Journal Home > Volume 17 , Issue 4

Transition metal dichalcogenides (TMDs), with the general formula MX2 (M = Mo/W/Fe/Co/Ni, etc.; X = S/Se/Te), have attracted extensive research interests for hydrogen evolution reaction (HER). Compared with numerous studies on noble-metal-free TMDs, the chalcogen-dependent HER catalytic properties of noble-metal-based TMDs are lack of sufficient research attention. Herein, a facile electrospinning-assisted synthetic strategy is proposed to synthesize ruthenium dichalcogenides (RuX2, X = S/Se/Te) nanoparticles decorated carbon nanofibers (CNFs). Benefiting from the identical nanofibrous morphology and exposed crystal planes of RuX2 (111), the catalytic activities of RuX2@CNFs samples were investigated and compared in a fair and direct manner. Detailed electrochemical measurements coupled with density functional theory calculations were carried out to probe their intrinsic HER catalytic activities, resulting in the catalytic activity order of RuS2@CNFs > RuSe2@CNFs > RuTe2@CNFs in acidic media and that of RuS2@CNFs > RuTe2@CNFs > RuSe2@CNFs in alkaline media. The superior catalytic performance of RuS2@CNFs mainly stems from the relative lower HER energy barriers and thereby the higher intrinsic catalytic activity of RuS2 (111), leading to ultralow overpotentials of 44 and 9 mV at 10 mA·cm−2 in acidic and alkaline media, respectively. RuSe2 (111) is endowed with the more optimized Gibbs free energy of hydrogen adsorption (ΔGH*) than RuTe2 (111), but RuTe2 (111) shows enhanced catalytic property for H2O dissociation and OH desorption than RuSe2 (111), therefore, resulting in the altered catalytic activity sequences for RuSe2 and RuTe2 in acidic and alkaline media.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chalcogen-dependent catalytic properties of RuX2 (X = S/Se/Te) nanoparticles decorated carbon nanofibers for hydrogen evolution in acidic and alkaline media

Show Author's information Chengkai He1Yue Wei1Jia Xu2Yujie Wei1Tao Wang1Rongfei Liu3Lvlv Ji1( )Zhun Liu2( )Sheng Wang1( )
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
Department of Physics, Shaoxing University, Shaoxing 312000, China
Zhejiang Kangjiesi New Material Technology Co., LTD, Zhuji 311800, China

Abstract

Transition metal dichalcogenides (TMDs), with the general formula MX2 (M = Mo/W/Fe/Co/Ni, etc.; X = S/Se/Te), have attracted extensive research interests for hydrogen evolution reaction (HER). Compared with numerous studies on noble-metal-free TMDs, the chalcogen-dependent HER catalytic properties of noble-metal-based TMDs are lack of sufficient research attention. Herein, a facile electrospinning-assisted synthetic strategy is proposed to synthesize ruthenium dichalcogenides (RuX2, X = S/Se/Te) nanoparticles decorated carbon nanofibers (CNFs). Benefiting from the identical nanofibrous morphology and exposed crystal planes of RuX2 (111), the catalytic activities of RuX2@CNFs samples were investigated and compared in a fair and direct manner. Detailed electrochemical measurements coupled with density functional theory calculations were carried out to probe their intrinsic HER catalytic activities, resulting in the catalytic activity order of RuS2@CNFs > RuSe2@CNFs > RuTe2@CNFs in acidic media and that of RuS2@CNFs > RuTe2@CNFs > RuSe2@CNFs in alkaline media. The superior catalytic performance of RuS2@CNFs mainly stems from the relative lower HER energy barriers and thereby the higher intrinsic catalytic activity of RuS2 (111), leading to ultralow overpotentials of 44 and 9 mV at 10 mA·cm−2 in acidic and alkaline media, respectively. RuSe2 (111) is endowed with the more optimized Gibbs free energy of hydrogen adsorption (ΔGH*) than RuTe2 (111), but RuTe2 (111) shows enhanced catalytic property for H2O dissociation and OH desorption than RuSe2 (111), therefore, resulting in the altered catalytic activity sequences for RuSe2 and RuTe2 in acidic and alkaline media.

Keywords: catalytic activity, electrocatalysis, transition metal dichalcogenides, hydrogen evolution reaction, carbon nanofibers

References(36)

[1]

Yang, Y. X.; Li, P.; Zheng, X. B.; Sun, W. P.; Dou, S. X.; Ma, T. Y.; Pan, H. G. Anion-exchange membrane water electrolyzers and fuel cells. Chem. Soc. Rev. 2022, 51, 9620–9693.

[2]

Chatenet, M.; Pollet, B. G.; Dekel, D. R.; Dionigi, F.; Deseure, J.; Millet, P.; Braatz, R. D.; Bazant, M. Z.; Eikerling, M.; Staffell, I. et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 2022, 51, 4583–4762.

[3]

Yan, D. F.; Mebrahtu, C.; Wang, S. Y.; Palkovits, R. Innovative electrochemical strategies for hydrogen production: From electricity input to electricity output. Angew. Chem., Int. Ed. 2023, 62, e202214333.

[4]

Li, J. W.; Yin, W. N.; Pan, J. N.; Zhang, Y. B.; Wang, F. S.; Wang, L. L.; Zhao, Q. External field assisted hydrogen evolution reaction. Nano Res. 2023, 16, 8638–8654.

[5]

Wan, L.; Xu, Z. A.; Xu, Q.; Pang, M. B.; Lin, D. C.; Liu, J.; Wang, B. G. Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis. Energy Environ. Sci. 2023, 16, 1384–1430.

[6]

Zhang, W. Z.; Liu, M. H.; Gu, X.; Shi, Y. X.; Deng, Z. F.; Cai, N. S. Water electrolysis toward elevated temperature: Advances, challenges, and frontiers. Chem. Rev. 2023, 123, 7119–7192.

[7]

Liu, J. Y.; Duan, S.; Shi, H.; Wang, T. Y.; Yang, X. X.; Huang, Y. H.; Wu, G.; Li, Q. Rationally designing efficient electrocatalysts for direct seawater splitting: Challenges, achievements, and promises. Angew. Chem., Int. Ed. 2022, 61, e202210753.

[8]

Fu, X. W.; Shi, R. J.; Jiao, S. L.; Li, M. M.; Li, Q. Y. Structural design for electrocatalytic water splitting to realize industrial-scale deployment: Strategies, advances, and perspectives. J. Energy Chem. 2022, 70, 129–153.

[9]

Barrio, J.; Pedersen, A.; Favero, S.; Luo, H.; Wang, M. N.; Sarma, S. C.; Feng, J. Y.; Ngoc, L. T. T.; Kellner, S.; Li, A. Y. et al. Bioinspired and bioderived aqueous electrocatalysis. Chem. Rev. 2023, 123, 2311–2348.

[10]

Zhao, H.; Yuan, Z. Y. Progress and perspectives for solar-driven water electrolysis to produce green hydrogen. Adv. Energy Mater. 2023, 13, 2300254.

[11]

Zhai, Y. Y.; Ren, X. R.; Wang, B. L.; Liu, S. Z. High-entropy catalyst-a novel platform for electrochemical water splitting. Adv. Funct. Mater. 2022, 32, 2207536.

[12]

Guo, F.; Macdonald, T. J.; Sobrido, A. J.; Liu, L. X.; Feng, J. R.; He, G. J. Recent advances in ultralow-Pt-loading electrocatalysts for the efficient hydrogen evolution. Adv. Sci. 2023, 10, 2301098.

[13]

Cui, Z. B.; Jiao, W. S.; Huang, Z. Y.; Chen, G. Z.; Zhang, B.; Han, Y. H.; Huang, W. Design and synthesis of noble metal-based alloy electrocatalysts and their application in hydrogen evolution reaction. Small 2023, 19, 2301465.

[14]

Shit, S.; Bolar, S.; Murmu, N. C.; Kuila, T. An account of the strategies to enhance the water splitting efficiency of noble-metal-free electrocatalysts. J. Energy Chem. 2021, 59, 160–190.

[15]

Jin, M. T.; Zhang, X.; Niu, S. Z.; Wang, Q.; Huang, R. Q.; Ling, R. H.; Huang, J. Q.; Shi, R.; Amini, A.; Cheng, C. Strategies for designing high-performance hydrogen evolution reaction electrocatalysts at large current densities above 1000 mA·cm−2. ACS Nano 2022, 16, 11577–11597.

[16]

Luo, Y. T.; Zhang, Z. Y.; Chhowalla, M.; Liu, B. L. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 2022, 34, 2108133.

[17]

Xiong, L. W.; Qiu, Y. F.; Peng, X.; Liu, Z. T.; Chu, P. K. Electronic structural engineering of transition metal-based electrocatalysts for the hydrogen evolution reaction. Nano Energy 2022, 104, 107882.

[18]

Xia, H.; Shi, Z. D.; Gong, C. S.; He, Y. M. Recent strategies for activating the basal planes of transition metal dichalcogenides towards hydrogen production. J. Mater. Chem. A 2022, 10, 19067–19089.

[19]

Kirubasankar, B.; Won, Y. S.; Adofo, L. A.; Choi, S. H.; Kim, S. M.; Kim, K. K. Atomic and structural modifications of two-dimensional transition metal dichalcogenides for various advanced applications. Chem. Sci. 2022, 13, 7707–7738.

[20]

Mondal, A.; Vomiero, A. 2D transition metal dichalcogenides-based electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2022, 32, 2208994.

[21]

Chia, X. Y.; Ambrosi, A.; Lazar, P.; Sofer, Z.; Pumera, M. Electrocatalysis of layered group 5 metallic transition metal dichalcogenides (MX2, M = V, Nb, and Ta; X = S, Se, and Te). J. Mater. Chem. A 2016, 4, 14241–14253.

[22]

Ge, Y. C.; Gao, S. P.; Dong, P.; Baines, R.; Ajayan, P. M.; Ye, M. X.; Shen, J. F. Insight into the hydrogen evolution reaction of nickel dichalcogenide nanosheets: Activities related to non-metal ligands. Nanoscale 2017, 9, 5538–5544.

[23]

Li, J.; Hong, M. L.; Sun, L. J.; Zhang, W. F.; Shu, H. B.; Chang, H. X. Enhanced electrocatalytic hydrogen evolution from large-scale, facile-prepared, highly crystalline WTe2 nanoribbons with weyl semimetallic phase. ACS Appl. Mater. Interfaces 2018, 10, 458–467.

[24]

Bhat, K. S.; Nagaraja, H. S. Performance evaluation of molybdenum dichalcogenide (MoX2; X= S, Se, Te) nanostructures for hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 17878–17886.

[25]

Yang, Y. J.; Yu, Y. H.; Li, J.; Chen, Q. R.; Du, Y. L.; Rao, P.; Li, R. S.; Jia, C. M.; Kang, Z. Y.; Deng, P. L. et al. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 2021, 13, 160.

[26]

Ma, R. P.; Wang, X.; Yang, X. L.; Li, Y.; Liu, C. P.; Ge, J. J.; Xing, W. Identification of active sites and synergistic effect in multicomponent carbon-based Ru catalysts during electrocatalytic hydrogen evolution. Nano Res. 2022, 16, 166–173.

[27]

Zhu, J. W.; Guo, Y.; Liu, F.; Xu, H. W.; Gong, L.; Shi, W. J.; Chen, D.; Wang, P. Y.; Yang, Y.; Zhang, C. T. et al. Regulative electronic states around ruthenium/ruthenium disulphide heterointerfaces for efficient water splitting in acidic media. Angew. Chem., Int. Ed. 2021, 60, 12328–12334.

[28]

Zhao, Y. M.; Cong, H. J.; Li, P.; Wu, D. A.; Chen, S. L.; Luo, W. Hexagonal RuSe2 nanosheets for highly efficient hydrogen evolution electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 7013–7017.

[29]

Tang, B.; Yang, X. D.; Kang, Z. H.; Feng, L. G. Crystallized RuTe2 as unexpected bifunctional catalyst for overall water splitting. Appl. Catal. B Environ. 2020, 278, 119281.

[30]

Zhang, Z.; Jiang, C.; Li, P.; Yao, K. G.; Zhao, Z. L.; Fan, J. T.; Li, H.; Wang, H. J. Benchmarking phases of ruthenium dichalcogenides for electrocatalysis of hydrogen evolution: Theoretical and experimental insights. Small 2021, 17, 2007333.

[31]

Cao, X. J.; Wang, T. Z.; Jiao, L. F. Transition-metal (Fe, Co, and Ni)-based nanofiber electrocatalysts for water splitting. Adv. Fiber Mater. 2021, 3, 210–228.

[32]

Zhang, F. Z.; Chen, J.; Yang, J. P. Fiber materials for electrocatalysis applications. Adv. Fiber Mater. 2022, 4, 720–735.

[33]

Wei, Y.; Xu, G.; Wei, Y. J.; Ji, L.; Wang, T.; Liu, Z.; Wang, S. Temperature-controlled synthesis of heterostructured Ru-Ru2P nanoparticles embedded in carbon nanofibers for highly efficient hydrogen production. Sci. China Mater. 2022, 65, 2675–2684.

[34]

Ito, Y.; Cong, W. T.; Fujita, T.; Tang, Z.; Chen, M. W. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2131–2136.

[35]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

[36]

He, Q.; Zhou, Y. Z.; Shou, H. W.; Wang, X. Y.; Zhang, P. J.; Xu, W. J.; Qiao, S. C.; Wu, C. Q.; Liu, H. J.; Liu, D. B. et al. Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Adv. Mater. 2022, 34, 2110604.

File
12274_2023_6206_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 July 2023
Revised: 13 August 2023
Accepted: 17 September 2023
Published: 24 October 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by Natural Science Foundation of Zhejiang Province (Nos. LQ20B030001 and LZ22C100002) and China Postdoctoral Science Foundation (No. 2021M702305).

Return