Journal Home > Volume 16 , Issue 11

Despite the ever-increasing demand of nanofillers for thermal enhancement of polymer composites with higher thermal conductivity and irregular geometry, nanomaterials like carbon nanotubes (CNTs) have been constrained by the nonuniform dispersion and difficulty in constructing effective three-dimensional (3D) conduction network with low loading and desired isotropic or anisotropic (specific preferred heat conduction) performances. Herein, we illustrated the in-situ construction of CNT based 3D heat conduction networks with different directional performances. First, to in-situ construct an isotropic percolated conduction network, with spherical cores as support materials, we developed a confined-growth technique for CNT-core sea urchin (CNTSU) materials. With 21.0 wt.% CNTSU loading, the thermal conductivity of composites reached 1.43 ± 0.13 W/(m·K). Secondly, with aligned hexagonal boron nitride (hBN) as an anisotropic support, we constructed CNT-hBN aligned networks by in-situ CNT growth, which improved the utilization efficiency of high density hBN and reduced the thermal interface resistance between matrix and fillers. With ~ 8.5 wt.% loading, the composites possess thermal conductivity up to 0.86 ± 0.14 W/(m·K), 374% of that for neat matrix. Due to the uniformity of CNTs in hBN network, the synergistic thermal enhancement from one-dimensional (1D) + two-dimensional (2D) hybrid materials becomes more distinct. Based on the detailed experimental evidence, the importance of purposeful production of a uniformly interconnected heat conduction 3D network with desired directional performance can be observed, particularly compared with the traditional direct-mixing method. This study opens new possibilities for the preparation of high-power-density electronics packaging and interfacial materials when both directional thermal performance and complex composite geometry are simultaneously required.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced composite thermal conductivity by percolated networks of in-situ confined-grown carbon nanotubes

Show Author's information Xiao Zhang1,2( )Wei Tan2,Tian Carey3,Bo Wen2,3,Delong He4Adrees Arbab3Alex Groombridge2,5Fiona Smail2Jean de La Verpilliere2,5Chengning Yao6Yanchun Wang1Xiaojun Wei1Huaping Liu1Sishen Xie1Felice Torrisi3,6,7Michael De Volder2( )Weiya Zhou1( )Adam Boies2( )
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
Cambridge Graphene Centre, Engineering Department, University of Cambridge, Cambridge CB3 0FA, UK
Université Paris-Saclay, Centrale-Supélec, ENS Paris-Saclay, CNRS, LMPS-Laboratoire de Mécanique Paris-Saclay, 91190, Gif-sur-Yvette, France
Echion Technologies, Cambridge CB22 3FG, UK
Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
Dipartimento di Fisica e Astronomia, Universita' di Catania, Catania 64 95123, Italy
Present address: School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
Present address: School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin D02 E8C0, Ireland
Present address: Jaguar Land Rover, Banbury Road Gaydon, Lighthorne Heath, Warwick CV35 0RR, UK

Abstract

Despite the ever-increasing demand of nanofillers for thermal enhancement of polymer composites with higher thermal conductivity and irregular geometry, nanomaterials like carbon nanotubes (CNTs) have been constrained by the nonuniform dispersion and difficulty in constructing effective three-dimensional (3D) conduction network with low loading and desired isotropic or anisotropic (specific preferred heat conduction) performances. Herein, we illustrated the in-situ construction of CNT based 3D heat conduction networks with different directional performances. First, to in-situ construct an isotropic percolated conduction network, with spherical cores as support materials, we developed a confined-growth technique for CNT-core sea urchin (CNTSU) materials. With 21.0 wt.% CNTSU loading, the thermal conductivity of composites reached 1.43 ± 0.13 W/(m·K). Secondly, with aligned hexagonal boron nitride (hBN) as an anisotropic support, we constructed CNT-hBN aligned networks by in-situ CNT growth, which improved the utilization efficiency of high density hBN and reduced the thermal interface resistance between matrix and fillers. With ~ 8.5 wt.% loading, the composites possess thermal conductivity up to 0.86 ± 0.14 W/(m·K), 374% of that for neat matrix. Due to the uniformity of CNTs in hBN network, the synergistic thermal enhancement from one-dimensional (1D) + two-dimensional (2D) hybrid materials becomes more distinct. Based on the detailed experimental evidence, the importance of purposeful production of a uniformly interconnected heat conduction 3D network with desired directional performance can be observed, particularly compared with the traditional direct-mixing method. This study opens new possibilities for the preparation of high-power-density electronics packaging and interfacial materials when both directional thermal performance and complex composite geometry are simultaneously required.

Keywords: composites, thermal conductivity, carbon nanotubes, hexagonal boron nitride, three-dimensional printing

References(40)

[1]

Pernot, G.; Stoffel, M.; Savic, I.; Pezzoli, F.; Chen, P.; Savelli, G.; Jacquot, A.; Schumann, J.; Denker, U.; Mönch, I. et al. Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat. Mater. 2010, 9, 491–495.

[2]

Li, R.; Yang, X.; Li, J.; Shen, Y.; Zhang, L.; Lu, R.; Wang, C.; Zheng, X.; Chen, H.; Zhang, T. Review on polymer composites with high thermal conductivity and low dielectric properties for electronic packaging. Mater. Today Phys. 2022, 22, 100594.

[3]

Song, Y. W.; Perez, C.; Esteves, G.; Lundh, J. S.; Saltonstall, C. B.; Beechem, T. E.; Yang, J. I.; Ferri, K.; Brown, J. E.; Tang, Z. C. et al. Thermal conductivity of aluminum scandium nitride for 5G mobile applications and beyond. ACS Appl. Mater. Interfaces 2021, 13, 19031–19041.

[4]

Moore, A. L.; Shi, L. Emerging challenges and materials for thermal management of electronics. Mater. Today 2014, 17, 163–174.

[5]

Yu, A. P.; Ramesh, P.; Sun, X. B.; Bekyarova, E.; Itkis, M. E.; Haddon, R. C. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. Adv. Mater. 2008, 20, 4740–4744.

[6]

Liang, Q. Z.; Moon, K. S.; Jiang, H. J.; Wong, C. P. Thermal conductivity enhancement of epoxy composites by interfacial covalent bonding for underfill and thermal interfacial materials in Cu/Low-K application. IEEE Trans. Compon. Packag. Manufact. Technol. 2012, 2, 1571–1579.

[7]

Du, F. M.; Guthy, C.; Kashiwagi, T.; Fischer, J. E.; Winey, K. I. An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity. J. Polym. Sci. Part B: Polym. Phys. 2006, 44, 1513–1519.

[8]

Marconnet, A. M.; Yamamoto, N.; Panzer, M. A.; Wardle, B. L.; Goodson, K. E. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano 2011, 5, 4818–4825.

[9]

Bryning, M. B.; Milkie, D. E.; Islam, M. F.; Kikkawa, J. M.; Yodh, A. G. Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl. Phys. Lett. 2005, 87, 161909.

[10]

Biercuk, M. J.; Llaguno, M. C.; Radosavljevic, M.; Hyun, J. K.; Johnson, A. T.; Fischer, J. E. Carbon nanotube composites for thermal management. Appl. Phys. Lett. 2002, 80, 2767–2769.

[11]

Gojny, F. H.; Wichmann, M. H. G.; Fiedler, B.; Kinloch, I. A.; Bauhofer, W.; Windle, A. H.; Schulte, K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 2006, 47, 2036–2045.

[12]

Hu, J. T.; Huang, Y.; Yao, Y. M.; Pan, G. R.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Song, B.; Wong, C. P. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces 2017, 9, 13544–13553.

[13]

He, H. Y.; Peng, W. X.; Liu, J. B.; Chan, X. Y.; Liu, S. K.; Lu, L.; Le Ferrand, H. Microstructured BN composites with internally designed high thermal conductivity paths for 3D electronic packaging. Adv. Mater. 2022, 34, 2205120.

[14]

Han, W. F.; Bai, Y. F.; Liu, S. C.; Ge, C. H.; Wang, L. X.; Ma, Z. Y.; Yang, Y. X.; Zhang, X. D. Enhanced thermal conductivity of commercial polystyrene filled with core-shell structured BN@PS. Compos. Part A: Appl. Sci. Manuf. 2017, 102, 218–227.

[15]

Lin, Z. Y.; Liu, Y.; Raghavan, S.; Moon, K. S.; Sitaraman, S. K.; Wong, C. P. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: Toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl. Mater. Interfaces 2013, 5, 7633–7640.

[16]

Wang, X. B.; Weng, Q. H.; Wang, X.; Li, X.; Zhang, J.; Liu, F.; Jiang, X. F.; Guo, H. X.; Xu, N. S.; Golberg, D. et al. Biomass-directed synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites. ACS Nano 2014, 8, 9081–9088.

[17]

Morishita, T.; Okamoto, H. Facile exfoliation and noncovalent superacid functionalization of boron nitride nanosheets and their use for highly thermally conductive and electrically insulating polymer nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 27064–27073.

[18]

Kinloch, I. A.; Suhr, J.; Lou, J.; Young, R. J.; Ajayan, P. M. Composites with carbon nanotubes and graphene: An outlook. Science 2018, 362, 547–553.

[19]

Shenogina, N.; Shenogin, S.; Xue, L.; Keblinski, P. On the lack of thermal percolation in carbon nanotube composites. Appl. Phys. Lett. 2005, 87, 133106.

[20]

Zhang, X.; Tan, W.; Smail, F.; De Volder, M.; Fleck, N.; Boies, A. High-fidelity characterization on anisotropic thermal conductivity of carbon nanotube sheets and on their effects of thermal enhancement of nanocomposites. Nanotechnology 2018, 29, 365708.

[21]

Zhan, H. F.; Nie, Y. H.; Chen, Y. N.; Bell, J. M.; Gu, Y. T. Thermal transport in 3D nanostructures. Adv. Funct. Mater. 2020, 30, 1903841.

[22]

Zhong, S. L.; Zhou, Z. Y.; Zhang, K.; Shi, Y. D.; Chen, Y. F.; Chen, X. D.; Zeng, J. B.; Wang, M. Formation of thermally conductive networks in isotactic polypropylene/hexagonal boron nitride composites via “Bridge Effect” of multi-wall carbon nanotubes and graphene nanoplatelets. RSC Adv. 2016, 6, 98571–98580.

[23]

Im, H.; Kim, J. Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite. Carbon 2012, 50, 5429–5440.

[24]

de La Verpilliere, J.; Jessl, S.; Saeed, K.; Ducati, C.; De Volder, M.; Boies, A. Continuous flow chemical vapour deposition of carbon nanotube sea urchins. Nanoscale 2018, 10, 7780–7791.

[25]

Carey, T.; Cacovich, S.; Divitini, G.; Ren, J. S.; Mansouri, A.; Kim, J. M.; Wang, C. X.; Ducati, C.; Sordan, R.; Torrisi, F. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 2017, 8, 1202.

[26]

Zhang, Y. G.; Zhu, Y. J.; Chen, F.; Sun, T. W. Biocompatible, ultralight, strong hydroxyapatite networks based on hydroxyapatite microtubes with excellent permeability and ultralow thermal conductivity. ACS Appl. Mater. Interfaces 2017, 9, 7918–7928.

[27]

Bozlar, M.; He, D. L.; Bai, J. B.; Chalopin, Y.; Mingo, N.; Volz, S. Carbon nanotube microarchitectures for enhanced thermal conduction at ultralow mass fraction in polymer composites. Adv. Mater. 2010, 22, 1654–1658.

[28]

Nan, C. W.; Birringer, R.; Clarke, D. R.; Gleiter, H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 1997, 81, 6692–6699.

[29]

Datta, S. S.; Strachan, D. R.; Khamis, S. M.; Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 2008, 8, 1912–1915.

[30]

Lukas, M.; Meded, V.; Vijayaraghavan, A.; Song, L.; Ajayan, P. M.; Fink, K.; Wenzel, W.; Krupke, R. Catalytic subsurface etching of nanoscale channels in graphite. Nat. Commun. 2013, 4, 1379.

[31]

Jo, I.; Pettes, M. T.; Kim, J.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 2013, 13, 550–554.

[32]

Pak, S. Y.; Kim, H. M.; Kim, S. Y.; Youn, J. R. Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers. Carbon 2012, 50, 4830–4838.

[33]

Sato, K.; Horibe, H.; Shirai, T.; Hotta, Y.; Nakano, H.; Nagai, H.; Mitsuishi, K.; Watari, K. Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J. Mater. Chem. 2010, 20, 2749–2752.

[34]

Kelly, A. G.; O’Suilleabhain, D.; Gabbett, C.; Coleman, J. N. The electrical conductivity of solution-processed nanosheet networks. Nat. Rev. Mater. 2022, 7, 217–234.

[35]

Che, J. J.; Jing, M. F.; Liu, D. Y.; Wang, K.; Fu, Q. Largely enhanced thermal conductivity of HDPE/boron nitride/carbon nanotubes ternary composites via filler network-network synergy and orientation. Compos. Part A: Appl. Sci. Manuf. 2018, 112, 32–39.

[36]

Li, W. K.; Dichiara, A.; Bai, J. B. Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos. Sci. Technol. 2013, 74, 221–227.

[37]

Bonnet, P.; Sireude, D.; Garnier, B.; Chauvet, O. Thermal properties and percolation in carbon nanotube-polymer composites. Appl. Phys. Lett. 2007, 91, 201910.

[38]

Liu, Y.; Ong, Z. Y.; Wu, J.; Zhao, Y. S.; Watanabe, K.; Taniguchi, T.; Chi, D. Z.; Zhang, G.; Thong, J. T. L.; Qiu, C. W. et al. Thermal conductance of the 2D MoS2/ h-BN and graphene/ h-BN interfaces. Sci. Rep. 2017, 7, 43886.

[39]

Guthy, C.; Du, F. M.; Brand, S.; Winey, K. I.; Fischer, J. E. Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites. J. Heat Transfer 2007, 129, 1096–1099.

[40]

Hart, A. J.; Slocum, A. H. Force output, control of film structure, and microscale shape transfer by carbon nanotube growth under mechanical pressure. Nano Lett. 2006, 6, 1254–1260.

File
12274_2023_6209_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 19 July 2023
Revised: 08 September 2023
Accepted: 17 September 2023
Published: 09 November 2023
Issue date: November 2023

Copyright

© The Author(s) 2023

Acknowledgements

Acknowledgements

This work was partially supported by the National Key R&D Program of China (Nos. 2018YFA0208402 and 2020YFA0714700), the National Natural Science Foundation of China (Nos. 52172060, 51820105002, 11634014, and 51372269), Magna International, and EPSRC project “Advanced Nanotube Application and Manufacturing (ANAM) Initiative” (No. EP/M015211/1). The authors especially thank Mr. David Paul, Ms. Mingzhao Wang, Ms. Rulan Qiao, and Dr. Sarah Stevenson, for their kind support and useful discussion.

Rights and permissions

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return