AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A healable, mechanically robust and ultrastretchable ionic conductive elastomer for durably wearable sensor

Guoxian Zhang1Chunmei Li1( )JiaoJun Tan1,2Mingqi Wang1Yafeng Ren1Feijie Ge1( )Qiuyu Zhang1( )
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi’an 710021, China
Show Author Information

Graphical Abstract

We report utilizing thiolactone chemistry to graft imidazolium cations on the side chain of poly(urethane-urea) (PUU) and obtain a centipede-like structure to lock the embedded ionic liquids (ILs) by ionic interactions. The fabricated conductive elastomer has outstanding conductivity, sensitivity, and sensing stability.

Abstract

The ionic conductive elastomers show great promise in multifunctional wearable electronics, but they currently suffer from liquid leakage/evaporation or mechanical compliance. Developing ionic conductive elastomers integrating non-volatility, mechanical robustness, superior ionic conductivity, and ultra-stretchability remains urgent and challenging. Here, we developed a healable, robust, and conductive elastomer via impregnating free ionic liquids (ILs) into the ILs-multigrafted poly(urethane-urea) (PUU) elastomer networks. A crucial strategy in the molecular design is that imidazolium cations are largely introduced by double-modification of PUU and centipede-like structures are obtained, which can lock the impregnated ILs through strong ionic interactions. In this system, the PUU matrix contributes outstanding mechanical properties, while the hydrogen bonds and ionic interactions endow the elastomer with self-healing ability, conductivity, as well as non-volatility and transparency. The fabricated ionic conductive elastomers show good conductivity (3.8 × 10−6 S·cm−1), high mechanical properties, including tensile stress (4.64 MPa), elongation (1470%), and excellent healing ability (repairing efficiency of 90% after healing at room temperature for 12 h). Significantly, the conductive elastomers have excellent antifatigue properties, and demonstrate a highly reproducible response after 1000 uninterrupted extension-release cycles. This work provides a promising strategy to prepare ionic conductive elastomers with excellent mechanical properties and stable sensing capacity, and further promote the development of mechanically adaptable intelligent sensors.

Electronic Supplementary Material

Download File(s)
12274_2023_6194_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Oh, J. H.; Hong, S. Y.; Park, H.; Jin, S. W.; Jeong, Y. R.; Oh, S. Y.; Yun, J.; Lee, H.; Kim, J. W.; Ha, J. S. Fabrication of high-sensitivity skin-attachable temperature sensors with bioinspired microstructured adhesive. ACS Appl. Mater. Interfaces 2018, 10, 7263–7270.

[2]

Ying, B. B.; Chen, R. Z.; Zuo, R. Z.; Li, J. Y.; Liu, X. Y. An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics. Adv. Funct. Mater. 2021, 31, 2104665.

[3]

Tee, B. C. K.; Wang, C.; Allen, R.; Bao, Z. N. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012, 7, 825–832.

[4]

Shang, J. J.; Theato, P. Smart composite hydrogel with pH-, ionic strength- and temperature-induced actuation. Soft Matter 2018, 14, 8401–8407.

[5]

Wang, J. X.; Lin, M. F.; Park, S.; Lee, P. S. Deformable conductors for human–machine interface. Mater. Today 2018, 21, 508–526.

[6]

Li, Z. P.; Zhang, P. P.; Shao, Y. S.; Guo, Z. H.; Pu, X. Stretchable iontronics with robust Interface bonding between dielectric and ion-conducting elastomers. Nano Res. 2023, 16, 11862–11870.

[7]

Zhang, S. P.; Sharifuzzamn, M.; Rana, S. M. S.; Zahed, M. A.; Sharma, S.; Shin, Y.; Song, H.; Park, J. Y. Highly conductive, stretchable, durable, skin-conformal dry electrodes based on thermoplastic elastomer-embedded 3D porous graphene for multifunctional wearable bioelectronics. Nano Res. 2023, 16, 7627–7637.

[8]

Kim, Y. M.; Moon, H. C. Ionoskins: Nonvolatile, highly transparent, ultrastretchable ionic sensory platforms for wearable electronics. Adv. Funct. Mater. 2020, 30, 1907290.

[9]

Correia, D. M.; Fernandes, L. C.; Martins, P. M.; García-Astrain, C.; Costa, C. M.; Reguera, J.; Lanceros-Méndez, S. Ionic liquid-polymer composites: A new platform for multifunctional applications. Adv. Funct. Mater. 2020, 30, 1909736.

[10]

Cao, Y.; Morrissey, T. G.; Acome, E.; Allec, S. I.; Wong, B. M.; Keplinger, C.; Wang, C. A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 2017, 29, 1605099.

[11]

Ren, Y. Y.; Guo, J. N.; Liu, Z. Y.; Sun, Z.; Wu, Y. Q.; Liu, L. L.; Yan, F. Ionic liquid-based click-ionogels. Sci. Adv. 2019, 5, eaax0648.

[12]
Li, X. T.; Koh, K. H.; Xue, J. Q.; So, C. H.; Xiao, N.; Tin, C.; Wai, K.; Lai, C. 1D-2D nanohybrid-based textile strain sensor to boost multiscale deformative motion sensing performance. Nano Res. 2022 , 15, 8398–8409.
[13]

Wang, S. L.; Deng, W. L.; Yang, T.; Tian, G.; Xiong, D.; Xiao, X.; Zhang, H. R.; Sun, Y.; Ao, Y.; Huang, J. F. et al. Body-area sensor network featuring micropyramids for sports healthcare. Nano Res. 2023, 16, 1330–1337.

[14]

Li, T. Q.; Wang, Y. T.; Li, S. H.; Liu, X. K.; Sun, J. Q. Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv. Mater. 2020, 32, 2002706.

[15]

Wang, X. H.; Wang, Y. L.; Yang, X.; Lu, Z. Y.; Men, Y. F.; Sun, J. Q. Skin-inspired healable conductive elastomers with exceptional strain-adaptive stiffening and damage tolerance. Macromolecules 2021, 54, 10767–10775.

[16]

Kim, H. J.; Chen, B. H.; Suo, Z. G.; Hayward, R. C. Ionoelastomer junctions between polymer networks of fixed anions and cations. Science 2020, 367, 773–776.

[17]

Lei, Z. Y.; Wu, P. Y. A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nat. Commun. 2019, 10, 3429.

[18]

Chen, C.; Ying, W. B.; Li, J. Y.; Kong, Z. Y.; Li, F. L.; Hu, H.; Tian, Y.; Kim, D. H.; Zhang, R. Y.; Zhu, J. A self-healing and ionic liquid affiliative polyurethane toward a piezo 2 protein inspired ionic skin. Adv. Funct. Mater. 2022, 32, 2106341.

[19]

Yuan, J. Y.; Mecerreyes, D.; Antonietti, M. Poly(ionic liquid)s: An update. Prog. Polym. Sci. 2013, 38, 1009–1036.

[20]

Qian, W. J.; Texter, J.; Yan, F. Frontiers in poly(ionic liquid)s: Syntheses and applications. Chem. Soc. Rev. 2017, 46, 1124–1159.

[21]

Chen, F.; Ren, Y. Y.; Guo, J. N.; Yan, F. Thermo- and electro-dual responsive poly(ionic liquid) electrolyte based smart windows. Chem. Commun. 2017, 53, 1595–1598.

[22]

Ming, X. Q.; Du, J. Y.; Zhang, C. G.; Zhou, M. M.; Cheng, G. J.; Zhu, H.; Zhang, Q.; Zhu, S. P. All-solid-state self-healing ionic conductors enabled by ion–dipole interactions within fluorinated poly(ionic liquid) copolymers. ACS Appl. Mater. Interfaces 2021, 13, 41140–41148.

[23]

Chen, J.; Gao, Y. Y.; Shi, L.; Yu, W.; Sun, Z. J.; Zhou, Y. F.; Liu, S.; Mao, H.; Zhang, D. Y.; Lu, T. Q. et al. Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability. Nat. Commun. 2022, 13, 4868.

[24]

Wang, Y. Y.; Huang, X.; Zhang, X. X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat. Commun. 2021, 12, 1291.

[25]

Misztalewska-Turkowicz, I.; Coutelier, O.; Destarac, M. Two pathways of thiolactone incorporation into polyurethanes and their one-pot double postfunctionalization. Macromolecules 2020, 53, 10785–10795.

[26]

Espeel, P.; Du Prez, F. E. One-pot multi-step reactions based on thiolactone chemistry: A powerful synthetic tool in polymer science. Eur. Polym. J. 2015, 62, 247–272.

[27]

Chattaway, C.; Belbekhouche, S.; Du Prez, F. E.; Glinel, K.; Demoustier-Champagne, S. Bifunctionalized redox-responsive layers prepared from a thiolactone copolymer. Langmuir 2018, 34, 5234–5244.

[28]

Reinicke, S.; Espeel, P.; Stamenovic, M. M.; Du Prez, F. E. One-pot double modification of p(NIPAAm): A tool for designing tailor-made multiresponsive polymers. ACS Macro Lett. 2013, 2, 539–543.

[29]

Cai, Y. C.; Li, H. N.; Li, C. M.; Tan, J. J.; Zhang, Q. Y. A strategy of thiolactone chemistry to construct strong and tough self-healing supramolecular polyurethane elastomers via hierarchical hydrogen bonds and coordination bonds. Ind. Eng. Chem. Res. 2023, 62, 6416–6424.

[30]

Zhang, G. X.; Li, C. M.; Tan, J. J.; Wang, M. Q.; Liu, Z. X.; Ren, Y. F.; Xue, Y.; Zhang, Q. Y. Double modification of poly(urethane-urea): Toward healable, tear-resistant, and mechanically robust elastomers for strain sensors. ACS Appl. Mater. Interfaces 2023, 15, 2134–2146.

[31]

Resetco, C.; Frank, D.; Dikić, T.; Claessens, S.; Verbrugge, T.; Du Prez, F. E. Thiolactone-based polymers for formaldehyde scavenging coatings. Eur. Polym. J. 2016, 82, 166–174.

[32]

Lai, Y.; Kuang, X.; Zhu, P.; Huang, M. M.; Dong, X.; Wang, D. J. Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design. Adv. Mater. 2018, 30, 1802556.

[33]

Luo, N.; Wang, D. N.; Ying, S. K. Hydrogen-bonding properties of segmented polyether poly(urethane urea) copolymer. Macromolecules 1997, 30, 4405–4409.

[34]

Williams, A. K.; Davis, B. J.; Crater, E. R.; Lott, J. R.; Simon, Y. C.; Azoulay, J. D. Thiol-ene click chemistry: A modular approach to solid-state triplet-triplet annihilation upconversion. J. Mater. Chem. C 2018, 6, 3876–3881.

[35]

Rajkumar, T.; Rao, G. R. Synthesis and characterization of hybrid molecular material prepared by ionic liquid and silicotungstic acid. Mater. Chem. Phys. 2008, 112, 853–857.

[36]

Jerman, I.; Jovanovski, V.; Vuk, A. Š.; Hočevar, S. B.; Gaberšček, M.; Jesih, A.; Orel, B. Ionic conductivity, infrared and Raman spectroscopic studies of 1-methyl-3-propylimidazolium iodide ionic liquid with added iodine. Electrochim. Acta 2008, 53, 2281–2288.

[37]

Yokozeki, A.; Kasprzak, D. J.; Shiflett, M. B. Thermal effect on C–H stretching vibrations of the imidazolium ring in ionic liquids. Phys. Chem. Chem. Phys. 2007, 9, 5018–5026.

[38]

Jeon, Y.; Sung, J.; Seo, C.; Lim, H.; Cheong, H.; Kang, M.; Moon, B.; Ouchi, Y.; Kim, D. Structures of ionic liquids with different anions studied by infrared vibration spectroscopy. J. Phys. Chem. B 2008, 112, 4735–4740.

[39]

Atanassova, M. S.; Dimitrov, G. D. Synthesis and spectral characterization of novel compounds derived from 1, 10-phenanthroline, lead(II) and tetrabutylammonium tetrafluoroborate. Spectrochim. Acta Part A 2003, 59, 1655–1662.

[40]

Yiming, B.; Han, Y.; Han, Z. L.; Zhang, X. N.; Li, Y.; Lian, W. Z.; Zhang, M. Q.; Yin, J.; Sun, T. L.; Wu, Z. L. et al. A mechanically robust and versatile liquid-free ionic conductive elastomer. Adv. Mater. 2021, 33, 2006111.

[41]

Xu, J. H.; Wang, H.; Du, X. S.; Cheng, X.; Du, Z. L.; Wang, H. B. Highly stretchable PU ionogels with self-healing capability for a flexible thermoelectric generator. ACS Appl. Mater. Interfaces 2021, 13, 20427–20434.

[42]

Li, F. L.; Xu, Z. F.; Hu, H.; Kong, Z. Y.; Chen, C.; Tian, Y.; Zhang, W. W.; Ying, W. B.; Zhang, R. Y.; Zhu, J. A polyurethane integrating self-healing, anti-aging and controlled degradation for durable and eco-friendly E-skin. Chem. Eng. J. 2021, 410, 128363.

[43]

Zhang, K. M.; Zhang, J. H.; Liu, Y. T.; Wang, Z.; Yan, C. Z. Z.; Song, C. X.; Gao, C. H.; Wu, Y. M. An NIR laser induced self-healing PDMS/gold nanoparticles conductive elastomer for wearable sensor. J. Colloid Interface Sci. 2021, 599, 360–369.

[44]

Chen, J. S.; Liu, J. F.; Thundat, T.; Zeng, H. B. Polypyrrole-doped conductive supramolecular elastomer with stretchability, rapid self-healing, and adhesive property for flexible electronic sensors. ACS Appl. Mater. Interfaces 2019, 11, 18720–18729.

[45]

Zhang, Y. C.; Li, M. X.; Qin, B.; Chen, L. L.; Liu, Y. C.; Zhang, X.; Wang, C. Highly transparent, underwater self-healing, and ionic conductive elastomer based on multivalent ion–dipole interactions. Chem. Mater. 2020, 32, 6310–6317.

[46]

Wang, Y. F.; Yu, X. H.; Zhang, H. P.; Fan, X. S.; Zhang, Y. T.; Li, Z. B.; Miao, Y. E.; Zhang, X.; Liu, T. X. Highly stretchable, soft, low-hysteresis, and self-healable ionic conductive elastomers enabled by long, functional cross-linkers. Macromolecules 2022, 55, 7845–7855.

[47]

Feng, X. Q.; Li, X. Y.; Song, L.; Zhao, W. P.; Wang, S. G. Self-healing conductive elastomer based on double self cross-linking networks. Compos. Commun. 2022, 35, 101345.

[48]

Ying, W. B.; Yu, Z.; Kim, D. H.; Lee, K. J.; Hu, H.; Liu, Y. W.; Kong, Z. Y.; Wang, K.; Shang, J.; Zhang, R. Y. et al. Waterproof, highly tough, and fast self-healing polyurethane for durable electronic skin. ACS Appl. Mater. Interfaces 2020, 12, 11072–11083.

[49]

Liu, X. H.; Lu, C. H.; Wu, X. D.; Zhang, X. X. Self-healing strain sensors based on nanostructured supramolecular conductive elastomers. J. Mater. Chem. A 2017, 5, 9824–9832.

[50]

Shan, Y. F.; Li, Z. X.; Yu, T. W.; Wang, X. X.; Cui, H. N.; Yang, K.; Cui, Y. Y. Self-healing strain sensor based on silicone elastomer for human motion detection. Compos. Sci. Technol. 2022, 218, 109208.

Nano Research
Pages 3369-3378
Cite this article:
Zhang G, Li C, Tan J, et al. A healable, mechanically robust and ultrastretchable ionic conductive elastomer for durably wearable sensor. Nano Research, 2024, 17(4): 3369-3378. https://doi.org/10.1007/s12274-023-6194-9
Topics:

666

Views

0

Crossref

6

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 06 June 2023
Revised: 01 September 2023
Accepted: 12 September 2023
Published: 08 November 2023
© Tsinghua University Press 2023
Return