Y. Y.; Shi, G. W.; Shi, S. F.; Yao, J.; Yu, R.; Ren, Y. Everolimus accelerates Erastin and RSL3-induced ferroptosis in renal cell carcinoma. Gene 2022, 809, 145992.

[175]

Yang, W. S.; SriRamaratnam, R.; Welsch, M. E.; Shimada, K.; Skouta, R.; Viswanathan, V. S.; Cheah, J. H.; Clemons, P. A.; Shamji, A. F.; Clish, C. B. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331.

[176]

Sato, M.; Kusumi, R.; Hamashima, S.; Kobayashi, S.; Sasaki, S.; Komiyama, Y.; Izumikawa, T.; Conrad, M.; Bannai, S.; Sato, H. The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells. Sci. Rep. 2018, 8, 968.

[177]
Christenson, J. L.; Butterfield, K. T.; Spoelstra, N. S.; Norris, J. D.; Josan, J. S.; Pollock, J. A.; McDonnell, D. P.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A.; Richer, J. K. MMTV-PyMT and derived Met-1 mouse mammary tumor cells as models for studying the role of the androgen receptor in triple-negative breast cancer progression. Horm. Cancer 2017 , 8, 69–77.
[178]

Liu, Z. J.; Li, T.; Han, F.; Wang, Y.; Gan, Y.; Shi, J. H.; Wang, T. R.; Akhtar, M. L.; Li, Y. A cascade-reaction enabled synergistic cancer starvation/ROS-mediated/chemo-therapy with an enzyme modified Fe-based MOF. Biomater. Sci. 2019, 7, 3683–3692.

[179]

Huang, L. H.; Liu, Z. H.; Wu, C. J.; Lin, J. S.; Liu, N. Magnetic nanoparticles enhance the cellular immune response of dendritic cell tumor vaccines by realizing the cytoplasmic delivery of tumor antigens. Bioeng Transl. Med. 2023, 8, e10400.

[180]

Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014 , 5, 3364.

[181]

Tan, M. X.; Chen, Y. L.; Guo, Y.; Yang, C.; Liu, M. Z.; Guo, D.; Wang, Z. G.; Cao, Y.; Ran, H. T. A low-intensity focused ultrasound-assisted nanocomposite for advanced triple cancer therapy: Local chemotherapy, therapeutic extracellular vesicles and combined immunotherapy. Biomater. Sci. 2020, 8, 6703–6717.

[182]

Lacroix, L. M.; Huls, N. F.; Ho, D.; Sun, X. L.; Cheng, K.; Sun, S. H. Stable single-crystalline body centered cubic Fe nanoparticles. Nano Lett. 2011, 11, 1641–1645.

[183]

Liu, Y. Z.; Wu, T.; White, J. C.; Lin, D. H. A new strategy using nanoscale zero-valent iron to simultaneously promote remediation and safe crop production in contaminated soil. Nat. Nanotechnol. 2021, 16, 197–205.

[184]

Ghoochani, A.; Hsu, E. C.; Aslan, M.; Rice, M. A.; Nguyen, H. M.; Brooks, J. D.; Corey, E.; Paulmurugan, R.; Stoyanova, T. Ferroptosis inducers are a novel therapeutic approach for advanced prostate cancer. Cancer Res. 2021, 81, 1583–1594.

[185]

Feng, J.; Lu, P. Z.; Zhu, G. Z.; Hooi, S. C.; Wu, Y.; Huang, X. W.; Dai, H. Q.; Chen, P. H.; Li, Z. J.; Su, W. J. et al. ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma. Acta Pharmacol. Sin. 2021 , 42, 160–170.

[186]

Ishikawa, H.; Ma, Z.; Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009, 461, 788–792.

[187]

Lin, L. S.; Wang, J. F.; Song, J. B.; Liu, Y. J.; Zhu, G. Z.; Dai, Y. L.; Shen, Z. Y.; Tian, R.; Song, J.; Wang, Z. T. et al. Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy. Theranostics 2019, 9, 7200–7209.

[188]

Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G. M.; Apetoh, L.; Perfettini, J. L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007, 13, 54–61.

[189]

Wong, D. Y. Q.; Ong, W. W. F.; Ang, W. H. Induction of immunogenic cell death by chemotherapeutic platinum complexes. Angew. Chem., Int. Ed. 2015, 54, 6483–6487.

[190]

Sriram, G.; Uthappa, U. T.; Losic, D.; Kigga, M.; Jung, H. Y.; Kurkuri, M. D. Mg-Al-layered double hydroxide (LDH) modified diatoms for highly efficient removal of congo red from aqueous solution. Appl. Sci. 2020, 10, 2285.

[191]

Guo, L. L.; He, N. Y.; Zhao, Y. X.; Liu, T. H.; Deng, Y. Autophagy modulated by inorganic nanomaterials. Theranostics 2020, 10, 3206–3222.

[192]

Li, L.; Ng, D. S. W.; Mah, W. C.; Almeida, F. F.; Rahmat, S. A.; Rao, V. K.; Leow, S. C.; Laudisi, F.; Peh, M. T.; Goh, A. M. et al. A unique role for p53 in the regulation of M2 macrophage polarization. Cell Death Differ. 2015, 22, 1081–1093.

[193]

Brewer, G. J.; Dick, R. D.; Johnson, V.; Wang, Y.; Yuzbasiyan-Gurkan, V.; Kluin, K.; Fink, J. K.; Aisen, A. Treatment of Wilson's disease with ammonium tetrathiomolybdate. I. Initial therapy in 17 neurologically affected patients. Arch. Neurol. 1994, 51, 545–554.

[194]

Ishida, S.; Andreux, P.; Poitry-Yamate, C.; Auwerx, J.; Hanahan, D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl. Acad. Sci. USA 2013, 110, 19507–19512.

[195]

Brewer, G. J. The use of copper-lowering therapy with tetrathiomolybdate in medicine. Expert Opin. Investig. Drugs 2009, 18, 89–97.

[196]

Chatterjee, S.; Mookerjee, A.; Basu, J. M.; Chakraborty, P.; Ganguly, A.; Adhikary, A.; Mukhopadhyay, D.; Ganguly, S.; Banerjee, R.; Ashraf, M. et al. A novel copper chelate modulates tumor associated macrophages to promote anti-tumor response of T cells. PLoS One 2009, 4, e7048.

[197]

Mookerjee, A.; Mookerjee Basu, J.; Dutta, P.; Majumder, S.; Bhattacharyya, S.; Biswas, J.; Pal, S.; Mukherjee, P.; Raha, S.; Baral, R. N. et al. Overcoming drug-resistant cancer by a newly developed copper chelate through host-protective cytokine-mediated apoptosis. Clin. Cancer Res. 2006, 12, 4339–4349.

[198]

Chaviara, A. T.; Christidis, P. C.; Papageorgiou, A.; Chrysogelou, E.; Hadjipavlou-Litina, D. J.; Bolos, C. A. In vivo anticancer, anti-inflammatory, and toxicity studies of mixed-ligand Cu(II) complexes of dien and its Schiff dibases with heterocyclic aldehydes and 2-amino-2-thiazoline. Crystal structure of [Cu(dien)(Br)(2a-2tzn)](Br)(H2O). J. Inorg. Biochem. 2005, 99, 2102–2109.

[199]

Wang, J.; Luo, C.; Shan, C. L.; You, Q. C.; Lu, J. Y.; Elf, S.; Zhou, Y.; Wen, Y.; Vinkenborg, J. L.; Fan, J. et al. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nat. Chem. 2015, 7, 968–979.

[200]

Di, D. R.; He, Z. Z.; Sun, Z. Q.; Liu, J. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomed.: Nanotechnol., Biol. Med. 2012, 8, 1233–1241.

[201]

Behzadi, E.; Sarsharzadeh, R.; Nouri, M.; Attar, F.; Akhtari, K.; Shahpasand, K.; Falahati, M. Albumin binding and anticancer effect of magnesium oxide nanoparticles. Int. J. Nanomedicine 2019, 14, 257–270.

[202]

Al-Fahdawi, M. Q.; Rasedee, A.; Al-Doghachi, F. A.; Rosli, R.; Taufiq-Yap, Y. H.; Al-Qubaisi, M. Anticancer palladium-doped magnesia nanoparticles: Synthesis, characterization, and in vitro study. Nanomedicine 2020, 15, 547–561.

[203]

Li, C. S.; Yao, H.; Wang, H. B.; Fang, J. Y.; Xu, J. Repurposing screen identifies Amlodipine as an inducer of PD-L1 degradation and antitumor immunity. Oncogene 2021, 40, 1128–1146.

[204]

Wu, L.; Lin, W. H.; Liao, Q.; Wang, H.; Lin, C.; Tang, L. H.; Lian, W. D.; Chen, Z. T.; Li, K. T.; Xu, L. J. et al. Calcium channel blocker nifedipine suppresses colorectal cancer progression and immune escape by preventing NFAT2 nuclear translocation. Cell Rep. 2020, 33, 108327.

[205]

Bi, Y.; Lv, B. C.; Li, L. L.; Lee, R. J.; Xie, J.; Qiu, Z. D.; Teng, L. S. A liposomal formulation for improving solubility and oral bioavailability of nifedipine. Molecules 2020, 25, 338.

[206]

Wu, L.; Lian, W. D.; Zhao, L. Calcium signaling in cancer progression and therapy. FEBS J. 2021, 288, 6187–6205.

[207]

Park, K. The beginning of the end of the nanomedicine hype. J. Control. Release 2019, 305, 221–222.

[208]

Peña, Q.; Wang, A.; Zaremba, O.; Shi, Y.; Scheeren, H. W.; Metselaar, J. M.; Kiessling, F.; Pallares, R. M.; Wuttke, S.; Lammers, T. Metallodrugs in cancer nanomedicine. Chem. Soc. Rev. 2022, 51, 2544–2582.

[209]

Culver, H. R.; Clegg, J. R.; Peppas, N. A. Analyte-responsive hydrogels: Intelligent materials for biosensing and drug delivery. Acc. Chem. Res. 2018, 51, 2600.

[210]

Li, H. J.; Du, J. Z.; Du, X. J.; Xu, C. F.; Sun, C. Y.; Wang, H. X.; Cao, Z. T.; Yang, X. Z.; Zhu, Y. H.; Nie, S. M. et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl. Acad. Sci. USA 2016, 113, 4164–4169.

[211]

Wang, D. G.; Wang, T. T.; Yu, H. J.; Feng, B.; Zhou, L.; Zhou, F. Y.; Hou, B.; Zhang, H. W.; Luo, M.; Li, Y. P. Engineering nanoparticles to locally activate T cells in the tumor microenvironment. Sci. Immunol. 2019, 4, eaau6584.

[212]

Park, S. J.; Ye, W. D.; Xiao, R.; Silvin, C.; Padget, M.; Hodge, J. W.; Van Waes, C.; Schmitt, N. C. Cisplatin and oxaliplatin induce similar immunogenic changes in preclinical models of head and neck cancer. Oral. Oncol. 2019, 95, 127–135.

[213]

Anthony, E. J.; Bolitho, E. M.; Bridgewater, H. E.; Carter, O. W. L.; Donnelly, J. M.; Imberti, C.; Lant, E. C.; Lermyte, F.; Needham, R. J.; Palau, M. et al. Metallodrugs are unique: Opportunities and challenges of discovery and development. Chem. Sci. 2020, 11, 12888–12917.

[214]

Tellez-Gabriel, M.; Ory, B.; Lamoureux, F.; Heymann, M. F.; Heymann, D. Tumour heterogeneity: The key advantages of single-cell analysis. Int. J. Mol. Sci. 2016, 17, 2142.

[215]

Lewis, S. M.; Asselin-Labat, M. L.; Nguyen, Q.; Berthelet, J.; Tan, X.; Wimmer, V. C.; Merino, D.; Rogers, K. L.; Naik, S. H. Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods 2021, 18, 997–1012.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 June 2023
Revised: 16 September 2023
Accepted: 18 September 2023
Published: 07 November 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (Nos. 2021YFA1201100, and 2022YFA1206100), the National Natural Science Foundation of China (Nos. 32271449, 32201158, and 51773188), CAS Project for Young Scientists in Basic Research (No. YSBR-036), Key Project of Natural Science Foundation of Shandong Province (No. ZR2020KE016), Shandong Provincial Key Research and Development Program (Major Scientific and Technological Innovation Project, No. 2022CXGC010505).

Return