Journal Home > Volume 17 , Issue 4

Electrocatalytic oxidation reaction of biomass-based derivatives is an excellent candidate to replace water oxidation for obtaining both value-added products and hydrogen (H2), but the exploration of competent electrocatalysts is still highly challenging. Herein, two new types of three-dimensional self-supported hollow microarrays containing CoNi layered double hydroxide (CoNi-LDH) and N-doped carbon nanosheets decorated with CoNi alloyed nanoparticles (CoNi-NC) on carbon cloth (CC) are prepared, which are further used as efficient electrocatalysts for tetrahydroisoquinoline (THIQ) electrooxidation and hydrogen evolution reaction (HER), respectively. We demonstrate that the Co-modulated electronic environment for Ni(II)/Ni(III) redox-looping in CoNi-LDH is the main factor to boost the selectivity of 3,4-dihydroisoquinoline (DHIQ) for the indirect electrooxidation process of THIQ. Density functional theory (DFT) calculations reveal that the Ni(III)/Co(III) dual sites of CoNi-LDH exhibit enhanced adsorption for THIQ but poorer adsorption for DHIQ compared to pure Co(III) or Ni(III). Therefore, the Ni(III)/Co(III) dual sites can effectively inhibit the peroxidation of DHIQ to isoquinoline (IQ) over CoNi-LDH, thus improving the selectivity of DHIQ to nearly 100%, much higher than that of its pure Ni counterpart. Moreover, CC@CoNi-NC can deliver high HER activity with low overpotential (40 mV@10 mA·cm−2) and high exchange current density (3.08 mA·cm−2). Impressively, the assembled flow-cell device with CC@CoNi-LDH anode and CC@CoNi-NC cathode only requires low cell voltage and electricity consumption of 1.6 V and 3.50 kWh per cubic meter of H2 (@25 mA·cm−2).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly selective electrosynthesis of 3,4-dihydroisoquinoline accompanied with hydrogen production over three-dimensional hollow CoNi-based microarray electrocatalysts

Show Author's information Yu Xin1,2Liyu Chen1,2Yingwei Li1,2Kui Shen1,2( )
Guangdong Provincial Key Lab for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

Abstract

Electrocatalytic oxidation reaction of biomass-based derivatives is an excellent candidate to replace water oxidation for obtaining both value-added products and hydrogen (H2), but the exploration of competent electrocatalysts is still highly challenging. Herein, two new types of three-dimensional self-supported hollow microarrays containing CoNi layered double hydroxide (CoNi-LDH) and N-doped carbon nanosheets decorated with CoNi alloyed nanoparticles (CoNi-NC) on carbon cloth (CC) are prepared, which are further used as efficient electrocatalysts for tetrahydroisoquinoline (THIQ) electrooxidation and hydrogen evolution reaction (HER), respectively. We demonstrate that the Co-modulated electronic environment for Ni(II)/Ni(III) redox-looping in CoNi-LDH is the main factor to boost the selectivity of 3,4-dihydroisoquinoline (DHIQ) for the indirect electrooxidation process of THIQ. Density functional theory (DFT) calculations reveal that the Ni(III)/Co(III) dual sites of CoNi-LDH exhibit enhanced adsorption for THIQ but poorer adsorption for DHIQ compared to pure Co(III) or Ni(III). Therefore, the Ni(III)/Co(III) dual sites can effectively inhibit the peroxidation of DHIQ to isoquinoline (IQ) over CoNi-LDH, thus improving the selectivity of DHIQ to nearly 100%, much higher than that of its pure Ni counterpart. Moreover, CC@CoNi-NC can deliver high HER activity with low overpotential (40 mV@10 mA·cm−2) and high exchange current density (3.08 mA·cm−2). Impressively, the assembled flow-cell device with CC@CoNi-LDH anode and CC@CoNi-NC cathode only requires low cell voltage and electricity consumption of 1.6 V and 3.50 kWh per cubic meter of H2 (@25 mA·cm−2).

Keywords: metal-organic frameworks, hydrogen evolution reaction, highly selective electrosynthesis, dihydroisoquinolines, hollow microarrays

References(47)

[1]

Yang, J.; Sudika, A.; Wolvertonb, C.; Siegel, D. J. High capacity hydrogen storage materials: Attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 2010, 39, 656–675.

[2]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[3]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[4]

Fan, Z. Y.; Xiao, W. Electrochemical splitting of methane in molten salts to produce hydrogen. Angew. Chem., Int. Ed. 2021, 60, 7664–7668.

[5]

Sun, F.; Qin, J. S.; Wang, Z. Y.; Yu, M. Z.; Wu, X. H.; Sun, X. M.; Qiu, J. S. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 2021, 12, 4182.

[6]

Du, P. Y.; Zhang, J. J.; Liu, Y. H.; Huang, M. H. Hydrogen generation from catalytic glucose oxidation by Fe-based electrocatalysts. Electrochem. Commun. 2017, 83, 11–15.

[7]

Liu, W. J.; Xu, Z. R.; Zhao, D. T.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.; Wang, W. K.; Zhao, G. H.; Jin, S. et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 2020, 11, 265.

[8]

Xin, Y.; Wang, F. L.; Chen, L. Y.; Li, Y. W.; Shen, K. Superior bifunctional cobalt/nitrogen-codoped carbon nanosheet arrays on copper foam enable stable energy-saving hydrogen production accompanied with glucose upgrading. Green Chem. 2022, 24, 6544–6555.

[9]

Xie, S. F.; Fu, H. C.; Chen, L. Y.; Li, Y. W.; Shen, K. Carbon-based nanoarrays embedded with Ce-doped ultrasmall Co2P nanoparticles enable efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen production. Sci. China Chem. 2023, 66, 2141–2152.

[10]

Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Z. J.; Liu, Y. B.; Li, Y. Y.; He, N. H.; Shi, J. Q.; Wang, S. Y. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem., Int. Ed. 2020, 59, 19215–19221.

[11]

Hausmann, J. N.; Beltrán-Suito, R.; Mebs, S.; Hlukhyy, V.; Fässler, T. F.; Dau, H.; Driess, M.; Menezes, P. W. Evolving highly active oxidic iron(III) phase from corrosion of intermetallic iron silicide to master efficient electrocatalytic water oxidation and selective oxygenation of 5-hydroxymethylfurfural. Adv. Mater. 2021, 33, 2008823.

[12]

Wang, D. D.; Chen, Z. W.; Wu, Y. J.; Huang, Y. C.; Tao, L.; Chen, J.; Dong, C. L.; Singh, C. V.; Wang, S. Y. Structurally ordered high-entropy intermetallic nanoparticles with enhanced C–C bond cleavage for ethanol oxidation. Smart Mat. 2023, 4, e1117.

[13]

Chen, W.; Xie, C.; Wang, Y. Y.; Zou, Y. Q.; Dong, C. L.; Huang, Y. C.; Xiao, Z. H.; Wei, Z. Z.; Du, S. Q.; Chen, C. et al. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 2020, 6, 2974–2993.

[14]

Wang, W. B.; Zhu, Y. B.; Wen, Q. L.; Wang, Y. T.; Xia, J.; Li, C. C.; Chen, M. W.; Liu, Y. W.; Li, H. Q.; Wu, H. A. et al. Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation. Adv. Mater. 2019, 31, 1900528.

[15]

Zhao, B.; Liu, J. W.; Xu, C. Y.; Feng, R. F.; Sui, P.; Wang, L.; Zhang, J. J.; Luo, J. L.; Fu, X. Z. Hollow NiSe nanocrystals heterogenized with carbon nanotubes for efficient electrocatalytic methanol upgrading to boost hydrogen co-production. Adv. Funct. Mater. 2021, 31, 2008812.

[16]

Wang, T. Z.; Miao, L. C.; Zheng, S. Y.; Qin, H. Y.; Cao, X. J.; Yang, L.; Jiao, L. F. Interfacial engineering of Ni3N/Mo2N heterojunctions for urea-assisted hydrogen evolution reaction. ACS Catal. 2023, 13, 4091–4100.

[17]

Sun, H. C.; Li, L. F.; Chen, H. C.; Duan, D. L.; Humayun, M.; Qiu, Y.; Zhang, X.; Ao, X.; Wu, Y.; Pang, Y. J. et al. Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide. Sci. Bull. 2022, 67, 1763–1775.

[18]

Jiang, H.; Sun, M. Z.; Wu, S. L.; Huang, B. L.; Lee, C. S.; Zhang, W. J. Oxygen-incorporated NiMoP nanotube arrays as efficient bifunctional electrocatalysts for urea-assisted energy-saving hydrogen production in alkaline electrolyte. Adv. Funct. Mater. 2021, 31, 2104951.

[19]

Cao, X. J.; Wang, T. Z.; Qin, H. Y.; Lin, G. L.; Zhao, L. H.; Jiao, L. F. Crystalline-amorphous interfaces of NiO-CrO x electrocatalysts for boosting the urea oxidation reaction. Nano Res. 2023, 16, 3665–3671.

[20]

Li, Y.; Li, X.; Pillai, H. S.; Lattimer, J.; Adli, N. M.; Karakalos, S.; Chen, M. J.; Guo, L.; Xu, H.; Yang, J. et al. Ternary PtIrNi catalysts for efficient electrochemical ammonia oxidation. ACS Catal. 2020, 10, 3945–3957.

[21]

Sun, H. Y.; Xu, G. R.; Li, F. M.; Hong, Q. L.; Jin, P. J.; Chen, P.; Chen, Y. Hydrogen generation from ammonia electrolysis on bifunctional platinum nanocubes electrocatalysts. J. Energy Chem. 2020, 47, 234–240.

[22]

Ding, J. T.; Wang, H. F.; Yang, X. F.; Ju, W. B.; Shen, K.; Chen, L. Y.; Li, Y. W. A Janus heteroatom-doped carbon electrocatalyst for hydrazine oxidation. Natl. Sci. Rev. 2023, 10, nwac231.

[23]

Ding, J. T.; Guo, D. Y.; Hu, A. Q.; Yang, X. F.; Shen, K.; Chen, L. Y.; Li, Y. W. Resisting metal aggregation in pyrolysis of MOFs towards high-density metal nanocatalysts for efficient hydrazine assisted hydrogen production. Nano Res. 2023, 16, 6067–6075.

[24]

Xin, Y.; Shen, K.; Guo, T. T.; Chen, L. Y.; Li, Y. W. Coupling hydrazine oxidation with seawater electrolysis for energy-saving hydrogen production over bifunctional CoNC nanoarray electrocatalysts. Small 2023, 19, 2300019.

[25]

Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L. Electrocatalytic hydrogen production trilogy. Angew. Chem., Int. Ed. 2021, 60, 19550–19571.

[26]

Wang, T. Z.; Cao, X. J.; Jiao, L. F. Progress in hydrogen production coupled with electrochemical oxidation of small molecules. Angew. Chem., Int. Ed. 2022, 61, e202213328.

[27]

Yan, D. F.; Mebrahtu, C.; Wang, S. Y.; Palkovits, R. Innovative electrochemical strategies for hydrogen production: From electricity input to electricity output. Angew. Chem., Int. Ed. 2023, 62, e202214333.

[28]

Ziemska, J.; Guśpiel, A.; Jarosz, J.; Nasulewicz-Goldeman, A.; Wietrzyk, J.; Kawęcki, R.; Pypowski, K.; Jarończyk, M.; Solecka, J. Molecular docking studies, biological and toxicity evaluation of dihydroisoquinoline derivatives as potential anticancer agents. Bioorg. Med. Chem. 2016, 24, 5302–5314.

[29]

Tan, Z. D.; Jiang, H. F.; Zhang, M. Ruthenium-catalyzed dehydrogenative β-benzylation of 1,2,3,4-tetrahydroquinolines with aryl aldehydes: Access to functionalized quinolines. Org. Lett. 2016, 18, 3174–3177.

[30]

Chakraborty, S.; Brennessel, W. W.; Jones, W. D. A molecular iron catalyst for the acceptorless dehydrogenation and hydrogenation of N-heterocycles. J. Am. Chem. Soc. 2014, 136, 8564–8567.

[31]

Chaumontet, M.; Piccardi, R.; Baudoin, O. Synthesis of 3,4-dihydroisoquinolines by a C(sp3)-H activation/electrocyclization strategy: Total synthesis of coralydine. Angew. Chem., Int. Ed. 2009, 48, 179–182.

[32]

Zheng, M. F.; Shi, J. L.; Yuan, T.; Wang, X. C. Metal-free dehydrogenation of N-Heterocycles by ternary h-BCN nanosheets with visible light. Angew. Chem., Int. Ed. 2018, 57, 5487–5491.

[33]

Huang, C. Q.; Huang, Y.; Liu, C. B.; Yu, Y. F.; Zhang, B. Integrating hydrogen production with aqueous selective semi-dehydrogenation of tetrahydroisoquinolines over a Ni2P bifunctional electrode. Angew. Chem., Int. Ed. 2019, 58, 12014–12017.

[34]

Xiang, M.; Xu, Z. H.; Wang, J. H.; Yang, X. Q.; Yan, Z. X. Accelerating H2 evolution by anodic semi-dehydrogenation of tetrahydroisoquinolines in water over Co3O4 nanoribbon arrays decorated nickel foam. Chem.—Eur. J. 2021, 27, 7502–7506.

[35]

Zhou, Z. Y.; Pan, X.; Sun, L. Z.; Xie, Y. N.; Zheng, J. G.; Li, L. N.; Zhao, G. H. Boosting hydrogen production via selective two-electron mild electrochemical oxidation of tetrahydroisoquinolines completely to dihydroisoquinolines. Angew. Chem., Int. Ed. 2023, 62, e202216347.

[36]

Wang, Z. Q.; Shen, K.; Chen, L. Y.; Li, Y. W. Scalable synthesis of multi-shelled hollow N-doped carbon nanosheet arrays with confined Co/CoP heterostructures from MOFs for pH-universal hydrogen evolution reaction. Sci. China Chem. 2022, 65, 619–629.

[37]

Wang, X.; Huang, H. G.; Qian, J. J.; Li, Y. W.; Shen, K. Intensified Kirkendall effect assisted construction of double-shell hollow Cu-doped CoP nanoparticles anchored by carbon arrays for water splitting. Appl. Catal. B Environ. 2023, 325, 122295.

[38]

Wei, C. Y.; Shi, D. Y.; Yang, Z. H.; Xue, Z. M.; Liu, S. Z.; Li, R. Q.; Mu, T. C. Data-driven design of double-atom catalysts with high H2 evolution activity/CO2 reduction selectivity based on simple features. J. Mater. Chem. A 2023, 11, 18168–18178.

[39]

Liu, X. P.; Gong, M. X.; Xiao, D. D.; Deng, S. F.; Liang, J. N.; Zhao, T. H.; Lu, Y.; Shen, T.; Zhang, J.; Wang, D. L. Turning waste into treasure: Regulating the oxygen corrosion on Fe foam for efficient electrocatalysis. Small 2020, 16, 2000663.

[40]

Xie, W. W.; Tian, T. Z.; Yang, M.; Li, N. W.; Yu, L. Formation of hollow frameworks of dual-sided Fe/Fe3C@N-doped carbon nanotubes as bifunctional oxygen electrocatalyst for Zn-air batteries. Appl. Catal. B Environ. 2022, 317, 121760.

[41]

Guo, T. T.; Chen, L. Y.; Li, Y. W.; Shen, K. Controllable synthesis of ultrathin defect-rich LDH nanoarrays coupled with MOF-derived Co-NC microarrays for efficient overall water splitting. Small 2022, 18, 2107739.

[42]

Wang, X.; Qin, Z.; Qian, J. J.; Chen, L. Y.; Shen, K. IrCo nanoparticles encapsulated with carbon nanotubes for efficient and stable acidic water splitting. ACS Catal. 2023, 13, 10672–10682

[43]

Feng, Y. Q.; Wang, X.; Huang, J. F.; Dong, P. P.; Ji, J.; Li, J.; Cao, L. Y.; Feng, L. L.; Jin, P.; Wang, C. R. Decorating CoNi layered double hydroxides nanosheet arrays with fullerene quantum dot anchored on Ni foam for efficient electrocatalytic water splitting and urea electrolysis. Chem. Eng. J. 2020, 390, 124525.

[44]

Liu, Y.; Fu, N. Q.; Zhang, G. G.; Xu, M.; Lu, W.; Zhou, L. M.; Huang, H. T. Design of hierarchical Ni-Co@Ni-Co layered double hydroxide core-shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors. Adv. Funct. Mater. 2017, 27, 1605307.

[45]

Wang, L.; Wen, B.; Bai, X. Y.; Liu, C.; Yang, H. B. NiCo alloy/carbon nanorods decorated with carbon nanotubes for microwave absorption. ACS Appl. Nano Mater. 2019, 2, 7827–7838.

[46]

He, K. H.; Tan, F. F.; Zhou, C. Z.; Zhou, G. J.; Yang, X. L.; Li, Y. Acceptorless dehydrogenation of N-heterocycles by merging visible-light photoredox catalysis and cobalt catalysis. Angew. Chem., Int. Ed. 2017, 56, 3080–3084.

[47]

Zhao, B. H.; Huang, Y.; Liu, D. L.; Yu, Y. F.; Zhang, B. Integrating photocatalytic reduction of CO2 with selective oxidation of tetrahydroisoquinoline over InP-In2O3 Z-scheme p-n junction. Sci. China Chem. 2020, 63, 28–34.

File
12274_2023_6190_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 August 2023
Revised: 08 September 2023
Accepted: 11 September 2023
Published: 03 November 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial support from the Natural Science Foundation of Guangdong Province (No. 2023B1515040005), the National Natural Science Foundation of China (Nos. 22378135, 21825802, and 22138003), and the State Key Laboratory of Pulp and Paper Engineering (No. 2022PY05). The authors acknowledged the HPC resources provided from the University of Stavanger. The authors would like to thank Mr. Jiawei Jiang from Shiyanjia Lab (www.shiyanjia.com) for the XPS analysis.

Return