Journal Home > Volume 17 , Issue 4

Efficient portable wearable sweat sensors allow the long-term monitoring of changes in the status of biomarkers in sweat, which can be useful in diagnosis, medication, and nutritional assessment. In this study, we designed and tested a wireless, battery-free, flexible, self-pumping sweat-sensing system that simultaneously tracks levodopa and vitamin C levels in human sweat and detects body temperature. The system includes a microfluidic chip with a self-driven pump and anti-reflux valve, a flexible wireless circuit board, and a purpose-designed smartphone app. The microfluidic chip is used for the efficient collection of sweat and the drainage of excess sweat. The dual electrochemical sensing electrodes in the chip are modified with functional materials and appropriate enzymatic reagents, achieving excellent selectivity and stability. The sensitivities of the levodopa sensor and the vitamin C sensor are 0.0073 and 0.0018 μA·μM−1, respectively, and the detection correlation coefficients of both exceed 0.99. Both sensors have a wide linear detection range of 0–100 and 0–1000 μM, respectively, and low detection limits of 0.28 and 17.9 μM, respectively. The flexible wireless circuit board is equipped with the functions of wireless charging, electrical signal capture and processing, and wireless transmission. The data recorded from each sensor are displayed on a smartphone via a self-developed app. A series of experimental results confirmed the reliability of the sweat-sensing system in noninvasively monitoring important biomarkers in the human body and its potential utility in the comprehensive assessment of biological health.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Finger-actuated wireless-charging wearable multifunctional sweat-sensing system for levodopa and vitamin C

Show Author's information Qihong Ning1,§Shaoqing Feng2,§Qingwen Sun1Ruoyao Yu1Tangan Li1Hao Xu3Daxiang Cui1Kan Wang1( )
School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai 200240, China
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

§ Qihong Ning and Shaoqing Feng contributed equally to this work.

Abstract

Efficient portable wearable sweat sensors allow the long-term monitoring of changes in the status of biomarkers in sweat, which can be useful in diagnosis, medication, and nutritional assessment. In this study, we designed and tested a wireless, battery-free, flexible, self-pumping sweat-sensing system that simultaneously tracks levodopa and vitamin C levels in human sweat and detects body temperature. The system includes a microfluidic chip with a self-driven pump and anti-reflux valve, a flexible wireless circuit board, and a purpose-designed smartphone app. The microfluidic chip is used for the efficient collection of sweat and the drainage of excess sweat. The dual electrochemical sensing electrodes in the chip are modified with functional materials and appropriate enzymatic reagents, achieving excellent selectivity and stability. The sensitivities of the levodopa sensor and the vitamin C sensor are 0.0073 and 0.0018 μA·μM−1, respectively, and the detection correlation coefficients of both exceed 0.99. Both sensors have a wide linear detection range of 0–100 and 0–1000 μM, respectively, and low detection limits of 0.28 and 17.9 μM, respectively. The flexible wireless circuit board is equipped with the functions of wireless charging, electrical signal capture and processing, and wireless transmission. The data recorded from each sensor are displayed on a smartphone via a self-developed app. A series of experimental results confirmed the reliability of the sweat-sensing system in noninvasively monitoring important biomarkers in the human body and its potential utility in the comprehensive assessment of biological health.

Keywords: health monitoring, wireless charging, self-pumping, microfluidic channel, wearable sensor

References(62)

[1]

Qiao, Y. T.; Qiao, L. J.; Chen, Z. M.; Liu, B. X.; Gao, L.; Zhang, L. Wearable sensor for continuous sweat biomarker monitoring. Chemosensors 2022, 10, 273.

[2]

Li, C. Y.; Xu, Z. J.; Xu, S. X.; Wang, T. Y.; Zhou, S. Y.; Sun, Z. R.; Wang, Z. L.; Tang, W. Miniaturized retractable thin-film sensor for wearable multifunctional respiratory monitoring. Nano Res. 2023, 16, 11846–11854.

[3]

Cheng, Y. M.; Wang, K.; Xu, H.; Li, T. G.; Jin, Q. H.; Cui, D. X. Recent developments in sensors for wearable device applications. Anal. Bioanal Chem. 2021, 413, 6037–6057.

[4]

Zhang, W. L. H.; Guan, H. Y.; Zhong, T. Y.; Zhao, T. M.; Xing, L. L.; Xue, X. Y. Wearable battery-free perspiration analyzing sites based on sweat flowing on ZnO nanoarrays. Nano-Micro Lett. 2020, 12, 105.

[5]

Chang, T. R.; Li, H.; Zhang, N. R.; Jiang, X. R.; Yu, X. G.; Yang, Q. D.; Jin, Z. Y.; Meng, H.; Chang, L. Q. Highly integrated watch for noninvasive continual glucose monitoring. Microsyst. Nanoeng. 2022, 8, 25.

[6]

Dautta, M.; Ayala-Cardona, L. F.; Davis, N.; Aggarwal, A.; Park, J.; Wang, S.; Gillan, L.; Jansson, E.; Hietala, M.; Ko, H. et al. Tape-free, digital wearable band for exercise sweat rate monitoring. Adv. Mater. Technol. 2023, 8, 2201187.

[7]

Dong, J. C.; Peng, Y. D.; Zhang, Y. T.; Chai, Y. J.; Long, J. Y.; Zhang, Y. X.; Zhao, Y.; Huang, Y. P.; Liu, T. X. Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 2023, 15, 181.

[8]

Ning, Q. H.; Feng, S. Q.; Cheng, Y. M.; Li, T. G.; Cui, D. X.; Wang, K. Point-of-care biochemical assays using electrochemical technologies: Approaches, applications, and opportunities. Microchim. Acta 2022, 189, 310.

[9]

He, X. C.; Yang, S. J.; Pei, Q. B.; Song, Y. C.; Liu, C. H.; Xu, T. L.; Zhang, X. J. Integrated smart Janus textile bands for self-pumping sweat sampling and analysis. ACS Sens. 2020, 5, 1548–1554.

[10]

Zhang, S. Z.; Jiang, H. Q.; Wang, S.; Yuan, J.; Yi, W. D.; Wang, L. F.; Liu, X. W.; Liu, F.; Cheng, G. J. Epidermal patch with biomimetic multistructural microfluidic channels for timeliness monitoring of sweat. ACS Appl. Mater. Interfaces 2023, 15, 469–478.

[11]

Wang, L. R.; Wang, J.; Fan, C.; Xu, T. L.; Zhang, X. J. Skin-like hydrogel-elastomer based electrochemical device for comfortable wearable biofluid monitoring. Chem. Eng. J. 2023, 455, 140609.

[12]

Min, J. H.; Tu, J. B.; Xu, C. H.; Lukas, H.; Shin, S.; Yang, Y.; Solomon, S. A.; Mukasa, D.; Gao, W. R. Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 2023, 123, 5049–5138.

[13]

Jin, X. F.; Li, G. H.; Xu, T. L.; Su, L.; Yan, D.; Zhang, X. J. Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosens. Bioelectron. 2022, 196, 113760.

[14]

Yang, P. F.; Wei, G. F.; Liu, A.; Huo, F. W.; Zhang, Z. N. A review of sampling, energy supply and intelligent monitoring for long-term sweat sensors. npj Flex. Electron. 2022, 6, 33.

[15]

Raymundo-Pereira, P. A.; Gomes, N. O.; Machado, S. A. S.; Oliveira, O. O. Jr. Wearable glove-embedded sensors for therapeutic drug monitoring in sweat for personalized medicine. Chem. Eng. J. 2022, 435, 135047.

[16]

Wang, M. Q.; Yang, Y. R.; Min, J. H.; Song, Y.; Tu, J. B.; Mukasa, D.; Ye, C.; Xu, C. H.; Heflin, N.; McCune, J. S. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 2022, 6, 1225–1235.

[17]
Saha, T.; Del Caño, R.; La De Paz, E.; Sandhu, S. S.; Wang, J. Access and management of sweat for non-invasive biomarker monitoring: A comprehensive review. Small, in press, https://doi.org/10.1002/smll.202206064.
[18]

Roycroft, M.; Abdelhafiz, A. H.; Rose, J. Patient-controlled variable dosing of levodopa for Parkinson’s disease. Age Ageing 2020, 49, 305–306.

[19]

Matsuyama, H.; Matsuura, K.; Ishikawa, H.; Hirata, Y.; Kato, N.; Niwa, A.; Narita, Y.; Tomimoto, H. Correlation between serum zinc levels and levodopa in Parkinson’s disease. Nutrients 2021, 13, 4114.

[20]

Chen, C.; Zou, C. P.; Li, L.; Yu, H. D.; Zhu, J. X.; Liu, J. H.; Huang, W. Blue and green emission-transformed fluorescent copolymer: Specific detection of levodopa of anti-Parkinson drug in human serum. Talanta 2020, 214, 120817.

[21]

Xiao, J. Y.; Fan, C.; Xu, T. L.; Su, L.; Zhang, X. J. An electrochemical wearable sensor for levodopa quantification in sweat based on a metal-organic framework/graphene oxide composite with integrated enzymes. Sens. Actuat. B Chem. 2022, 359, 131586.

[22]

Wang, J. W.; Niu, J. A.; Sha, W.; Dai, X. H.; Huang, T. C.; Hua, Q. L.; Long, Y.; Xiao, J. F.; Hu, W. G. Flexible high-resolution micro-LED display device with integrations of transparent, conductive, and highly elastic hydrogel. Nano Res. 2023, 16, 11893–11899.

[23]

Glasco, D. L.; Sheelam, A.; Ho, N. H. B.; Bell, J. G. Smartphone-based detection of levodopa in human sweat using 3D printed sensors. Anal. Chim. Acta 2023, 1273, 341546.

[24]

Sempionatto, J. R.; Montiel, V. R. V.; Vargas, E.; Teymourian, H.; Wang, J. Wearable and mobile sensors for personalized nutrition. ACS Sens. 2021, 6, 1745–1760.

[25]

Del Caño, R.; Saha, T.; Moonla, C.; De La Paz, E.; Wang, J. S. Ketone bodies detection: Wearable and mobile sensors for personalized medicine and nutrition. TrAC Trends Anal. Chem. 2023, 159, 116938.

[26]

Kietzmann, T. Vitamin C: From nutrition to oxygen sensing and epigenetics. Redox Biol. 2023, 63, 102753.

[27]

Bechara, N.; Flood, V. M.; Gunton, J. E. A systematic review on the role of Vitamin C in tissue healing. Antioxidants (Basel) 2022, 11, 1605.

[28]

Sempionatto, J. R.; Khorshed, A. A.; Ahmed, A.; De Loyola e Silva, A. N.; Barfidokht, A.; Yin, L.; Goud, K. Y.; Mohamed, M. A.; Bailey, E.; May, J. et al. Epidermal enzymatic biosensors for sweat Vitamin C: Toward personalized nutrition. ACS Sens. 2020, 5, 1804–1813.

[29]

Yang, X.; Yi, J. Q.; Wang, T.; Feng, Y. A.; Wang, J. W.; Yu, J.; Zhang, F. L.; Jiang, Z.; Lv, Z. S.; Li, H. C. et al. Wet-adhesive on-skin sensors based on metal-organic frameworks for wireless monitoring of metabolites in sweat. Adv. Mater. 2022, 34, 2201768.

[30]

Lin, Y. J.; Bariya, M.; Nyein, H. Y. Y.; Kivimaki, L.; Uusitalo, S.; Jansson, E.; Ji, W. B.; Yuan, Z.; Happonen, T.; Liedert, C. et al. Porous enzymatic membrane for nanotextured glucose sweat sensors with high stability toward reliable noninvasive health monitoring. Adv. Funct. Mater. 2019, 29, 1902521.

[31]

Zhao, J. Q.; Nyein, H. Y. Y.; Hou, L.; Lin, Y. J.; Bariya, M.; Ahn, C. H.; Ji, W. B.; Fan, Z. Y.; Javey, A. A wearable nutrition tracker. Adv. Mater. 2021, 33, 2006444.

[32]

Yan, T. Y.; Zhang, G. Y.; Yu, K.; Chai, H. N.; Tian, M. W.; Qu, L. J.; Dong, H. F.; Zhang, X. J. Smartphone light-driven zinc porphyrinic MOF nanosheets-based enzyme-free wearable photoelectrochemical sensor for continuous sweat vitamin C detection. Chem. Eng. J. 2023, 455, 140779.

[33]

Xiao, J. Y.; Luo, Y.; Su, L.; Lu, J. F.; Han, W.; Xu, T. L.; Zhang, X. J. Hydrophilic metal-organic frameworks integrated uricase for wearable detection of sweat uric acid. Anal. Chim. Acta 2022, 1208, 339843.

[34]

Zha, X.; Yang, W. Y.; Shi, L. W.; Li, Y.; Zeng, Q.; Xu, J. H.; Yang, Y. J. Morphology control strategy of bimetallic MOF nanosheets for upgrading the sensitivity of noninvasive glucose detection. ACS Appl. Mater. Interfaces 2022, 14, 37843–37852.

[35]

Maleki, A.; Shahbazi, M. A.; Alinezhad, V.; Santos, H. A. The progress and prospect of zeolitic imidazolate frameworks in cancer therapy, antibacterial activity, and biomineralization. Adv. Healthc. Mater. 2020, 9, e2000248.

[36]

Bai, J.; Peng, C. J.; Guo, L. P.; Zhou, M. Metal-organic framework-integrated enzymes as bioreactor for enhanced therapy against solid tumor via a cascade catalytic reaction. ACS Biomater. Sci. Eng. 2019, 5, 6207–6215.

[37]
Greyling, C. F.; Ganguly, A.; Sardesai, A. U.; Churcher, N. K. M.; Lin, K. C.; Muthukumar, S.; Prasad, S. Passive sweat wearable: A new paradigm in the wearable landscape toward enabling “detect to treat” opportunities. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., in press, https://doi.org/10.1002/wnan.1912.
[38]

Zhang, Y. W.; Liao, J. J.; Li, Z. H.; Hu, M. X.; Bian, C.; Lin, S. W. All fabric and flexible wearable sensors for simultaneous sweat metabolite detection and high-efficiency collection. Talanta 2023, 260, 124610.

[39]

Lin, P. H.; Sheu, S. C.; Chen, C. W.; Huang, S. C.; Li, B. R. Wearable hydrogel patch with noninvasive, electrochemical glucose sensor for natural sweat detection. Talanta 2022, 241, 123187.

[40]

Wang, J.; Wang, L. R.; Li, G. H.; Yan, D.; Liu, C. H.; Xu, T. L.; Zhang, X. J. Ultra-small wearable flexible biosensor for continuous sweat analysis. ACS Sens. 2022, 7, 3102–3107.

[41]

Chen, Q. Y.; Liu, Y.; Gu, K.; Yao, J. R.; Shao, Z. Z.; Chen, X. Silk-based electrochemical sensor for the detection of glucose in sweat. Biomacromolecules 2022, 23, 3928–3935.

[42]

Wei, J. W.; Zhang, X. L.; Mugo, S. M.; Zhang, Q. A portable sweat sensor based on carbon quantum dots for multiplex detection of cardiovascular health biomarkers. Anal. Chem. 2022, 94, 12772–12780.

[43]

Yeung, K. K.; Li, J. W.; Huang, T.; Hosseini, I. I.; Al Mahdi, R.; Alam, M. M.; Sun, H. L.; Mahshid, S.; Yang, J.; Ye, T. T. et al. Utilizing gradient porous graphene substrate as the solid-contact layer to enhance wearable electrochemical sweat sensor sensitivity. Nano Lett. 2022, 22, 6647–6654.

[44]

Yang, L.; Wang, H.; Abdullah, A. M.; Meng, C. Z.; Chen, X.; Feng, A. Q.; Cheng, H. Y. Direct laser writing of the porous graphene foam for multiplexed electrochemical sweat sensors. ACS Appl. Mater. Interfaces 2023, 15, 34332–34342.

[45]

Xu, X. S.; He, N. Y. Application of adaptive pressure-driven microfluidic chip in thyroid function measurement. Chin. Chem. Lett. 2021, 32, 1747–1750.

[46]

Cheng, Y. M.; Feng, S. Q.; Ning, Q. H.; Li, T. A.; Xu, H.; Sun, Q. W.; Cui, D. X.; Wang, K. Dual-signal readout paper-based wearable biosensor with a 3D origami structure for multiplexed analyte detection in sweat. Microsyst. Nanoeng. 2023, 9, 36.

[47]

Li, Q. F.; Chen, X.; Wang, H.; Liu, M.; Peng, H. L. Pt/MXene-based flexible wearable non-enzymatic electrochemical sensor for continuous glucose detection in sweat. ACS Appl. Mater. Interfaces. 2023, 15, 13290–13298.

[48]

Yang, M. P.; Sun, N.; Lai, X. C.; Wu, J. M.; Wu, L. F.; Zhao, X. Q.; Feng, L. H. Paper-based sandwich-structured wearable sensor with sebum filtering for continuous detection of sweat pH. ACS Sens. 2023, 8, 176–186.

[49]

Huang, L.; Su, E. B.; Liu, Y.; He, N. Y.; Deng, Y.; Jin, L.; Chen, Z.; Li, S. A microfluidic device for accurate detection of hs-cTnI. Chin. Chem Lett. 2021, 32, 1555–1558.

[50]

Zhang, Y. X.; Chen, Y.; Huang, J. L.; Liu, Y. C. Y.; Peng, J. F.; Chen, S. D.; Song, K.; Ouyang, X. P.; Cheng, H. Y.; Wang, X. F. Skin-interfaced microfluidic devices with one-opening chambers and hydrophobic valves for sweat collection and analysis. Lab Chip 2020, 20, 2635–2645.

[51]

Xiao, J. Y.; Liu, Y.; Su, L.; Zhao, D.; Zhao, L.; Zhang, X. J. Microfluidic chip-based wearable colorimetric sensor for simple and facile detection of sweat glucose. Anal. Chem. 2019, 91, 14803–14807.

[52]

Zhao, P. C.; Wang, H. B.; Wang, Y. Z.; Zhao, W.; Han, M. D.; Zhang, H. X. A time sequential microfluid sensor with Tesla valve channels. Nano Res. 2023, 16, 11667–11673.

[53]

Shi, H. H.; Cao, Y.; Zeng, Y. N.; Zhou, Y. N.; Wen, W. H.; Zhang, C. X.; Zhao, Y. L.; Chen, Z. Wearable Tesla valve-based sweat collection device for sweat colorimetric analysis. Talanta 2022, 240, 123208.

[54]

Mishra, N.; Garland, N. T.; Hewett, K. A.; Shamsi, M.; Dickey, M. D.; Bandodkar, A. J. A soft wearable microfluidic patch with finger-actuated pumps and valves for on-demand, longitudinal, and multianalyte sweat sensing. ACS Sens. 2022, 7, 3169–3180.

[55]

Bariya, M.; Davis, N.; Gillan, L.; Jansson, E.; Kokkonen, A.; McCaffrey, C.; Hiltunen, J.; Javey, A. Resettable microfluidics for broad-range and prolonged sweat rate sensing. ACS Sens. 2022, 7, 1156–1164.

[56]

Liu, Y. C. Y.; Li, X. F.; Yang, H. L.; Zhang, P.; Wang, P. H.; Sun, Y.; Yang, F. Z.; Liu, W. Y.; Li, Y. J.; Tian, Y. et al. Skin-interfaced superhydrophobic insensible sweat sensors for evaluating body thermoregulation and skin barrier functions. ACS Nano 2023, 17, 5588–5599.

[57]

Alam, M. S.; Kim, J. K.; Choi, J. Multifunctional wearable system for mapping body temperature and analyzing sweat. ACS Sens. 2023, 8, 1980–1988.

[58]

Hou, Y. F.; Wang, K.; Xiao, K.; Qin, W. J.; Lu, W. T.; Tao, W.; Cui, D. X. Smartphone-based dual-modality imaging system for quantitative detection of color or fluorescent lateral flow immunochromatographic strips. Nanoscale Res. Lett. 2017, 12, 291.

[59]

Wang, K.; Yang, J. C.; Xu, H.; Cao, B.; Qin, Q.; Liao, X. M.; Wo, Y.; Jin, Q. H.; Cui, D. X. Smartphone-imaged multilayered paper-based analytical device for colorimetric analysis of carcinoembryonic antigen. Anal. Bioanal. Chem. 2020, 412, 2517–2528.

[60]

Ning, Q. H.; Zheng, W.; Xu, H.; Zhu, A.; Li, T. G.; Cheng, Y. M.; Feng, S. Q.; Wang, L.; Cui, D. X.; Wang, K. Rapid segmentation and sensitive analysis of CRP with paper-based microfluidic device using machine learning. Anal. Bioanal. Chem. 2022, 414, 3959–3970.

[61]

Liu, S.; He, X. L.; Zhang, T.; Zhao, K. X.; Xiao, C. H.; Tong, Z. R.; Jin, L.; He, N. Y.; Deng, Y.; Li, S. et al. Highly sensitive smartphone-based detection of Listeria monocytogenes using SYTO9. Chin. Chem. Lett. 2022, 33, 1933–1935.

[62]

Kim, E.; Umar, A.; Ameen, S.; Kumar, R.; Ibrahim, A. A.; Alhamami, M. A. M.; Akhtar, M. S.; Baskoutas, S. Synthesis and characterizations of ZIF-8/GO and ZIF-8/rGO composites for highly sensitive detection of Cu2+ ions. Surfaces and Interfaces. 2023, 41, 103163.

File
12274_2023_6197_MOESM1_ESM.pdf (826.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 August 2023
Revised: 11 September 2023
Accepted: 12 September 2023
Published: 11 November 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 32171373), the Projects of International Cooperation and Exchanges NSFC (No. 82020108017), the Natural Science Foundation of Shanghai (No. 23ZR1414500), and the Medical Engineering Cross Project of SJTU (No. YG2021QN141).

Return