Journal Home > Volume 17 , Issue 3

Ti3C2Tx nanosheets have attracted significant attention for their potential in electromagnetic wave absorption (EWA). However, their inherent self-stacking and exorbitant electrical conductivity inevitably lead to serious impedance mismatch, restricting their EWA application. Therefore, the optimization of impedance matching becomes crucial. In this work, we developed polymethyl methacrylate (PMMA)@Ti3C2Tx@SiO2 composites with a sandwich-like core–shell structure by coating SiO2 on PMMA@Ti3C2Tx. The results demonstrate that the superiority of the SiO2 layer in combination with PMMA@Ti3C2Tx, outperforming other relative graded distribution structures and meeting the requirements of EWA equipment. The resulting PMMA@Ti3C2Tx@SiO2 composites achieved a minimum reflection loss of −58.08 dB with a thickness of 1.9 mm, and an effective absorption bandwidth of 2.88 GHz. Mechanism analysis revealed that the structural design of SiO2 layer not only optimized impedance matching, but also synergistically enhanced multiple loss mechanisms such as interfacial polarization and dipolar polarization. Therefore, this work provides valuable insights for the future preparation of high-performance electromagnetic wave absorbing Ti3C2Tx-based composites.


menu
Abstract
Full text
Outline
About this article

Enhanced electromagnetic wave absorption via optical fiber-like PMMA@Ti3C2Tx@SiO2 composites with improved impedance matching

Show Author's information Huanhuan Niu1,2Xuewen Jiang1Wei Li3( )Zhiyu Min4Budi Riza Putra5Wulan Tri Wahyuni6Hailong Wang1Rui Zhang1,4Bingbing Fan1( )
School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt 64287, Germany
School of Material Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China
Research Center for Metallurgy, National Research and Innovation Agency (BRIN), PUSPIPTEK Gd. 470, South Tangerang, Banten 15315, Indonesia
Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, West Java 16680, Indonesia

Abstract

Ti3C2Tx nanosheets have attracted significant attention for their potential in electromagnetic wave absorption (EWA). However, their inherent self-stacking and exorbitant electrical conductivity inevitably lead to serious impedance mismatch, restricting their EWA application. Therefore, the optimization of impedance matching becomes crucial. In this work, we developed polymethyl methacrylate (PMMA)@Ti3C2Tx@SiO2 composites with a sandwich-like core–shell structure by coating SiO2 on PMMA@Ti3C2Tx. The results demonstrate that the superiority of the SiO2 layer in combination with PMMA@Ti3C2Tx, outperforming other relative graded distribution structures and meeting the requirements of EWA equipment. The resulting PMMA@Ti3C2Tx@SiO2 composites achieved a minimum reflection loss of −58.08 dB with a thickness of 1.9 mm, and an effective absorption bandwidth of 2.88 GHz. Mechanism analysis revealed that the structural design of SiO2 layer not only optimized impedance matching, but also synergistically enhanced multiple loss mechanisms such as interfacial polarization and dipolar polarization. Therefore, this work provides valuable insights for the future preparation of high-performance electromagnetic wave absorbing Ti3C2Tx-based composites.

Keywords: SiO2 layer, impedance match, optical fiber-like structure, polymethyl methacrylate (PMMA)@Ti3C2Tx@SiO2 composites, interfacial polarization and dipolar polarization.

References(66)

[1]

Song, Q.; Ye, F.; Kong, L.; Shen, Q. L.; Han, L. Y.; Feng, L.; Yu, G. J.; Pan, Y. N.; Li, H. J. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475.

[2]

Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302.

[3]

Lu, Y. H.; Zhang, S. L.; He, M. Y.; Wei, L.; Chen, Y.; Liu, R. N. 3D cross-linked graphene or/and MXene based nanomaterials for electromagnetic wave absorbing and shielding. Carbon 2021, 178, 413–435.

[4]

Zhang, Z. W.; Cai, Z. H.; Zhang, Y.; Peng, Y. L.; Wang, Z. Y.; Xia, L.; Ma, S. P.; Yin, Z. Z.; Wang, R. F.; Cao, Y. S. et al. The recent progress of MXene-Based microwave absorption materials. Carbon 2021, 174, 484–499.

[5]

Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053.

[6]

Li, X. L.; Yin, X. W.; Song, C. Q.; Han, M. K.; Xu, H. L.; Duan, W. Y.; Cheng, L. F.; Zhang, L. T. Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 2018, 28, 1803938.

[7]

Li, Y.; Meng, F. B.; Mei, Y.; Wang, H. G.; Guo, Y. F.; Wang, Y.; Peng, F. X.; Huang, F.; Zhou, Z. W. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 2020, 391, 123512.

[8]

Deng, B. W.; Liu, Z. C.; Pan, F.; Xiang, Z.; Zhang, X.; Lu, W. Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching. J. Mater. Chem. A 2021, 9, 3500–3510.

[9]

Li, X.; You, W. B.; Wang, L.; Liu, J. W.; Wu, Z. C.; Pei, K.; Li, Y. S.; Che, R. C. Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. ACS Appl. Mater. Interfaces 2019, 11, 44536–44544.

[10]

Li, X.; You, W. B.; Xu, C. Y.; Wang, L.; Yang, L. T.; Li, Y. S.; Che, R. C. 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 2021, 13, 157.

[11]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[12]

Liang, L. Y.; Han, G. J.; Li, Y.; Zhao, B.; Zhou, B.; Feng, Y. Z.; Ma, J. M.; Wang, Y. M.; Zhang, R.; Liu, C. T. Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 2019, 11, 25399–25409.

[13]

Cui, Y. H.; Yang, K.; Wang, J. Q.; Shah, T.; Zhang, Q. Y.; Zhang, B. L. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon 2021, 172, 1–14.

[14]

Liu, P. B.; Zhang, G. Z.; Xu, H. X.; Cheng, S. C.; Huang, Y.; Ouyang, B.; Qian, Y. T.; Zhang, R. X.; Che, R. C. Synergistic dielectric-magnetic enhancement via phase-evolution engineering and dynamic magnetic resonance. Adv. Funct. Mater. 2023, 33, 2211298.

[15]

Du, H.; Zhang, Q. P.; Zhao, B.; Marken, F.; Gao, Q. C.; Lu, H. X.; Guan, L.; Wang, H. L.; Shao, G.; Xu, H. L. et al. Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties. J. Adv. Ceram. 2021, 10, 1042–1051.

[16]

Fan, B. B.; Ansar, M. T.; Chen, Q. Q.; Wei, F. C.; Du, H.; Ouyang, B.; Kan, E. J.; Chen, Y. Q.; Zhao, B.; Zhang, R. Microwave-assisted hydrothermal synthesis of 2D/2D MoS2/Ti3C2Tx heterostructure for enhanced microwave absorbing performance. J. Alloys Compd. 2022, 923, 166253.

[17]

Li, X. L.; Yin, X. W.; Han, M. K.; Song, C. Q.; Xu, H. L.; Hou, Z. X.; Zhang, L. T.; Cheng, L. F. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 2017, 5, 4068–4074.

[18]

Huang, M. Q.; Wang, L.; Pei, K.; You, W. B.; Yu, X. F.; Wu, Z. C.; Che, R. C. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 2020, 16, 2000158.

[19]

Wang, J. Q.; Liu, L.; Jiao, S. L.; Ma, K. J.; Lv, J.; Yang, J. J. Hierarchical carbon fiber@MXene@MoS2 core–sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 2020, 30, 2002595.

[20]

Wei, C. H.; He, M. K.; Li, M. Q.; Ma, X.; Dang, W. L.; Liu, P. B.; Gu, J. W. Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 2023, 36, 101142.

[21]

Shen, Z. J.; Yang, H. L.; Xiong, Z. Q.; Xie, Y.; Liu, C. B. Hollow core–shell CoNi@C and CoNi@NC composites as high-performance microwave absorbers. J. Alloys Compd. 2021, 871, 159574.

[22]

Li, Z. J.; Lin, H.; Xie, Y. X.; Zhao, L. B.; Guo, Y. Y.; Cheng, T. T.; Ling, H. L.; Meng, A. L.; Li, S. X.; Zhang, M. Monodispersed Co@C nanoparticles anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 124, 182–192.

[23]

Zhang, S.; Zhang, F.; Xie, Y. Y.; Niu, H. H.; Li, Y. Y.; Wang, H. L.; Zhang, R.; Li, H. X.; Wang, X. H.; Fan, B. B. Ultrathin CoNi@Ti3C2Tx composites with sandwich structures for efficient microwave absorption. Ceram. Int. 2022, 48, 33751–33762.

[24]

Chen, Q. Q.; Fan, B. B.; Zhang, Q. P.; Wang, S.; Cui, W.; Jia, Y. C.; Xu, S. K.; Zhao, B.; Zhang, R. Design of 3D lightweight Ti3C2Tx MXene porous film with graded holes for efficient electromagnetic interference shielding performance. Ceram. Int. 2022, 48, 14578–14586.

[25]

Jiang, Z. Y.; Gao, Y. J.; Pan, Z. H.; Zhang, M. M.; Guo, J. H.; Zhang, J. W.; Gong, C. H. Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2024, 174, 195–203.

[26]

Liang, Q. Q.; Wang, L.; Qi, X. S.; Peng, Q.; Gong, X.; Chen, Y. L.; Xie, R.; Zhong, W. Hierarchical engineering of CoNi@Air@C/SiO2@polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic-dielectric synergy. J. Mater. Sci. Technol. 2023, 147, 37–46.

[27]

Niu, H. H.; Tu, X. Y.; Zhang, S.; Li, Y. Y.; Wang, H. L.; Shao, G.; Zhang, R.; Li, H. X.; Zhao, B.; Fan, B. B. Engineered core–shell SiO2@Ti3C2Tx composites: Towards ultra-thin electromagnetic wave absorption materials. Chem. Eng. J. 2022, 446, 137260.

[28]

Jiang, X. W.; Niu, H. H.; Li, J. L.; Li, M. R.; Ma, C.; Zhang, R.; Wang, H. L.; Lu, H. X.; Xu, H. L.; Fan, B. B. Construction of core–shell structured SiO2@MoS2 nanospheres for broadband electromagnetic wave absorption. Appl. Surf. Sci. 2023, 628, 157355.

[29]

Wang, Y.; Gao, X.; Zhang, L. J.; Wu, X. M.; Wang, Q. G.; Luo, C. Y.; Wu, G. L. Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber. Appl. Surf. Sci. 2019, 480, 830–838.

[30]

Niu, H. H.; Jiang, X. W.; Xia, Y. D.; Wang, H. L.; Zhang, R.; Li, H. X.; Fan, B. B.; Zhou, Y. C. Construction of hydrangea-like core–shell SiO2@Ti3C2Tx@CoNi microspheres for tunable electromagnetic wave absorbers. J. Adv. Ceram. 2023, 12, 711–723.

[31]

Nikolaidis, A. K.; Achilias, D. S. Thermal degradation kinetics and viscoelastic behavior of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites prepared via in situ bulk radical polymerization. Polymers 2018, 10, 491.

[32]

Liu, N.; Li, Q. Q.; Wan, H. J.; Chang, L. B.; Wang, H.; Fang, J. H.; Ding, T. P.; Wen, Q. Y.; Zhou, L. J.; Xiao, X. High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite. Nat. Commun. 2022, 13, 5551.

[33]

Huang, S. H.; Mochalin, V. N. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg. Chem. 2019, 58, 1958–1966.

[34]

He, P.; Cao, M. S.; Shu, J. C.; Cai, Y. Z.; Wang, X. X.; Zhao, Q. L.; Yuan, J. Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy. ACS Appl. Mater. Interfaces 2019, 11, 12535–12543.

[35]

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man Hong, S.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

[36]

Wang, X. H.; Bao, S.; Hu, F. Y.; Shang, S. Y.; Chen, Y. Q.; Zhao, N.; Zhang, R.; Zhao, B.; Fan, B. B. The effect of honeycomb pore size on the electromagnetic interference shielding performance of multifunctional 3D honeycomb-like Ag/Ti3C2Tx hybrid structures. Ceram. Int. 2022, 48, 16892–16900.

[37]

Li, Q.; Jiao, Q. Z.; Li, H. J.; Yan, Y.; Lu, C. X.; Shen, X. R.; Gu, T. T.; Zhou, W.; Zhao, Y.; Li, H. S. et al. Constructing layered double hydroxide derived heterogeneous Ti3C2Tx@S-MCoP (M = Ni, Mn, Zn) with S-vacancies to boost sodium storage performance. J. Mater. Chem. A 2022, 10, 21690–21700.

[38]

Xu, H. X.; He, Z. Z.; Li, Y. R.; Wang, Y. R.; Zhang, Z. W.; Dai, X. Q.; Xiong, Z. M.; Geng, W. C.; Liu, P. B. Porous magnetic carbon spheres with adjustable magnetic-composition and synergistic effect for lightweight microwave absorption. Carbon 2023, 213, 118290.

[39]

Zhao, Y. P.; Zuo, X. Q.; Guo, Y.; Huang, H.; Zhang, H.; Wang, T.; Wen, N. X.; Chen, H.; Cong, T. Z.; Muhammad, J. et al. Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 2021, 13, 144.

[40]

Wu, Z. C.; Pei, K.; Xing, L. S.; Yu, X. F.; You, W. B.; Che, R. C. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 2019, 29, 1901448.

[41]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[42]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[43]

Zuo, X. Q.; Zhang, H.; Zhou, C.; Zhao, Y. P.; Huang, H.; Wen, N. X.; Sun, C.; Fan, Z.; Pan, L. J. Hierarchical and porous structures of carbon nanotubes-anchored MOF derivatives bridged by carbon nanocoils as lightweight and broadband microwave absorbers. Small 2023, 19, 2301992.

[44]

Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Res. 2022, 15, 7778–7787.

[45]
Wei, C. H.; Shi, L. Z.; Li, M. Q.; He, M. K.; Li, M. J.; Jing, X. R.; Liu, P. B.; Gu, J. W. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol., in press, https://doi.org/10.1016/j.jmst.2023.08.020.
DOI
[46]

Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214–1221.

[47]

You, H. H.; Zhang, L.; Jiang, Y. Z.; Shao, T. Y.; Li, M.; Gong, J. L. Bubble-supported engineering of hierarchical CuCo2S4 hollow spheres for enhanced electrochemical performance. J. Mater. Chem. A 2018, 6, 5265–5270.

[48]

Guo, R.; Fan, Y. C.; Wang, L. J.; Jiang, W. Core-rim structured carbide MXene/SiO2 nanoplates as an ultrathin microwave absorber. Carbon 2020, 169, 214–224.

[49]

Gu, W. H.; Ong, S. J. H.; Shen, Y. H.; Guo, W. Y.; Fang, Y. T.; Ji, G. B.; Xu, Z. J. A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. (Weinh. ) 2022, 9, 2204165.

[50]

Huang, Y. Q.; Yong, J.; Song, W. L.; Wen, B.; Fang, X. Y.; Cao, M. S. Microwave absorbing materials: Solutions for real functions under ideal conditions of microwave absorption. Chin. Phys. Lett. 2010, 27, 027702.

[51]

Ge, C. Q.; Wang, L. Y.; Liu, G.; Wang, T. Enhanced electromagnetic properties of carbon nanotubes and SiO2-coated carbonyl iron microwave absorber. J. Alloys Compd. 2018, 767, 173–180.

[52]

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

[53]

Han, M. K.; Yin, X. W.; Kong, L.; Li, M.; Duan, W. Y.; Zhang, L. T.; Cheng, L. F. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2014, 2, 16403–16409.

[54]

He, G. H.; Duan, Y. P.; Pang, H. F. Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 2020, 12, 57.

[55]

Hu, F. Y.; Zhang, F.; Wang, X. H.; Li, Y. Y.; Wang, H. L.; Zhang, R.; Li, H. X.; Fan, B. B. Ultrabroad band microwave absorption from hierarchical MoO3/TiO2/Mo2TiC2Tx hybrids via annealing treatment. J. Adv. Ceram. 2022, 11, 1466–1478.

[56]

Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Tunable and improved microwave absorption of flower-like core@shell MFe2O4@MoS2 (M = Mn, Ni and Zn) nanocomposites by defect and interface engineering. J. Mater. Sci. Technol. 2023, 139, 137–146.

[57]

Shu, R. W.; Wan, Z. L.; Zhang, J. B.; Wu, Y.; Liu, Y.; Shi, J. J.; Zheng, M. D. Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers. ACS Appl. Mater. Interfaces 2020, 12, 4689–4698.

[58]

Qiu, X.; Wang, L. X.; Zhu, H. L.; Guan, Y. K.; Zhang, Q. T. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 2017, 9, 7408–7418.

[59]

Peng, H.; He, M.; Zhou, Y. M.; Song, Z. P.; Wang, Y. J.; Feng, S. J.; Chen, X.; Zhang, X. A.; Chen, H. Low-temperature carbonized biomimetic cellulose nanofiber/MXene composite membrane with excellent microwave absorption performance and tunable absorption bands. Chem. Eng. J. 2022, 433, 133269.

[60]

Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

[61]

McCartney, M. R.; Dunin-Borkowski, R. E.; Smith, D. J. Quantitative measurement of nanoscale electrostatic potentials and charges using off-axis electron holography: Developments and opportunities. Ultramicroscopy 2019, 203, 105–118.

[62]

Hu, F. Y.; Wang, X. H.; Bao, S.; Song, L. M.; Zhang, S.; Niu, H. H.; Fan, B. B.; Zhang, R.; Li, H. X. Tailoring electromagnetic responses of delaminated Mo2TiC2Tx MXene through the decoration of Ni particles of different morphologies. Chem. Eng. J. 2022, 440, 135855.

[63]

Zhang, H.; Zhao, Y. P.; Zuo, X. Q.; Huang, H.; Sun, C.; Fan, Z.; Pan, L. J. Construction of chiral-magnetic-dielectric trinity composites for efficient microwave absorption with low filling ratio and thin thickness. Chem. Eng. J. 2023, 467, 143414.

[64]

Liu, P. B.; Wang, Y.; Zhang, G. Z.; Huang, Y.; Zhang, R. X.; Liu, X. H.; Zhang, X. F.; Che, R. C. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 2022, 32, 2202588.

[65]

Meng, R.; Zhang, T.; Jiao, P. Z.; Zhang, M. F.; Huang, X. X.; Xia, L.; Zhong, B.; Zhao, H.; Wang, H. T.; Wen, G. W. Facile fabrication of SiC/FexOy embellished graphite layers with enhanced electromagnetic wave absorption. J. Alloys Compd. 2019, 798, 386–393.

[66]

Wang, L.; Li, X.; Li, Q. Q.; Yu, X. F.; Zhao, Y. H.; Zhang, J.; Wang, M.; Che, R. C. Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 2019, 15, 1900900.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 August 2023
Revised: 10 September 2023
Accepted: 12 September 2023
Published: 03 November 2023
Issue date: March 2024

Copyright

© The author(s) 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. U2004177), Henan Province Key Research Project for Higher Education Institutions (No. 23B430017), the Outstanding Youth Fund of Henan Province (No. 212300410081), and the Science and Technology Innovation Talents in Universities of Henan Province (No. 22HASTIT001). B. B. F. also acknowledged the financial support from the Research and Entrepreneurship Start-up Projects for Overseas Returned Talents.

Rights and permissions

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return