Journal Home > Volume 17 , Issue 3

Aerogels with regularly porous structure and uniformly distributed conductive networks have received extensive attention in wearable electronic sensors, electromagnetic shielding, and so on. However, the poor mechanical properties of the emerging nanofibers-based aerogels are limited in practical applications. In this work, we developed a synchronous deprotonation–protonation method in the KOH/dimethyl sulfoxide (DMSO) system at room temperature for achieving chitin cross-linked aramid nanofibers (CANFs) rather than chitin nanofibers (ChNFs) and aramid nanofibers (ANFs) separately by using chitin and aramid pulp as raw materials. After freeze-drying process, the cross-linked chitin/aramid nanofibers (CA) aerogel exhibited the synergetic properties of ChNF and ANF by the dual-nanofiber compensation strategy. The mechanical stress of CA aerogel was 170 kPa at 80% compressive strain, increased by 750% compared with pure ChNF aerogel. ​Similarly, the compressibility of CA aerogel was somewhat improved compared to ANF aerogel. The enhancement verified that the crosslinking reaction between ANF and ChNF during the synchronous deprotonation process was formed. Afterwards, the conductive aerogels with uniform porous structure (CA-M) were successfully obtained by vacuum impregnating CA aerogels in Ti3C2Tx MXene solution, displaying low thermal conductivity (0.01 W/(m·K)), high electromagnetic interference (EMI) shielding effectiveness (SE) (75 dB), flame retardant, and heat insulation. Meanwhile, the as-obtained CA-M aerogels were also applied as a pressure sensor with excellent compression cycle stability and superior human motion monitoring capabilities. As a result, the dual-nanofiber based conductive aerogels have great potentials in flexible/wearable electronics, EMI shielding, flame retardant, and heat insulation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synchronous deprotonation–protonation for mechanically robust chitin/aramid nanofibers conductive aerogel with excellent pressure sensing, thermal management, and electromagnetic interference shielding

Show Author's information Xinxin Zhang1,2Kunpeng Qian3Jianhui Fang1( )Sineenat Thaiboonrod4Miao Miao2Xin Feng1,2( )
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
School of Materials Sciences and Engineering, Shanghai University, Shanghai 200444, China
National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand

Abstract

Aerogels with regularly porous structure and uniformly distributed conductive networks have received extensive attention in wearable electronic sensors, electromagnetic shielding, and so on. However, the poor mechanical properties of the emerging nanofibers-based aerogels are limited in practical applications. In this work, we developed a synchronous deprotonation–protonation method in the KOH/dimethyl sulfoxide (DMSO) system at room temperature for achieving chitin cross-linked aramid nanofibers (CANFs) rather than chitin nanofibers (ChNFs) and aramid nanofibers (ANFs) separately by using chitin and aramid pulp as raw materials. After freeze-drying process, the cross-linked chitin/aramid nanofibers (CA) aerogel exhibited the synergetic properties of ChNF and ANF by the dual-nanofiber compensation strategy. The mechanical stress of CA aerogel was 170 kPa at 80% compressive strain, increased by 750% compared with pure ChNF aerogel. ​Similarly, the compressibility of CA aerogel was somewhat improved compared to ANF aerogel. The enhancement verified that the crosslinking reaction between ANF and ChNF during the synchronous deprotonation process was formed. Afterwards, the conductive aerogels with uniform porous structure (CA-M) were successfully obtained by vacuum impregnating CA aerogels in Ti3C2Tx MXene solution, displaying low thermal conductivity (0.01 W/(m·K)), high electromagnetic interference (EMI) shielding effectiveness (SE) (75 dB), flame retardant, and heat insulation. Meanwhile, the as-obtained CA-M aerogels were also applied as a pressure sensor with excellent compression cycle stability and superior human motion monitoring capabilities. As a result, the dual-nanofiber based conductive aerogels have great potentials in flexible/wearable electronics, EMI shielding, flame retardant, and heat insulation.

Keywords: pressure sensing, heat insulation, electromagnetic interference (EMI) shielding, flame retardant, synchronous deprotonation–protonation

References(76)

[1]

Jiang, X. Y.; Zhao, Z. X.; Zhou, S. T.; Zou, H. W.; Liu, P. B. Anisotropic and lightweight carbon/graphene composite aerogels for efficient thermal insulation and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2022, 14, 45844–45852.

[2]

Cheng, Y.; Zhu, W. D.; Lu, X. F.; Wang, C. Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy 2022, 98, 107229.

[3]

Yang, J.; Li, Y.; Zheng, Y. Y.; Xu, Y. M.; Zheng, Z. K.; Chen, X. D.; Liu, W. Versatile aerogels for sensors. Small 2019, 15, 1902826.

[4]

Liu, X. F.; Li, Y.; Sun, X.; Tang, W. K.; Deng, G.; Liu, Y. J.; Song, Z. M.; Yu, Y. H.; Yu, R. H.; Dai, L. M. et al. Off/on switchable smart electromagnetic interference shielding aerogel. Matter 2021, 4, 1735–1747.

[5]

Wang, Y. Y.; Zhang, F.; Li, N.; Shi, J. F.; Jia, L. C.; Yan, D. X.; Li, Z. M. Carbon-based aerogels and foams for electromagnetic interference shielding: A review. Carbon 2023, 205, 10–26.

[6]

Hadipour-Goudarzi, E.; Hemmatinejad, N.; Shokrgozar, M. A. Fabrication and DOE optimization of electrospun chitosan/gelatin/PVA nanofibers for skin tissue engineering. Macromol. Mater. Eng. 2023, 308, 2200562.

[7]

Pal, V. K.; Roy, S. Cooperative calcium phosphate deposition on collagen-inspired short peptide nanofibers for application in bone tissue engineering. Biomacromolecules 2023, 24, 807–824.

[8]

Zou, Y. B.; Chen, Z. Y.; Guo, X.; Peng, Z. Y.; Yu, C. Y.; Zhong, W. B. Mechanically robust and elastic graphene/aramid nanofiber/polyaniline nanotube aerogels for pressure sensors. ACS Appl. Mater. Interfaces 2022, 14, 17858–17868.

[9]

Yanat, M.; Schroën, K. Advances in chitin-based nanoparticle use in biodegradable polymers: A review. Carbohydr. Polym. 2023, 312, 120789.

[10]

Wang, Y. D.; Kou, J.; Wang, X. W.; Chen, X. Acid hydrolysis of chitin in calcium chloride solutions. Green Chem. 2023, 25, 2596–2607.

[11]

Hajiali, F.; Vidal, J.; Jin, T.; De La Garza, L. C.; Santos, M.; Yang, G.; Moores, A. Extraction of chitin from green crab shells by mechanochemistry and aging. ACS Sustainable Chem. Eng. 2022, 10, 11348–11357.

[12]

You, J.; Zhu, L. T.; Wang, Z. B.; Zong, L.; Li, M. J.; Wu, X. C.; Li, C. X. Liquid exfoliated chitin nanofibrils for re-dispersibility and hybridization of two-dimensional nanomaterials. Chem. Eng. J. 2018, 344, 498–505.

[13]

Zhou, Y. Q.; He, Y. Q.; Lin, X. Y.; Feng, Y.; Liu, M. X. Sustainable, high-performance, and biodegradable plastics made from chitin. ACS Appl. Mater. Interfaces 2022, 14, 46980–46993.

[14]

Naghdi, T.; Golmohammadi, H.; Yousefi, H.; Hosseinifard, M.; Kostiv, U.; Horák, D.; Merkoçi, A. Chitin nanofiber paper toward optical (bio)sensing applications. ACS Appl. Mater. Interfaces 2020, 12, 15538–15552.

[15]

Mushi, N. E. A review on native well-preserved chitin nanofibrils for materials of high mechanical performance. Int. J. Biol. Macromol. 2021, 178, 591–606.

[16]

Li, X.; Zhu, L. T.; Kasuga, T.; Nogi, M.; Koga, H. Frequency-tunable and absorption/transmission-switchable microwave absorber based on a chitin-nanofiber-derived elastic carbon aerogel. Chem. Eng. J. 2023, 469, 144010.

[17]

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

[18]

Li, J. Q.; Wen, Y. Y.; Xiao, Z. H.; Wang, S. J.; Zhong, L. X.; Li, T.; Jiao, K.; Li, L. Y.; Luo, J. J.; Gao, Z. F. et al. Holey reduced graphene oxide scaffolded heterocyclic aramid fibers with enhanced mechanical performance. Adv. Funct. Mater. 2022, 32, 2200937.

[19]

He, X. H.; Zhang, K.; Wang, H.; Zhang, Y.; Xiao, G.; Niu, H. T.; Yao, Y. G. Tailored carbon-based aramid nanofiber nanocomposites with highly anisotropic thermal conductivity and superior mechanical properties for thermal management. Carbon 2022, 199, 367–378.

[20]

Tang, F.; Jeong, Y. G. Enhancement in thermal stability and mechanical performance of modified polyketone/aramid short fiber composites with controlled interface. Compos. Part A Appl. Sci. Manuf. 2023, 171, 107558.

[21]

Sankhla, S.; Nath, A.; Neogi, S. Preparation of aramid-cellulose nanofiber films with improved mechanical and dielectric properties utilizing environmentally friendly hydrothermal treatment for electrical insulation. ACS Sustainable Chem. Eng. 2023, 11, 8420–8430.

[22]

Han, Y. X.; Ruan, K. P.; Gu, J. W. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem., Int. Ed. 2023, 135, e202216093.

[23]

Yang, F.; Yao, J. R.; Jin, L. Q.; Huyan, W. J.; Zhou, J. T.; Yao, Z. J.; Liu, P. J.; Tao, X. W. Multifunctional Ti3C2T x MXene/aramid nanofiber/polyimide aerogels with efficient thermal insulation and tunable electromagnetic wave absorption performance under thermal environment. Compos. B. Eng. 2022, 243, 110161.

[24]

Hu, Y. H.; Yang, G.; Zhou, J. T.; Li, H. Y.; Shi, L.; Xu, X. L.; Cheng, B. W.; Zhuang, X. P. Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation. ACS Nano 2022, 16, 5984–5993.

[25]

Lee, D.; Cho, J.; Son, J. G.; Yeom, B. Highly aligned aramid nanofibrillar nanocomposites for enhanced dynamic mechanical properties. Compos. B. Eng. 2022, 229, 109467.

[26]

He, R.; Xie, C. J.; Chen, Y. X.; Guo, Z. X.; Guo, B. H.; Tuo, X. L. Robust and highly resilient waterborne polyurethane-based composite aerogels prepared by blending with aramid nanofibers. Compos. Sci. Technol. 2022, 228, 109622.

[27]

Li, J. Y.; Lu, Z. Q.; Xie, F.; Huang, J. Z.; Ning, D. D.; Zhang, M. Y. Highly compressible, heat-insulating and self-extinguishing cellulose nanofiber/aramid nanofiber nanocomposite foams. Carbohydr. Polym. 2021, 261, 117837.

[28]

Touron, M.; Celle, C.; Orgéas, L.; Simonato, J. P. Hybrid silver nanowire-CMC aerogels: From 1D nanomaterials to 3D electrically conductive and mechanically resistant lightweight architectures. ACS Nano 2022, 16, 14188–14197.

[29]

Wan, Y. J.; Zhu, P. L.; Yu, S. H.; Sun, R.; Wong, C. P.; Liao, W. H. Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon 2017, 115, 629–639.

[30]

Wu, Y.; Yan, Z. H.; Wang, T.; Wang, J. Q.; Wang, T. Y.; Hu, Z. C.; Ao, Y. H.; Wang, Y.; Li, M. Cellulose nanofibers/PEDOT:PSS conductive aerogel for pressure sensing prepared by a facile freeze-drying method. ACS Appl. Polym. Mater. 2023, 5, 3938–3948.

[31]

Yang, C. Q.; Zhang, D. Z.; Wang, D. Y.; Luan, H. X.; Chen, X. Y.; Yan, W. Y. In situ polymerized MXene/polypyrrole/hydroxyethyl cellulose-based flexible strain sensor enabled by machine learning for handwriting recognition. ACS Appl. Mater. Interfaces 2023, 15, 5811–5821.

[32]

Qian, K. P.; Li, S.; Fang, J. H.; Yang, Y. H.; Cao, S. M.; Miao, M.; Feng, X. C60 intercalating Ti3C2T x MXenes assisted by γ-cyclodextrin for electromagnetic interference shielding films with high stability. J. Mater. Sci. Technol. 2022, 127, 71–77.

[33]

Ma, C.; Ma, M. G.; Si, C. L.; Ji, X. X.; Wan, P. B. Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 2021, 31, 2009524.

[34]

Yang, M. L.; Yuan, Y.; Li, Y.; Sun, X. X.; Wang, S. S.; Liang, L.; Ning, Y. H.; Li, J. J.; Yin, W. L.; Li, Y. B. Anisotropic electromagnetic absorption of aligned Ti3C2T x MXene/gelatin nanocomposite aerogels. ACS Appl. Mater. Interfaces 2020, 12, 33128–33138.

[35]

Zhang, W. B.; Pan, Z. Y.; Ma, J. Z.; Wei, L. F.; Chen, Z.; Wang, J. Degradable cross-linked collagen fiber/MXene composite aerogels as a high-performing sensitive pressure sensor. ACS Sustainable Chem. Eng. 2022, 10, 1408–1418.

[36]

Zhang, Y. L.; Yan, Y.; Qiu, H.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42–49.

[37]

Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583–4593.

[38]

Liu, C. X.; Ma, Y. N.; Xie, Y. M.; Zou, J. J.; Wu, H.; Peng, S. H.; Qian, W.; He, D. P.; Zhang, X.; Li, B. W. et al. Enhanced electromagnetic shielding and thermal management properties in MXene/aramid nanofiber films fabricated by intermittent filtration. ACS Appl. Mater. Interfaces 2023, 15, 4516–4526.

[39]

Yan, Z.; Ding, Y. L.; Huang, M. R.; Li, J. F.; Han, Q. X.; Yang, M. Q.; Li, W. M. MXene/CNTs/aramid aerogels for electromagnetic interference shielding and Joule heating. ACS Appl. Nano Mater. 2023, 6, 6141–6150.

[40]

Verma, R.; Thakur, P.; Chauhan, A.; Jasrotia, R.; Thakur, A. A review on MXene and its’ composites for electromagnetic interference (EMI) shielding applications. Carbon 2023, 208, 170–190.

[41]

Liang, C. B.; Qiu, H.; Zhang, Y. L.; Liu, Y. Q.; Gu, J. W. External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull. 2023, 68, 1938–1953.

[42]

Zhou, J. Y.; Thaiboonrod, S.; Fang, J. H.; Cao, S. M.; Miao, M.; Feng, X. In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Res. 2022, 15, 8536–8545

[43]

Jiang, J.; Ye, W. B.; Yu, J.; Fan, Y. M.; Ono, Y.; Saito, T.; Isogai, A. Chitin nanocrystals prepared by oxidation of α-chitin using the O2/laccase/TEMPO system. Carbohydr. Polym. 2018, 189, 178–183.

[44]

Zhang, X.; Wang, A. P.; Zhou, X. Y.; Chen, F.; Fu, Q. Fabrication of aramid nanofiber-wrapped graphene fibers by coaxial spinning. Carbon 2020, 165, 340–348.

[45]

Osada, M.; Nishiwaki, M.; Watanabe, T. Environment-friendly utilization of squid pen with water: Production of β-chitin nanofibers and peptides for lowering blood pressure. Int. J. Biol. Macromol. 2021, 189, 921–929.

[46]

Chen, S. Q.; Wang, Y. D.; Fei, B.; Long, H. F.; Wang, T.; Zhang, T. H.; Chen, L. Development of a flexible and highly sensitive pressure sensor based on an aramid nanofiber-reinforced bacterial cellulose nanocomposite membrane. Chem. Eng. J. 2022, 430, 131980.

[47]

Wang, G. X.; Xu, Y. X.; Zhang, R.; Gai, S.; Zhao, Y.; Yang, F.; Cheng, K. Fire-resistant MXene composite aerogels for effective oil/water separation. J. Environ. Chem. Eng. 2023, 11, 109127.

[48]

Zheng, Z. H.; Liu, H.; Wu, D. Z.; Wang, X. D. Polyimide/MXene hybrid aerogel-based phase-change composites for solar-driven seawater desalination. Chem. Eng. J. 2022, 440, 135862.

[49]

Yi, X. T.; Wang, F.; Wu, Y. D.; He, J. M.; Huang, Y. D. Aramid nanofibers/bacterial cellulose nanocomposite aerogels for high-efficient cationic dye removal. Mater. Chem. Phys. 2021, 272, 124985.

[50]

Wang, S. J.; Meng, W. Y.; Lv, H. F.; Wang, Z. X.; Pu, J. W. Thermal insulating, light-weight and conductive cellulose/aramid nanofibers composite aerogel for pressure sensing. Carbohydr. Polym. 2021, 270, 118414.

[51]

Zhan, Y. J.; Zheng, X. L.; Nan, B. F.; Lu, M. G.; Shi, J.; Wu, K. Flexible MXene/aramid nanofiber nanocomposite film with high thermal conductivity and flame retardancy. Eur. Polym. J. 2023, 186, 111847.

[52]

Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Zhang, Y. L.; Liu, C.; Wei, A. J.; Xiang, X. L.; Wei, L. F.; Gu, J. W. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2T x MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368–8382.

[53]

Pu, L.; Liu, Y. P.; Li, L.; Zhang, C.; Ma, P. M.; Dong, W. F.; Huang, Y. P.; Liu, T. X. Polyimide nanofiber-reinforced Ti3C2T x aerogel with “lamella–pillar” microporosity for high-performance piezoresistive strain sensing and electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2021, 13, 47134–47146.

[54]

Qian, K. P.; Zhou, J. Y.; Miao, M.; Wu, H. M.; Thaiboonrod, S.; Fang, J. H.; Feng, X. Highly ordered thermoplastic polyurethane/aramid nanofiber conductive foams modulated by Kevlar polyanion for Piezoresistive sensing and electromagnetic interference shielding. Nano-Micro Lett. 2023, 15, 88.

[55]

Li, H. W.; Wu, K. J.; Xu, Z. Y.; Wang, Z. W.; Meng, Y. C.; Li, L. Q. Ultrahigh-sensitivity piezoresistive pressure sensors for detection of tiny pressure. ACS Appl. Mater. Interfaces 2018, 10, 20826–20834.

[56]

Li, P.; Xie, L.; Su, M.; Wang, P. S.; Yuan, W.; Dong, C. H.; Yang, J. Skin-inspired large area iontronic pressure sensor with ultra-broad range and high sensitivity. Nano Energy 2022, 101, 107571.

[57]

Chen, Y. M.; Zhang, L.; Mei, C. T.; Li, Y.; Duan, G. G.; Agarwal, S.; Greiner, A.; Ma, C. X.; Jiang, S. H. Wood-inspired anisotropic cellulose nanofibril composite sponges for multifunctional applications. ACS Appl. Mater. Interfaces 2020, 12, 35513–35522.

[58]

Wang, B.; Yin, X. F.; Cheng, R.; Li, J. P.; Ying, G. D.; Chen, K. F. Compressible, superelastic and fatigue resistant carbon nanofiber aerogels derived from bacterial cellulose for multifunctional piezoresistive sensors. Carbon 2022, 199, 318–328.

[59]
Ruan, K. P.; Shi, X. T.; Zhang, Y. L.; Guo, Y. Q.; Zhong, X.; Gu, J. W. Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202309010.
DOI
[60]

Qian, K. P.; Zhou, Q. F.; Thaiboonrod, S.; Fang, J. H.; Miao, M.; Wu, H. M.; Cao, S. M.; Feng, X. Highly thermally conductive Ti3C2T x /h-BN hybrid films via coulombic assembly for electromagnetic interference shielding. J. Colloid Interface Sci. 2022, 613, 488–498.

[61]

Wu, C.; Huang, H.; Jin, X. Y.; Yan, X. J.; Wang, H. B.; Pan, Y. W.; Zhang, X. H.; Hong, C. Q. Water-assisted synthesis of phenolic aerogel with superior compression and thermal insulation performance enabled by thick-united Nano-structure. Chem. Eng. J. 2023, 464, 142805.

[62]

Liang, C. B.; Liu, Y. X.; Ruan, Y. F.; Qiu, H.; Song, P.; Kong, J.; Zhang, H. B.; Gu, J. W. Multifunctional sponges with flexible motion sensing and outstanding thermal insulation for superior electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106143.

[63]

Zhu, E. H.; Pang, K.; Chen, Y. R.; Liu, S. P.; Liu, X. T.; Xu, Z.; Liu, Y. J.; Gao, C. Ultra-stable graphene aerogels for electromagnetic interference shielding. Sci. China Mater. 2023, 66, 1106–1113.

[64]

Song, L. M.; Zhang, F.; Chen, Y. Q.; Guan, L.; Zhu, Y. Q.; Chen, M.; Wang, H. L.; Putra, B. R.; Zhang, R.; Fan, B. B. Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 152.

[65]

Li, M. K.; Sun, Y. Y.; Feng, D. Y.; Ruan, K. P.; Liu, X.; Gu, J. W. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 2023, 16, 7820–7828

[66]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[67]

Niu, H. H.; Tu, X. Y.; Zhang, S.; Li, Y. Y.; Wang, H. L.; Shao, G.; Zhang, R.; Li, H. X.; Zhao, B.; Fan, B. B. Engineered core–shell SiO2@Ti3C2T x composites: Towards ultra-thin electromagnetic wave absorption materials. Chem. Eng. J. 2022, 446, 137260.

[68]
Zhao, J.; Gu, Z.; Zhang, Q. G. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res., in press, https://doi.org/10.1007/s12274-023-6090-3.
DOI
[69]

Wang, L.; Ma, Z. L.; Qiu, H.; Zhang, Y. L.; Yu, Z.; Gu, J. W. Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 2022, 14, 224.

[70]

Wu, Y.; Chen, L.; Han, Y. X.; Liu, P. B.; Xu, H. H.; Yu, G. Z.; Wang, Y. Y.; Wen, T.; Ju, W. B.; Gu, J. W. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 2023, 16, 7801–7809.

[71]

Liu, H. B.; Huang, Z. Y.; Chen, T.; Su, X. Q.; Liu, Y. N.; Fu, R. L. Construction of 3D MXene/silver nanowires aerogels reinforced polymer composites for extraordinary electromagnetic interference shielding and thermal conductivity. Chem. Eng. J. 2022, 427, 131540.

[72]

Guo, Y. Q.; Qiu, H.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 2022, 14, 26.

[73]

Jiang, Z. Y.; Gao, Y. J.; Pan, Z. H.; Zhang, M. M.; Guo, J. H.; Zhang, J. W.; Gong, C. H. Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2024, 174, 195–203.

[74]

Niu, H. H.; Jiang, X. W.; Xia, Y. D.; Wang, H. L.; Zhang, R.; Li, H. X.; Fan, B. B.; Zhou, Y. C. Construction of hydrangea-like core–shell SiO2@Ti3C2T x @CoNi microspheres for tunable electromagnetic wave absorbers. J. Adv. Ceram. 2023, 12, 711–723.

[75]

Hu, F. Y.; Zhang, F.; Wang, X. H.; Li, Y. Y.; Wang, H. L.; Zhang, R.; Li, H. X.; Fan, B. B. Ultrabroad band microwave absorption from hierarchical MoO3/TiO2/Mo2TiC2T x hybrids via annealing treatment. J. Adv. Ceram. 2022, 11, 1466–1478.

[76]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

File
12274_2023_6189_MOESM1_ESM.pdf (7.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 August 2023
Revised: 08 September 2023
Accepted: 11 September 2023
Published: 11 November 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the Science and Technology Commission of Shanghai Municipality (No. 20230742300). We are thankful to the Analysis & Testing Center of Shanghai University.

Return