Journal Home > Volume 17 , Issue 4

Single atom catalysts (SACs) have attracted considerable attention due to their unique structures and excellent catalytic performance, especially in the area of catalysis science and energy conversion and storage. In recent years, SACs have emerged as a new type of sensing material for constructing electrochemical sensors (ECSs), presenting excellent sensitivity, selectivity, and stability. Herein, we review the recent advances of SACs in electrochemical sensing and discuss the status quo of current SAC-based ECSs. Specifically, the fundamentals of SAC-based ECSs are outlined, including the involved central metal atoms and various supports of SACs in this field, the detection mechanisms, and improving strategies of SAC-based ECSs. Moreover, the important applications of SAC-based ECSs are listed and classified, covering the detection of reactive oxygen and nitrogen species, environmental pollutants, disease biomarkers, and pharmaceuticals. Last, based on abundant reported cases, the current conundrums of SAC-based ECSs are summarized, and the prediction of their future developing trends is also put forward.


menu
Abstract
Full text
Outline
About this article

Recent advances and applications of single atom catalysts based electrochemical sensors

Show Author's information Mingyue Wang1,2Mingfu Ye1Jieyue Wang1Yong Xu1Zhendong Wang1Xinyue Tong1Xinya Han3Kui Zhang4Wenhai Wang1( )Konglin Wu1,3,4( )Xianwen Wei1( )
Institute of Clean Energy and Advanced Nanocatalysis (iClean), School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
Anhui International Research Center of Energy materials green manufacturing and biotechnology, School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
Carbon Cycle and Emission Control Research Center, Low-Carbon Research Institute, Anhui University of Technology, Maanshan 243002, China

Abstract

Single atom catalysts (SACs) have attracted considerable attention due to their unique structures and excellent catalytic performance, especially in the area of catalysis science and energy conversion and storage. In recent years, SACs have emerged as a new type of sensing material for constructing electrochemical sensors (ECSs), presenting excellent sensitivity, selectivity, and stability. Herein, we review the recent advances of SACs in electrochemical sensing and discuss the status quo of current SAC-based ECSs. Specifically, the fundamentals of SAC-based ECSs are outlined, including the involved central metal atoms and various supports of SACs in this field, the detection mechanisms, and improving strategies of SAC-based ECSs. Moreover, the important applications of SAC-based ECSs are listed and classified, covering the detection of reactive oxygen and nitrogen species, environmental pollutants, disease biomarkers, and pharmaceuticals. Last, based on abundant reported cases, the current conundrums of SAC-based ECSs are summarized, and the prediction of their future developing trends is also put forward.

Keywords: reactive oxygen and nitrogen species, single atom catalysts (SACs), pharmaceuticals, environmental pollutants, disease biomarkers, electrochemical sensors (ECSs)

References(111)

[1]

Saha, T.; Del Caño, R.; Mahato, K.; De La Paz, E.; Chen, C. R.; Ding, S. C.; Yin, L.; Wang, J. Wearable electrochemical glucose sensors in diabetes management: A comprehensive review. Chem. Rev. 2023, 123, 7854–7889.

[2]

Del Caño, R.; Saha, T.; Moonla, C.; De La Paz, E.; Wang, J. Ketone bodies detection: Wearable and mobile sensors for personalized medicine and nutrition. Trends Anal. Chem. 2023, 159, 116938.

[3]

Cetó, X.; Saint, C.; Chow, C. W. K.; Voelcker, N. H.; Prieto-Simón, B. Electrochemical fingerprints of brominated trihaloacetic acids (HAA3) mixtures in water. Sens. Actuators B Chem. 2017, 247, 70–77.

[4]

Cetó, X.; Saint, C. P.; Chow, C. W. K.; Voelcker, N. H.; Prieto-Simón, B. Electrochemical detection of N-nitrosodimethylamine using a molecular imprinted polymer. Sens. Actuators B Chem. 2016, 237, 613–620.

[5]

Ortiz-Aguayo, D.; Cetó, X.; De Wael, K.; del Valle, M. Resolution of opiate illicit drugs signals in the presence of some cutting agents with use of a voltammetric sensor array and machine learning strategies. Sens. Actuators B Chem. 2022, 357, 131345.

[6]

Cetó, X.; Pérez, S. Voltammetric electronic tongue for vinegar fingerprinting. Talanta 2020, 219, 121253.

[7]

Cetó, X.; Voelcker, N. H.; Prieto-Simón, B. Bioelectronic tongues: New trends and applications in water and food analysis. Biosens. Bioelectron. 2016, 79, 608–626.

[8]

Mahato, K.; Wang, J. Electrochemical sensors: From the bench to the skin. Sens. Actuators B Chem. 2021, 344, 130178.

[9]

Wen, W.; Yan, X.; Zhu, C. Z.; Du, D.; Lin, Y. H. Recent advances in electrochemical immunosensors. Anal. Chem. 2017, 89, 138–156.

[10]

Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Zhu, C. Z.; Du, D.; Lin, Y. H. When nanozymes meet single-atom catalysis. Angew. Chem., Int. Ed. 2020, 59, 2565–2576.

[11]

Chen, Z.; Yu, Y. X.; Gao, Y. H.; Zhu, Z. L. Rational design strategies for nanozymes. ACS Nano 2023, 17, 13062–13080.

[12]

Lin, T.; Xu, Y.; Zhao, A. S.; He, W. S.; Xiao, F. Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: A review. Anal. Chim. Acta 2022, 1207, 339461.

[13]

Herrera-Chacón, A.; Cetó, X.; del Valle, M. Molecularly imprinted polymers-towards electrochemical sensors and electronic tongues. Anal. Bioanal. Chem. 2021, 413, 6117–6140.

[14]

Wang, M. Y.; Cetó, X.; del Valle, M. A sensor array based on molecularly imprinted polymers and machine learning for the analysis of fluoroquinolone antibiotics. ACS Sens. 2022, 7, 3318–3325.

[15]

Wang, M. Y.; Cetó, X.; del Valle, M. A novel electronic tongue using electropolymerized molecularly imprinted polymers for the simultaneous determination of active pharmaceutical ingredients. Biosens. Bioelectron. 2022, 198, 113807.

[16]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[17]

Wu, K. L.; Sun, K. A.; Liu, S. J.; Cheong, W. C.; Chen, Z.; Zhang, C.; Pan, Y.; Cheng, Y. S.; Zhuang, Z. W.; Wei, X. W. et al. Atomically dispersed Ni–Ru–P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy 2021, 80, 105467.

[18]

Ma, L. B.; Qian, J.; Li, Y. T.; Cheng, Y. W.; Wang, S. Y.; Wang, Z. W.; Peng, C.; Wu, K. L.; Xu, J.; Manke, I. et al. Binary metal single atom electrocatalysts with synergistic catalytic activity toward high-rate and high areal-capacity lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2208666.

[19]

Wu, K. L.; Fang, Z. B.; Peng, C.; Zhang, Y. N.; Jiang, B. B.; Kang, Y. S.; Chen, Z. M.; Ye, M. F.; Wu, Y. X.; Wei, X. W. et al. Cu1-B dual-active sites catalysts for the efficient dehydrogenative coupling and CO2 electroreduction. Nano Res. 2023, 16, 4582–4588.

[20]

Wu, T.; Li, S.; Liu, S. J.; Cheong, W. C.; Peng, C.; Yao, K.; Li, Y. P.; Wang, J. Y.; Jiang, B. B.; Chen, Z. et al. Biomass-assisted approach for large-scale construction of multi-functional isolated single-atom site catalysts. Nano Res. 2022, 15, 3980–3990.

[21]
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res., in press, https://doi.org/10.1007/s12274-023-5700-4.
DOI
[22]

Wang, G.; Wu, Y.; Li, Z. Z.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[23]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[24]

Ye, C. L.; Zheng, M.; Li, Z. M.; Fan, Q. K.; Ma, H. Q.; Fu, X. Z.; Wang, D. S.; Wang, J.; Li, Y. D. Electrical pulse induced one-step formation of atomically dispersed Pt on oxide clusters for ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202213366.

[25]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[26]

Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079.

[27]

Ren, S.; Cao, X.; Jiang, Z.; Yu, Z. J.; Zhang, T. T.; Wei, S. H.; Fan, Q. K.; Yang, J.; Mao, J. J.; Wang, D. S. Single-atom catalysts for electrochemical applications. Chem. Commun. 2023, 59, 2560–2570.

[28]

Wang, S. W.; Wang, L. G.; Wang, D. S.; Li, Y. D. Recent advances of single-atom catalysts in CO2 conversion. Energy Environ. Sci. 2023, 16, 2759–2803.

[29]

Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering Janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

[30]

Zhang, Z. D.; Wang, D. S. Single-atom catalysts: Stimulating electrochemical CO2 reduction reaction in the industrial era. J. Mater. Chem. A 2022, 10, 5863–5877.

[31]

Chen, S. H.; Wang, B. Q.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhang, Z. D.; Liang, X.; Zheng, L. R.; Zhou, L.; Su, Y. Q. et al. Lewis acid site-promoted single-atomic Cu catalyzes electrochemical CO2 methanation. Nano Lett. 2021, 21, 7325–7331.

[32]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[33]

Liang, X.; Wang, D. S. Activity regulation of Fenton/Fenton-like reactions in single-atom catalysis. ChemCatChem 2023, 15, e202201579.

[34]

Meng, G.; Lan, W.; Zhang, L. L.; Wang, S. B.; Zhang, T. H.; Zhang, S.; Xu, M.; Wang, Y.; Zhang, J.; Yue, F. X. et al. Synergy of single atoms and Lewis acid sites for efficient and selective lignin disassembly into monolignol derivatives. J. Am. Chem. Soc. 2023, 145, 12884–12893.

[35]

Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed. 2023, 62, e202217449.

[36]

Wang, Y. L.; Yin, H. B.; Dong, F.; Zhao, X. G.; Qu, Y. K.; Wang, L. X.; Peng, Y.; Wang, D. S.; Fang, W.; Li, J. H. N-coordinated Cu-Ni dual-single-atom catalyst for highly selective electrocatalytic reduction of nitrate to ammonia. Small 2023, 19, 2207695.

[37]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2022, 62, e202212653.

[38]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[39]

Wang, Q. P.; Liu, T. Y.; Chen, K.; Wu, D.; Chen, C.; Chen, M.; Ma, X. H.; Xu, J.; Yao, T.; Li, Y. F. et al. Precise regulation of iron spin states in single Fe-N4 sites for efficient peroxidase-mimicking catalysis. Small 2022, 18, 2204015.

[40]

Wang, Y.; Jia, G. R.; Cui, X. Q.; Zhao, X.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Li, L. H.; Wu, Q.; Singh, D. J. et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 2021, 7, 436–449.

[41]

Chu, T. S.; Rong, C.; Zhou, L.; Mao, X. Y.; Zhang, B. W.; Xuan, F. Z. Progress and perspectives of single-atom catalysts for gas sensing. Adv. Mater. 2023, 35, 2206783.

[42]

Hou, H. F.; Mao, J. J.; Han, Y. H.; Wu, F.; Zhang, M. N.; Wang, D. S.; Mao, L. Q.; Li, Y. D. Single-atom electrocatalysis: A new approach to in vivo electrochemical biosensing. Sci. China Chem. 2019, 62, 1720–1724.

[43]
Chen, R. Z.; Chen, S. H.; Wang, L. Q.; Wang, D. S. Nanoscale metal particle modified single-atom catalyst: Synthesis, characterization, and application. Adv. Mater., in press, https://doi.org/10.1002/ADMA.202304713.
DOI
[44]

Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 2023, 35, 2209654.

[45]

Wang, Z. W.; Wang, W. L.; Wang, J.; Wang, D. S.; Liu, M. L.; Wu, Q. Y.; Hu, H. Y. Single-atom catalysts with ultrahigh catalase-like activity through electron filling and orbital energy regulation. Adv. Funct. Mater. 2022, 33, 2209560.

[46]

Yang, Y.; Wu, J. S.; Cheng, B.; Zhang, L. Y.; Al-Ghamdi, A. A.; Wageh, S.; Li, Y. J. Enhanced photocatalytic H2-production activity of CdS nanoflower using single atom Pt and graphene quantum dot as dual cocatalysts. Chin. J. Struct. Chem. 2022, 41, 2206006–2206014.

[47]

Jiao, L.; Xu, W. Q.; Wu, Y.; Yan, H. Y.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Single-atom catalysts boost signal amplification for biosensing. Chem. Soc. Rev. 2021, 50, 750–765.

[48]

Jiao, L.; Xu, W. Q.; Wu, Y.; Wang, H. J.; Hu, L. Y.; Gu, W. L.; Zhu, C. Z. On the road from single-atom materials to highly sensitive electrochemical sensing and biosensing. Anal. Chem. 2023, 95, 433–443.

[49]

Cui, T. T.; Li, L. X.; Ye, C. L.; Li, X. Y.; Liu, C. X.; Zhu, S. H.; Chen, W.; Wang, D. S. Heterogeneous single atom environmental catalysis: Fundamentals, applications, and opportunities. Adv. Funct. Mater. 2022, 32, 2108381.

[50]

Li, R. M.; Guo, W. W.; Zhu, Z. J.; Zhai, Y. L.; Wang, G. W.; Liu, Z.; Jiao, L.; Zhu, C. Z.; Lu, X. Q. Single-atom indium boosts electrochemical dopamine sensing. Anal. Chem. 2023, 95, 7195–7201.

[51]

Xiong, C.; Tian, L.; Xiao, C. C.; Xue, Z. G.; Zhou, F. Y.; Zhou, H.; Zhao, Y. F.; Chen, M.; Wang, Q. P.; Qu, Y. T. et al. Construction of highly accessible single Co site catalyst for glucose detection. Sci. Bull. 2020, 65, 2100–2106.

[52]

Song, Y. Y.; He, T.; Zhang, Y. L.; Yin, C. Y.; Chen, Y.; Liu, Q. M.; Zhang, Y.; Chen, S. W. Cobalt single atom sites in carbon aerogels for ultrasensitive enzyme-free electrochemical detection of glucose. J. Electroanal. Chem. 2022, 906, 116024.

[53]

Shu, Y. J.; Li, Z. J.; Yang, Y.; Tan, J. W.; Liu, Z. Y.; Shi, Y. H.; Ye, C. X.; Gao, Q. S. Isolated cobalt atoms on N-doped carbon as nanozymes for hydrogen peroxide and dopamine detection. ACS Appl. Nano Mater. 2021, 4, 7954–7962.

[54]

Hu, F. X.; Hu, T.; Chen, S. H.; Wang, D. P.; Rao, Q. H.; Liu, Y. H.; Dai, F. Y.; Guo, C. X.; Yang, H. B.; Li, C. M. Single-atom cobalt-based electrochemical biomimetic uric acid sensor with wide linear range and ultralow detection limit. Nano-Micro Lett. 2020, 13, 7.

[55]

Li, P. H.; Yang, M.; Li, Y. X.; Song, Z. Y.; Liu, J. H.; Lin, C. H.; Zeng, J.; Huang, X. J. Ultra-sensitive and selective detection of arsenic(Ⅲ) via electroanalysis over cobalt single-atom catalysts. Anal. Chem. 2020, 92, 6128–6135.

[56]

Hu, G. X.; Rao, Q. H.; Li, G.; Zheng, Y.; Liu, Y. H.; Guo, C. X.; Li, F. H.; Hu, F. X.; Yang, H. B.; Chen, F. Single-atom cobalt integrated flexible sensor for simultaneous detection of dihydroxybenzene isomers. Nanoscale 2023, 15, 9484–9495.

[57]

Liu, Y. Y.; Zhao, P.; Liang, Y.; Chen, Y. Y.; Pu, J. Z.; Wu, J. Z.; Yang, Y. Q.; Ma, Y. L.; Huang, Z.; Luo, H. B. et al. Single-atom nanozymes Co-N-C as an electrochemical sensor for detection of bioactive molecules. Talanta 2023, 254, 124171.

[58]

Li, Z. H.; Liu, R. J.; Tang, C.; Wang, Z. Y.; Chen, X.; Jiang, Y. H.; Wang, C. Z.; Yuan, Y.; Wang, W. B.; Wang, D. B. et al. Cobalt nanoparticles and atomic sites in nitrogen-doped carbon frameworks for highly sensitive sensing of hydrogen peroxide. Small 2020, 16, 1902860.

[59]

Hu, F. X.; Hu, G. X.; Wang, D. P.; Duan, X. X.; Feng, L. R.; Chen, B.; Liu, Y. H.; Ding, J.; Guo, C. X.; Yang, H. B. Integrated biochip-electronic system with single-atom nanozyme for in vivo analysis of nitric oxide. ACS Nano 2023, 17, 8575–8585.

[60]

Wu, F.; Pan, C.; He, C. T.; Han, Y. H.; Ma, W. J.; Wei, H.; Ji, W. L.; Chen, W. X.; Mao, J. J.; Yu, P. et al. Single-atom Co-N4 electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing. J. Am. Chem. Soc. 2020, 142, 16861–16867.

[61]

Zou, Z.; Shi, Z. Z.; Wu, J. G.; Wu, C.; Zeng, Q. X.; Zhang, Y. Y.; Zhou, G. D.; Wu, X. S.; Li, J.; Chen, H. et al. Atomically dispersed Co to an end-adsorbing molecule for excellent biomimetically and prime sensitively detecting O2•- released from living cells. Anal. Chem. 2021, 93, 10789–10797.

[62]

Hu, Y.; Bai, C.; Li, M.; Hojamberdiev, M.; Geng, D. S.; Li, X. G. Tailoring atomically dispersed cobalt-nitrogen active sites in wrinkled carbon nanosheets via “fence” isolation for highly sensitive detection of hydrogen peroxide. J. Mater. Chem. A 2022, 10, 3190–3200.

[63]

Gao, X. L.; Ma, W. J.; Mao, J. J.; He, C. T.; Ji, W. L.; Chen, Z.; Chen, W. X.; Wu, W. J.; Yu, P.; Mao, L. Q. A single-atom Cu-N2 catalyst eliminates oxygen interference for electrochemical sensing of hydrogen peroxide in a living animal brain. Chem. Sci. 2021, 12, 15045–15053.

[64]

Shetty, S. S.; El-Demellawi, J. K.; Khan, Y.; Hedhili, M. N.; Arul, P.; Mani, V.; Alshareef, H. N.; Salama, K. N. Iron single-atom catalysts on MXenes for ultrasensitive monitoring of adrenal tumor markers and cellular dopamine. Adv. Mater. Technol. 2023, 8, 2202069.

[65]

Bushira, F. A.; Kitte, S. A.; Li, H. J.; Zheng, L. R.; Wang, P.; Jin, Y. D. Enzyme-like Fe-N5 single atom catalyst for simultaneous electrochemical detection of dopamine and uric acid. J. Electroanal. Chem. 2022, 904, 115956.

[66]

Li, P. H.; Song, Z. Y.; Xiao, X. Y.; Liang, B.; Yang, M.; Chen, S. H.; Liu, W. Q.; Huang, X. J. Coordination engineering strategy of iron single-atom catalysts boosts anti-Cu(Ⅱ) interference detection of As(Ⅲ) with a high sensitivity. J. Hazard. Mater. 2023, 442, 130122.

[67]

Yao, L. L.; Gao, S. J.; Liu, S.; Bi, Y. L.; Wang, R. R.; Qu, H.; Wu, Y.; Mao, Y. E.; Zheng, L. Single-atom enzyme-functionalized solution-gated graphene transistor for real-time detection of mercury ion. ACS Appl. Mater. Interfaces 2020, 12, 6268–6275.

[68]

Ding, S. C.; Lyu, Z.; Fang, L. Z.; Li, T.; Zhu, W. L.; Li, S. Q.; Li, X.; Li, J. C.; Du, D.; Lin, Y. H. Single-atomic site catalyst with heme enzymes-like active sites for electrochemical sensing of hydrogen peroxide. Small 2021, 17, 2100664.

[69]

Wei, X. Q.; Song, S. J.; Song, W. Y.; Xu, W. Q.; Jiao, L.; Luo, X.; Wu, N. N.; Yan, H. Y.; Wang, X. S.; Gu, W. L. et al. Fe3C-assisted single atomic Fe sites for sensitive electrochemical biosensing. Anal. Chem. 2021, 93, 5334–5342.

[70]

Li, J.; Wu, C.; Yuan, C. S.; Shi, Z. Z.; Zhang, K. Y.; Zou, Z.; Xiong, L. L.; Chen, J.; Jiang, Y. L.; Sun, W. et al. Single-atom iron anchored on 2-D graphene carbon to realize bridge-adsorption of O-O as biomimetic enzyme for remarkably sensitive electrochemical detection of H2O2. Anal. Chem. 2022, 94, 14109–14117.

[71]

Liang, Y.; Zhao, P.; Zheng, J. L.; Chen, Y. Y.; Liu, Y. Y.; Zheng, J.; Luo, X. G.; Huo, D. Q.; Hou, C. J. Fe single-atom electrochemical sensors for H2O2 produced by living cells. ACS Appl. Nano Mater. 2022, 5, 11852–11863.

[72]

Luo, X.; Luo, Z.; Wei, X. Q.; Jiao, L.; Fang, Q.; Wang, H. J.; Wang, J. H.; Gu, W. L.; Hu, L. Y.; Zhu, C. Z. Iridium single-atomic site catalysts with superior oxygen reduction reaction activity for sensitive monitoring of organophosphorus pesticides. Anal. Chem. 2022, 94, 1390–1396.

[73]

Lei, Y.; Butler, D.; Lucking, M. C.; Zhang, F.; Xia, T. N.; Fujisawa, K.; Granzier-Nakajima, T.; Cruz-Silva, R.; Endo, M.; Terrones, H. et al. Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach. Sci. Adv. 2020, 6, eabc4250.

[74]

Li, Y. Y.; Song, Z. Y.; Xiao, X. Y.; Zhang, L. K.; Huang, H. Q.; Liu, W. Q.; Huang, X. J. In-situ electronic structure redistribution tuning of single-atom Mn/g-C3N4 catalyst to trap atomic-scale lead(Ⅱ) for highly stable and accurate electroanalysis. J. Hazard. Mater. 2022, 435, 129009.

[75]

Cong, W. H.; Song, P.; Zhang, Y.; Yang, S.; Liu, W. F.; Zhang, T. Y.; Zhou, J. D.; Wang, M. L.; Liu, X. G. Supramolecular confinement pyrolysis to carbon-supported Mo nanostructures spanning four scales for hydroquinone determination. J. Hazard. Mater. 2022, 437, 129327.

[76]

Li, M.; Peng, X. Y.; Liu, X. J.; Wang, H. S.; Zhang, S. S.; Hu, G. Z. Single-atom niobium doped BCN nanotubes for highly sensitive electrochemical detection of nitrobenzene. RSC Adv. 2021, 11, 28988–28995.

[77]

Sun, X. J.; Chen, C.; Xiong, C.; Zhang, C. M.; Zheng, X. S.; Wang, J.; Gao, X. P.; Yu, Z. Q.; Wu, Y. E. Surface modification of MoS2 nanosheets by single Ni atom for ultrasensitive dopamine detection. Nano Res. 2023, 16, 917–924.

[78]

Li, Z.; Li, Y. T.; Chen, S. Y.; Zha, Q.; Zhu, M. S. In-situ monitoring of hydrogen peroxide production at nickel single-atom electrocatalyst. Chem. Eng. J. 2023, 460, 141657.

[79]

Zhou, M.; Jiang, Y.; Wang, G.; Wu, W. J.; Chen, W. X.; Yu, P.; Lin, Y. Q.; Mao, J. J.; Mao, L. Q. Single-atom Ni-N4 provides a robust cellular no sensor. Nat. Commun. 2020, 11, 3188.

[80]

Han, C. X.; Yi, W. W.; Li, Z. P.; Dong, C.; Zhao, H. Z.; Liu, M. Single-atom palladium anchored N-doped carbon enhanced electrochemical detection of furazolidone. Electrochim. Acta 2023, 447, 142083.

[81]

Long, B. J.; Zhao, Y. M.; Cao, P. Y.; Wei, W.; Mo, Y.; Liu, J. J.; Sun, C. J.; Guo, X. F.; Shan, C. S.; Zeng, M. H. Single-atom Pt boosting electrochemical nonenzymatic glucose sensing on Ni(OH)2/N-doped graphene. Anal. Chem. 2022, 94, 1919–1924.

[82]

Long, B. J.; Cao, P. Y.; Zhao, Y. M.; Fu, Q. Q.; Mo, Y.; Zhai, Y. M.; Liu, J. J.; Lyu, X.; Li, T.; Guo, X. F. et al. Pt1/Ni6Co1 layered double hydroxides/N-doped graphene for electrochemical non-enzymatic glucose sensing by synergistic enhancement of single atoms and doping. Nano Res. 2023, 16, 318–324.

[83]

Liu, L. Q.; Li, F. F.; Liu, T. T.; Chen, S. H.; Zhang, M. X. Porphyrin zirconium-based MOF dispersed single Pt atom for electrocatalytic sensing levodopa. J. Electroanal. Chem. 2022, 921, 116701.

[84]

Li, P. H.; Yang, M.; Song, Z. Y.; Chen, S. H.; Xiao, X. Y.; Lin, C. H.; Huang, X. J. Highly sensitive and stable determination of As(Ⅲ) under near-neutral conditions: Benefit from the synergetic catalysis of Pt single atoms and active s atoms over Pt1/MoS2. Anal. Chem. 2021, 93, 15115–15123.

[85]

Shi, X. Y.; Li, J.; Xiong, Y.; Liu, Z. Y.; Zhan, J. H.; Cai, B. Rh single-atom nanozymes for efficient ascorbic acid oxidation and detection. Nanoscale 2023, 15, 6629–6635.

[86]

Xie, X. L.; Wang, D. P.; Guo, C. X.; Liu, Y. H.; Rao, Q. H.; Lou, F. M.; Li, Q. N.; Dong, Y. Q.; Li, Q. F.; Yang, H. B. et al. Single-atom ruthenium biomimetic enzyme for simultaneous electrochemical detection of dopamine and uric acid. Anal. Chem. 2021, 93, 4916–4923.

[87]

Han, A. L.; Zhang, Z. D.; Yang, J. R.; Wang, D. S.; Li, Y. D. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions. Small 2021, 17, 2004500.

[88]

Fei, H. L.; Dong, J. C.; Chen, D. L.; Hu, T. D.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241.

[89]

Yin, Y.; Shi, L.; Zhang, S.; Duan, X. G.; Zhang, J. Q.; Sun, H. Q.; Wang, S. B. Two-dimensional nanomaterials confined single atoms: New opportunities for environmental remediation. Nano Mater. Sci. 2023, 5, 15–38.

[90]

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

[91]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[92]

Liu, Y. W.; Wu, X.; Li, Z.; Zhang, J.; Liu, S. X.; Liu, S. J.; Gu, L.; Zheng, L. R.; Li, J.; Wang, D. et al. Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration. Nat. Commun. 2021, 12, 4205.

[93]

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

[94]

Sun, J. Q.; Tao, L.; Ye, C. L.; Wang, Y.; Meng, G.; Lei, H. Y.; Zheng, S. K.; Xing, C.; Tao, X.; Wu, P. F. et al. MOF-derived Ru1Zr1/Co dual-atomic-site catalyst with promoted performance for Fischer-Tropsch synthesis. J. Am. Chem. Soc. 2023, 145, 7113–7122.

[95]

Du, Y. X.; Zhou, Y. T.; Zhu, M. Z. Co-based MOF derived metal catalysts: From Nano-level to atom-level. Tungsten 2023, 5, 201–216.

[96]

Feng, Q. C.; Zhao, S.; Xu, Q.; Chen, W. X.; Tian, S. B.; Wang, Y.; Yan, W. S.; Luo, J.; Wang, D. S.; Li, Y. D. Mesoporous nitrogen-doped carbon-nanosphere-supported isolated single-atom Pd catalyst for highly efficient semihydrogenation of acetylene. Adv. Mater. 2019, 31, e1901024.

[97]

Wu, Z. Z.; Bai, J.; Lai, F. L.; Zheng, H.; Zhang, Y. Z.; Zhang, N.; Wang, C. X.; Wang, Z. Y.; Zhang, L. S.; Liu, T. X. Atomically dispersed platinum supported onto nanoneedle-shaped protonated polyaniline for efficient hydrogen production in acidic water electrolysis. Sci. China Mater. 2023, 66, 2680–2688.

[98]

Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. G.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.

[99]

Iqbal, M. S.; Yao, Z. B.; Ruan, Y. K.; Iftikhar, R.; Hao, L. D.; Robertson, A. W.; Imran, S. M.; Sun, Z. Y. Single-atom catalysts for electrochemical N2 reduction to NH3. Rare Met. 2023, 42, 1075–1097.

[100]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[101]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[102]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[103]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[104]

Wang, Y. C.; Liu, Y.; Liu, W.; Wu, J.; Li, Q.; Feng, Q. G.; Chen, Z. Y.; Xiong, X.; Wang, D. S.; Lei, Y. P. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy Environ. Sci. 2020, 13, 4609–4624.

[105]

Xu, Z. C.; Zhang, Q. C.; Huang, Z. M.; Chen, H.; Zhang, J.; Chen, W.; Meng, G.; Wang, D. S. Multifunctional design of single-atom catalysts for multistep reactions. Sci. China Chem. 2023, 66, 1241–1260.

[106]

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

[107]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[108]

Ishimoto, Y.; Tanaka, T.; Yoshida, Y.; Inagi, R. Physiological and pathophysiological role of reactive oxygen species and reactive nitrogen species in the kidney. Clin. Exp. Pharmacol. Physiol. 2018, 45, 1097–1105.

[109]

Simões, E. F. C.; Almeida, A. S.; Duarte, A. C.; Duarte, R. M. B. O. Assessing reactive oxygen and nitrogen species in atmospheric and aquatic environments: Analytical challenges and opportunities. Trends Anal. Chem. 2021, 135, 116149.

[110]

Zhao, S.; Zang, G. C.; Zhang, Y. C.; Liu, H. W.; Wang, N.; Cai, S. J.; Durkan, C.; Xie, G. M.; Wang, G. X. Recent advances of electrochemical sensors for detecting and monitoring ROS/RNS. Biosens. Bioelectron. 2021, 179, 113052.

[111]

Sies, H.; Belousov, V. V.; Chandel, N. S.; Davies, M. J.; Jones, D. P.; Mann, G. E.; Murphy, M. P.; Yamamoto, M.; Winterbourn, C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 2022, 23, 499–515.

Publication history
Copyright
Acknowledgements

Publication history

Received: 31 July 2023
Revised: 16 September 2023
Accepted: 17 September 2023
Published: 17 November 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22375005 and 21771003), the Natural Science Research Project of Anhui Province Education Department (Nos. 2022AH050323 and 2023AH051116), the Major industrial innovation plan of Anhui Province (No. AHZDCYCX-LSDT2023-04), and the University Synergy Innovation Program of Anhui Province (No. GXXT-2022-006).

Return