Journal Home > Volume 17 , Issue 4

Moiré superlattices, arising from the controlled twisting of van der Waals homostructures at specific angles, have emerged as a promising platform for quantum emission applications. Concurrently, the manipulation of strain provides a versatile strategy to finely adjust electronic band structures, enhance exciton luminescence efficiency, and establish a robust foundation for two-dimensional quantum light sources. However, the intricate interplay between strain and moiré potential remains partially unexplored. Here, we introduce a meticulously designed fusion of strain engineering and the twisted 2L-WSe2/2L-WSe2 homobilayers, resulting in the precise localization of moiré excitons. Employing low-temperature photoluminescence spectroscopy, we unveil the emergence of highly localized moiré-enhanced emission, characterized by the presence of multiple distinct emission lines. Furthermore, our investigation demonstrates the effective regulation of moiré potential depths through strain engineering, with the potential depths of strained and unstrained regions differing by 91%. By combining both experimental and theoretical approaches, our study elucidates the complex relationship between strain and moiré potential, thereby opening avenues for generating strain-induced moiré exciton single-photon sources.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Unveiling strain-enhanced moiré exciton localization in twisted van der Waals homostructures

Show Author's information Henry Rui He1,§Haihong Zheng1,2,§Biao Wu1Shaofei Li1Junnan Ding1Zongwen Liu3Jian-Tao Wang4Anlian Pan5Yanping Liu1,6,7( )
Institute of Quantum Physics, School of Physics, Central South University, Changsha 410083, China
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
College of Materials Science and Engineering, Hunan University, Changsha 410082, China
State Key Laboratory of High-Performance Complex Manufacturing, Central South University, Changsha 410083, China
Shenzhen Research Institute of Central South University, Shenzhen 51800, China

§ Henry Rui He and Haihong Zheng contributed equally to this work.

Abstract

Moiré superlattices, arising from the controlled twisting of van der Waals homostructures at specific angles, have emerged as a promising platform for quantum emission applications. Concurrently, the manipulation of strain provides a versatile strategy to finely adjust electronic band structures, enhance exciton luminescence efficiency, and establish a robust foundation for two-dimensional quantum light sources. However, the intricate interplay between strain and moiré potential remains partially unexplored. Here, we introduce a meticulously designed fusion of strain engineering and the twisted 2L-WSe2/2L-WSe2 homobilayers, resulting in the precise localization of moiré excitons. Employing low-temperature photoluminescence spectroscopy, we unveil the emergence of highly localized moiré-enhanced emission, characterized by the presence of multiple distinct emission lines. Furthermore, our investigation demonstrates the effective regulation of moiré potential depths through strain engineering, with the potential depths of strained and unstrained regions differing by 91%. By combining both experimental and theoretical approaches, our study elucidates the complex relationship between strain and moiré potential, thereby opening avenues for generating strain-induced moiré exciton single-photon sources.

Keywords: strain engineering, moiré superlattices, moiré potential, moiré excitons

References(38)

[1]

Ko, E. K.; Hahn, S.; Sohn, C.; Lee, S.; Lee, S. S. B.; Sohn, B.; Kim, J. R.; Son, J.; Song, J.; Kim, Y. et al. Tuning orbital-selective phase transitions in a two-dimensional Hund’s correlated system. Nat. Commun. 2023, 14, 3572.

[2]

Cao, M.; Zhang, C.; Cai, Z.; Xiao, C. C.; Chen, X. S.; Yi, K. Y.; Yang, Y. G.; Lu, Y. H.; Wei, D. C. Enhanced photoelectrical response of thermodynamically epitaxial organic crystals at the two-dimensional limit. Nat. Commun. 2019, 10, 756.

[3]

Zheng, H. H.; Wu, B.; Li, S. F.; Ding, J. N.; He, J.; Liu, Z. W.; Wang, C. T.; Wang, J. T.; Pan, A. L.; Liu, Y. P. Localization-enhanced moiré exciton in twisted transition metal dichalcogenide heterotrilayer superlattices. Light Sci. Appl. 2023, 12, 117.

[4]

Biscaras, J.; Bergeal, N.; Hurand, S.; Feuillet-Palma, C.; Rastogi, A.; Budhani, R. C.; Grilli, M.; Caprara, S.; Lesueur, J. Multiple quantum criticality in a two-dimensional superconductor. Nat. Mater. 2013, 12, 542–548.

[5]

Zheng, H. H.; Wu, B.; Wang, C. T.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Duan, J. A.; Liu, Y. P. Exploring the regulatory effect of stacked layers on moiré excitons in twisted WSe2/WSe2/WSe2 homotrilayer. Nano Res. 2023, 16, 10573–10579.

[6]

Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; Ding, J. N.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Effect of layered-coupling in twisted WSe2 moiré superlattices. Nano Res. 2023, 16, 3435–3442.

[7]

Kang, K. F.; Zhao, W. J.; Zeng, Y. H.; Watanabe, K.; Taniguchi, T.; Shan, J.; Mak, K. F. Switchable moiré potentials in ferroelectric WTe2/WSe2 superlattices. Nat. Nanotechnol. 2023, 18, 861–866.

[8]

Zheng, H. H.; Wu, B.; Li, S. F.; He, J.; Chen, K. Q.; Liu, Z. W.; Liu, Y. P. Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices. Nano Res. 2023, 16, 3429–3434.

[9]

Naik, M. H.; Regan, E. C.; Zhang, Z. C.; Chan, Y. H.; Li, Z. L.; Wang, D. Q.; Yoon, Y.; Ong, C. S.; Zhao, W. Y.; Zhao, S. H. et al. Intralayer charge-transfer moiré excitons in van der Waals superlattices. Nature 2022, 609, 52–57.

[10]

Li, Y.; Hua, Y. Q.; Sun, N.; Liu, S. J.; Li, H. X.; Wang, C.; Yang, X. Y.; Zhuang, Z. C.; Wang, L. L. Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. 2023, 16, 8712–8728.

[11]

Yu, Y.; Zhang, K. D.; Parks, H.; Babar, M.; Carr, S.; Craig, I. M.; Van Winkle, M.; Lyssenko, A.; Taniguchi, T.; Watanabe, K. et al. Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands. Nat. Chem. 2022, 14, 267–273.

[12]

Li, E.; Hu, J. X.; Feng, X. M.; Zhou, Z. S.; An, L. H.; Law, K. T.; Wang, N.; Lin, N. Lattice reconstruction induced multiple ultra-flat bands in twisted bilayer WSe2. Nat. Commun. 2021, 12, 5601.

[13]

Wu, B.; Zheng, H. H.; Li, S. F.; Ding, J. N.; He, J.; Zeng, Y. J.; Chen, K. Q.; Liu, Z. W.; Chen, S. L.; Pan, A. L. et al. Evidence for moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light Sci. Appl. 2022, 11, 166.

[14]

Li, H. Y.; Li, S. W.; Naik, M. H.; Xie, J. X.; Li, X. Y.; Wang, J. Y.; Regan, E.; Wang, D. Q.; Zhao, W. Y.; Zhao, S. H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 2021, 20, 945–950.

[15]

Lian, Z.; Chen, D. X.; Meng, Y. Z.; Chen, X. T.; Su, Y.; Banerjee, R.; Taniguchi, T.; Watanabe, K.; Tongay, S.; Zhang, C. W. et al. Exciton superposition across moiré states in a semiconducting moiré superlattice. Nat. Commun. 2023, 14, 5042.

[16]

Mahdikhanysarvejahany, F.; Shanks, D. N.; Klein, M.; Wang, Q.; Koehler, M. R.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Monti, O. L. A.; Leroy, B. J. et al. Localized interlayer excitons in MoSe2-WSe2 heterostructures without a moiré potential. Nat. Commun. 2022, 13, 5354.

[17]

Chen, D. X.; Lian, Z.; Huang, X.; Su, Y.; Rashetnia, M.; Yan, L.; Blei, M.; Taniguchi, T.; Watanabe, K.; Tongay, S. et al. Tuning moiré excitons and correlated electronic states through layer degree of freedom. Nat. Commun. 2022, 13, 4810.

[18]

Lian, Z.; Chen, D. X.; Ma, L.; Meng, Y. Z.; Su, Y.; Yan, L.; Huang, X.; Wu, Q. R.; Chen, X. Y.; Blei, M. et al. Quadrupolar excitons and hybridized interlayer Mott insulator in a trilayer moiré superlattice. Nat. Commun. 2023, 14, 4604.

[19]

Regan, E. C.; Wang, D. Q.; Jin, C. H.; Bakti Utama, M. I.; Gao, B. N.; Wei, X.; Zhao, S. H.; Zhao, W. Y.; Zhang, Z. C.; Yumigeta, K. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 2020, 579, 359–363.

[20]

Li, T. X.; Jiang, S. W.; Li, L. Z.; Zhang, Y.; Kang, K. F.; Zhu, J. C.; Watanabe, K.; Taniguchi, T.; Chowdhury, D.; Fu, L. et al. Continuous Mott transition in semiconductor moiré superlattices. Nature 2021, 597, 350–354.

[21]

Zhang, C. X.; Zhu, T. C.; Soejima, T.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Zettl, A.; Wang, F.; Zaletel, M. P.; Crommie, M. F. Local spectroscopy of a gate-switchable moiré quantum anomalous Hall insulator. Nat. Commun. 2023, 14, 3595.

[22]

Jiang, J.; Xiao, D.; Wang, F.; Shin, J. H.; Andreoli, D.; Zhang, J. X.; Xiao, R.; Zhao, Y. F.; Kayyalha, M.; Zhang, L. et al. Concurrence of quantum anomalous Hall and topological Hall effects in magnetic topological insulator sandwich heterostructures. Nat. Mater. 2020, 19, 732–737.

[23]

Díez-Mérida, J.; Díez-Carlón, A.; Yang, S. Y.; Xie, Y. M.; Gao, X. J.; Senior, J.; Watanabe, K.; Taniguchi, T.; Lu, X.; Higginbotham, A. P. et al. Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene. Nat. Commun. 2023, 14, 2396.

[24]

Lee, G. H.; Huang, K. F.; Efetov, D. K.; Wei, D. S.; Hart, S.; Taniguchi, T.; Watanabe, K.; Yacoby, A.; Kim, P. Inducing superconducting correlation in quantum Hall edge states. Nat. Phys. 2017, 13, 693–698.

[25]

Yang, F.; Feng, J.; Chen, J. X.; Ye, Z. Y.; Chen, J. H.; Hensley, D. K.; Yin, Y. D. Engineering surface strain for site-selective island growth of Au on anisotropic Au nanostructures. Nano Res. 2023, 16, 5873–5879.

[26]
Li, X. Z.; Jones, A. C.; Choi, J.; Zhao, H.; Chandrasekaran, V.; Pettes, M. T.; Piryatinski, A.; Tschudin, M. A.; Reiser, P.; Broadway, D. A. et al. Proximity-induced chiral quantum light generation in strain-engineered WSe2/NiPS3 heterostructures. Nat. Mater., in press, https://doi.org/10.1038/s41563-023-01645-7.
DOI
[27]

Cheng, F. H.; Huang, J. W.; Qin, F.; Zhou, L.; Dai, X. T.; Bi, X. Y.; Zhang, C. R.; Li, Z. Y.; Tang, M.; Qiu, C. Y. et al. Strain engineering of anisotropic light-matter interactions in one-dimensional P–P chain of SiP2. Nano Res. 2022, 15, 7378–7383.

[28]

Branny, A.; Kumar, S.; Proux, R.; Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 2017, 8, 15053.

[29]

Liu, B. S.; Liao, Q. L.; Zhang, X. K.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z.; Zhang, Z.; Zhang, Y. Strain-engineered van der Waals interfaces of mixed-dimensional heterostructure arrays. ACS Nano 2019, 13, 9057–9066.

[30]

Lu, D. L.; Chen, Y.; Kong, L. G.; Luo, C. B.; Lu, Z. Y.; Tao, Q. Y.; Song, W. J.; Ma, L. K.; Li, Z. W.; Li, W. Y. et al. Strain-Plasmonic coupled broadband photodetector based on monolayer MoS2. Small 2022, 18, 2107104.

[31]

Bai, Y. S.; Zhou, L.; Wang, J.; Wu, W. J.; Mcgilly, L. J.; Halbertal, D.; Lo, C. F. B.; Liu, F.; Ardelean, J.; Rivera, P. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 2020, 19, 1068–1073.

[32]

Shabani, S.; Halbertal, D.; Wu, W. J.; Chen, M. X.; Liu, S.; Hone, J.; Yao, W.; Basov, D. N.; Zhu, X. Y.; Pasupathy, A. N. Deep moiré potentials in twisted transition metal dichalcogenide bilayers. Nat. Phys. 2021, 17, 720–725.

[33]

Yu, H. Y.; Liu, G. B.; Tang, J. J.; Xu, X. D.; Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci. Adv. 2017, 3, e1701696.

[34]

Yu, H. Y.; Wang, Y.; Tong, Q. J.; Xu, X. D.; Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 2015, 115, 187002.

[35]

Tran, K.; Moody, G.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M.; Singh, A. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71–75.

[36]

Mahdikhanysarvejahany, F.; Shanks, D. N.; Muccianti, C.; Badada, B. H.; Idi, I.; Alfrey, A.; Raglow, S.; Koehler, M. R.; Mandrus, D. G.; Taniguchi, T. et al. Temperature dependent moiré trapping of interlayer excitons in MoSe2-WSe2 heterostructures. npj 2D Mater. Appl. 2021, 5, 67.

[37]

Fang, Y. T.; Wang, L.; Sun, Q. L.; Lu, T. P.; Deng, Z.; Ma, Z. G.; Jiang, Y.; Jia, H. Q.; Wang, W. X.; Zhou, J. M. et al. Investigation of temperature-dependent photoluminescence in multi-quantum wells. Sci. Rep. 2015, 5, 12718.

[38]

Zhang, Y.; Kim, H.; Zhang, W. J.; Watanabe, K.; Taniguchi, T.; Gao, Y. L.; Maruyama, M.; Okada, S.; Shinokita, K.; Matsuda, K. Magnon-coupled intralayer moiré trion in monolayer semiconductor-antiferromagnet heterostructures. Adv. Mater. 2022, 34, e2200301.

File
12274_2023_6205_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 August 2023
Revised: 14 September 2023
Accepted: 14 September 2023
Published: 24 October 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors express their sincere gratitude to the diverse array of funding sources that have generously supported this research endeavor. Notably, the National Natural Science Foundation of China (No. 52373311), the Science Talent Program of China, the Hunan Provincial Science Fund for Distinguished Young Scholars (No. 2020JJ2059), the Hunan Province Key Research and Development Project (No. 2019GK2233), and the Youth Innovation Team (No. 2019012) of Central South University (CSU) have played an essential role in facilitating the success of this study. Furthermore, the Science and Technology Innovation Basic Research Project of Shenzhen (No. JCYJ20190806144418859), the Key Program of the Science and Technology Department of Hunan Province (Nos. 2019XK2001 and 2020XK2001), and the National Natural Science Foundation of China (Nos. 62090035 and U19A2090) have also made significant contributions to the advancement of this work. The support provided by the High-Performance Complex Manufacturing Key State Lab Project at CSU (No. ZZYJKT2020-12) has been of immeasurable value, greatly expediting the research process. Acknowledgment is also extended to the Australian Research Council (ARC Discovery Project, DP180102976) for its pivotal role in driving forward this research agenda. Additionally, J. T. W. extends gratitude for the support received from the National Natural Science Foundation of China (Nos. 92263202 and 11974387), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB33000000), and the National Key Research and Development Program of China (No. 2020YFA0711502). The authors also wish to convey their deep appreciation to the Beijing Super Cloud Computing Center (BSCC, http://www.blsc.cn) for granting access to high-performance computing (HPC) resources, which have been instrumental in yielding the research outcomes detailed in this paper. Finally, the authors hold profound gratitude for the support of the Postdoctoral Science Foundation of China (No. 2022M713546), a vital contribution that has substantially propelled the advancement of this research endeavor. This work was supported in part by the High-Performance Computing Center of Central South University.

Return