Journal Home > Volume 17 , Issue 4

Transmucosal drug administration represents a potential strategy for enhancing treatment efficacy and reducing side effects by avoiding the first-pass effect into the systemic circulation and delivering therapeutics directly to the target disease site. However, many challenges still remain in its clinical application, including low drug availability and limited retention time in the mucosa. The burgeoning advancement of nanotechnologies offers great potential to overcome the above limitations, leveraging their distinct advantages of high drug-loading capacity and strong permeability. In this review, the latest developments of nanoparticles (NPs) in transmucosal drug delivery as well as their clinical applications are discussed.


menu
Abstract
Full text
Outline
About this article

Advances of nanoparticles in transmucosal drug delivery

Show Author's information Li Zhang1,7,§Changwei Yang2,§Yingxiang Song1,7,§Tao Sheng2Junyan Li2,3Jicheng Yu2,3,4,5,6( )Xiaohong Wu1,7( )Xiao Ye1,7( )
Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
Jinhua Institute of Zhejiang University, Jinhua 321299, China
Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
Key Laboratory for Diagnosis and Treatment of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, China

§ Li Zhang, Changwei Yang, and Yingxiang Song contributed equally to this work.

Abstract

Transmucosal drug administration represents a potential strategy for enhancing treatment efficacy and reducing side effects by avoiding the first-pass effect into the systemic circulation and delivering therapeutics directly to the target disease site. However, many challenges still remain in its clinical application, including low drug availability and limited retention time in the mucosa. The burgeoning advancement of nanotechnologies offers great potential to overcome the above limitations, leveraging their distinct advantages of high drug-loading capacity and strong permeability. In this review, the latest developments of nanoparticles (NPs) in transmucosal drug delivery as well as their clinical applications are discussed.

Keywords: nanoparticles (NPs), biomaterials, transmucosal drug delivery, mucosal barriers

References(121)

[1]

Patel, V. F.; Liu, F.; Brown, M. B. Advances in oral transmucosal drug delivery. J. Control. Release 2011, 153, 106–116.

[2]

Purohit, T. J.; Hanning, S. M.; Wu, Z. M. Advances in rectal drug delivery systems. Pharm. Dev. Technol. 2018, 23, 942–952.

[3]

Kompella, U. B.; Kadam, R. S.; Lee, V. H. Recent advances in ophthalmic drug delivery. Ther. Deliv. 2010, 1, 435–456.

[4]

Chauhan, A.; Fitzhenry, L.; Serro, A. P. Recent advances in ophthalmic drug delivery. Pharmaceutics 2022, 14, 2075.

[5]

Ugwoke, M. I.; Agu, R. U.; Verbeke, N.; Kinget, R. Nasal mucoadhesive drug delivery: Background, applications, trends and future perspectives. Adv. Drug Deliv. Rev. 2005, 57, 1640–1665.

[6]

Abhang, P.; Momin, M.; Inamdar, M.; Kar, S. Transmucosal drug delivery—An overview. Drug Delivery Lett. 2014, 4, 26–37.

[7]

Talkar, S.; Dhoble, S.; Majumdar, A.; Patravale, V. Transmucosal nanoparticles: Toxicological overview. Adv. Exp. Med. Biol. 2018, 1048, 37–57.

[8]

Jain, S.; Khomane, K.; Jain, A. K.; Dani, P. Nanocarriers for transmucosal vaccine delivery. Curr. Nanosci. 2011, 7, 160–177.

[9]

Leal, J.; Smyth, H. D. C.; Ghosh, D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharmaceut. 2017, 532, 555–572.

[10]

Lieleg, O.; Ribbeck, K. Biological hydrogels as selective diffusion barriers. Trends Cell Biol. 2011, 21, 543–551.

[11]

Bansil, R.; Turner, B. S. Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid. Interface Sci. 2006, 11, 164–170.

[12]

Cone, R. A. Barrier properties of mucus. Adv. Drug Deliv. Rev. 2009, 61, 75–85.

[13]

Frenkel, E. S.; Ribbeck, K. Salivary mucins in host defense and disease prevention. J. Oral Microbiol. 2015, 7, 29759.

[14]

Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 2020, 25, 112.

[15]

Shi, J. J.; Votruba, A. R.; Farokhzad, O. C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 2010, 10, 3223–3230.

[16]

Rizvi, S. A. A.; Saleh, A. M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 2018, 26, 64–70.

[17]

Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S. et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71.

[18]

Prego, C.; García, M.; Torres, D.; Alonso, M. J. Transmucosal macromolecular drug delivery. J. Control. Release 2005, 101, 151–162.

[19]

Farokhzad, O. C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16–20.

[20]

Jani, P.; Halbert, G. W.; Langridge, J.; Florence, A. T. The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J. Pharm. Pharmacol. 1989, 41, 809–812.

[21]
Florence, A. T.; Hussain, N. Transcytosis of nanoparticle and dendrimer delivery systems: Evolving vistas. Adv. Drug Deliv. Rev. 2001 , 50 Suppl 1, S69–S89.
[22]

Takeuchi, H.; Yamamoto, H.; Kawashima, Y. Mucoadhesive nanoparticulate systems for peptide drug delivery. Adv. Drug Deliv. Rev. 2001, 47, 39–54.

[23]

Barratt, G. Colloidal drug carriers: Achievements and perspectives. Cell. Mol. Life Sci. CMLS 2003, 60, 21–37.

[24]

Janes, K. A.; Calvo, P.; Alonso, M. J. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Deliv. Rev. 2001, 47, 83–97.

[25]

LaVan, D. A.; McGuire, T.; Langer, R. Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 2003, 21, 1184–1191.

[26]

Macedo, A. S.; Castro, P. M.; Roque, L.; Thome, N. G.; Reis, C. P.; Pintado, M. E.; Fonte, P. Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J. Control. Release 2020, 320, 125–141.

[27]

Ways, T. M. M.; Ng, K. W.; Lau, W. M.; Khutoryanskiy, V. V. Silica nanoparticles in transmucosal drug delivery. Pharmaceutics 2020, 12, 751.

[28]

Hua, S. S. Advances in nanoparticulate drug delivery approaches for sublingual and buccal administration. Front. Pharmacol. 2019, 10, 1328.

[29]

Laffleur, F.; Bauer, B. Progress in nasal drug delivery systems. Int. J. Pharm. 2021, 607, 120994.

[30]

Muntimadugu, E.; Dhommati, R.; Jain, A.; Challa, V. G. S.; Shaheen, M.; Khan, W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer’s disease. Eur. J. Pharm. Sci. 2016, 92, 224–234.

[31]

Tang, S. N.; Wang, A. P.; Yan, X. J.; Chu, L. X.; Yang, X. C.; Song, Y. N.; Sun, K. X.; Yu, X.; Liu, R. X.; Wu, Z. M. et al. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Deliv. 2019, 26, 700–707.

[32]

Fatouh, A. M.; Elshafeey, A. H.; Abdelbary, A. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: Formulation, optimization and in vivo pharmacokinetics. Drug Des. Devel. Ther. 2017, 11, 1815–1825.

[33]

Bari, N. K.; Fazil, M.; Hassan, Q.; Haider, R.; Gaba, B.; Narang, J. K.; Baboota, S.; Ali, J. Brain delivery of buspirone hydrochloride chitosan nanoparticles for the treatment of general anxiety disorder. Int. J. Biol. Macromol. 2015, 81, 49–59.

[34]

Bhatt, R.; Singh, D.; Prakash, A.; Mishra, N. Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntington’s disease. Drug Deliv. 2015, 22, 931–939.

[35]

Jafarieh, O.; Md, S.; Ali, M.; Baboota, S.; Sahni, J. K.; Kumari, B.; Bhatnagar, A.; Ali, J. Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev. Ind. Pharm. 2015, 41, 1674–1681.

[36]

Upadhyay, P.; Trivedi, J.; Pundarikakshudu, K.; Sheth, N. Direct and enhanced delivery of nanoliposomes of anti schizophrenic agent to the brain through nasal route. Saudi Pharm. J. 2017, 25, 346–358.

[37]

Montegiove, N.; Calzoni, E.; Emiliani, C.; Cesaretti, A. Biopolymer nanoparticles for nose-to-brain drug delivery: A new promising approach for the treatment of neurological diseases. J. Funct. Biomater. 2022, 13, 125.

[38]

Shringarpure, M.; Gharat, S.; Momin, M.; Omri, A. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery. Expert Opin. Drug Deliv. 2021, 18, 169–185.

[39]

Sonvico, F.; Clementino, A.; Buttini, F.; Colombo, G.; Pescina, S.; Guterres, S. S.; Pohlmann, A. R.; Nicoli, S. Surface-modified nanocarriers for nose-to-brain delivery: From bioadhesion to targeting. Pharmaceutics 2018, 10, 34.

[40]

Erdő, F.; Bors, L. A.; Farkas, D.; Bajza, Á.; Gizurarson, S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull. 2018, 143, 155–170.

[41]

Albarki, M. A.; Donovan, M. D. Bigger or smaller. Size and loading effects on nanoparticle uptake efficiency in the nasal mucosa. AAPS PharmSciTech 2020, 21, 294.

[42]

Naik, J. B.; Pardeshi, S. R.; Patil, R. P.; Patil, P. B.; Mujumdar, A. Mucoadhesive micro-/nano carriers in ophthalmic drug delivery: An overview. BioNanoScience 2020, 10, 564–582.

[43]

Tian, B.; Bilsbury, E.; Doherty, S.; Teebagy, S.; Wood, E.; Su, W. Q.; Gao, G. P.; Lin, H. J. Ocular drug delivery: Advancements and innovations. Pharmaceutics 2022, 14, 1931.

[44]

Urtti, A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv. Drug Deliv. Rev. 2006, 58, 1131–1135.

[45]

Billowria, K.; Sandhu, N. K.; Singh, B. Topical advances in mucoadhesive ocular drug delivery system. Curr. Drug Deliv. 2023, 20, 1127–1140.

[46]

Rossi, S.; Vigani, B.; Sandri, G.; Bonferoni, M. C.; Caramella, C. M.; Ferrari, F. Recent advances in the mucus-interacting approach for vaginal drug delivery: From mucoadhesive to mucus-penetrating nanoparticles. Expert Opin. Drug Deliv. 2019, 16, 777–781.

[47]

Csaba, N.; Garcia-Fuentes, M.; Alonso, M. J. The performance of nanocarriers for transmucosal drug delivery. Expert Opin. Drug Deliv. 2006, 3, 463–478.

[48]

Ying, L.; Wang, L. Y.; Guo, K. W.; Hou, Y. S.; Li, N.; Wang, S. Y.; Liu, X. F.; Zhao, Q. J.; Zhou, J.; Zhao, L. W. et al. Paracrine FGFs target skeletal muscle to exert potent anti-hyperglycemic effects. Nat. Commun. 2021, 12, 7256.

[49]

Sun, H. B.; Lin, W.; Tang, Y.; Tu, H. Q.; Chen, T.; Zhou, J.; Wang, D. Z.; Xu, Q. Q.; Niu, J. L.; Dong, W. L. Y. et al. Sustained remission of type 2 diabetes in rodents by centrally administered fibroblast growth factor 4. Cell Metab. 2023, 35, 1022–1037.e6.

[50]

Dos Santos, G. A.; Ferreira-Nunes, R.; Dalmolin, L. F.; Dos Santos Ré, A. C.; Anjos, J. L. V.; Mendanha, S. A.; Aires, C. P.; Lopez, R. F. V.; Cunha-Filho, M.; Gelfuso, G. M. et al. Besifloxacin liposomes with positively charged additives for an improved topical ocular delivery. Sci. Rep. 2020, 10, 19285.

[51]

Khalil, M.; Hashmi, U.; Riaz, R.; Abbas, S. R. Chitosan coated liposomes (CCL) containing triamcinolone acetonide for sustained delivery: A potential topical treatment for posterior segment diseases. Int. J. Biol. Macromol. 2020, 143, 483–491.

[52]

Nguyen, T. T. L.; Maeng, H. J. Pharmacokinetics and pharmacodynamics of intranasal solid lipid nanoparticles and nanostructured lipid carriers for nose-to-brain delivery. Pharmaceutics 2022, 14, 572.

[53]

Salah, E.; Abouelfetouh, M. M.; Pan, Y. H.; Chen, D. M.; Xie, S. Y. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf. B. Biointerfaces 2020, 196, 111305.

[54]

Uner, M.; Yener, G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine 2007, 2, 289–300.

[55]

Rajpoot, K. Solid lipid nanoparticles: A promising nanomaterial in drug delivery. Curr. Pharm. Des. 2019, 25, 3943–3959.

[56]

Akel, H.; Ismail, R.; Katona, G.; Sabir, F.; Ambrus, R.; Csóka, I. A comparison study of lipid and polymeric nanoparticles in the nasal delivery of meloxicam: Formulation, characterization, and in vitro evaluation. Int. J. Pharm. 2021, 604, 120724.

[57]

Esim, O.; Savaser, A.; Ozkan, C. K.; Oztuna, A.; Goksel, B. A.; Ozler, M.; Tas, C.; Ozkan, Y. Nose to brain delivery of eletriptan hydrobromide nanoparticles: Preparation, in vitro/ in vivo evaluation and effect on trigeminal activation. J. Drug Deliv. Sci. Technol. 2020, 59, 101919.

[58]

Ismail, R.; Bocsik, A.; Katona, G.; Gróf, I.; Deli, M. A.; Csóka, I. Encapsulation in polymeric nanoparticles enhances the enzymatic stability and the permeability of the GLP-1 analog, liraglutide, across a culture model of intestinal permeability. Pharmaceutics 2019, 11, 599.

[59]

Trotta, V.; Pavan, B.; Ferraro, L.; Beggiato, S.; Traini, D.; Des Reis, L. G.; Scalia, S.; Dalpiaz, A. Brain targeting of resveratrol by nasal administration of chitosan-coated lipid microparticles. Eur. J. Pharm. Biopharm. 2018, 127, 250–259.

[60]

Bruinsmann, F. A.; Pigana, S.; Aguirre, T.; Souto, G. D.; Pereira, G. G.; Bianchera, A.; Fasiolo, L. T.; Colombo, G.; Marques, M.; Pohlmann, A. R. et al. Chitosan-coated nanoparticles: Effect of chitosan molecular weight on nasal transmucosal delivery. Pharmaceutics 2019, 11, 86.

[61]

Jacob, S.; Nair, A. B.; Shah, J.; Gupta, S.; Boddu, S. H. S.; Sreeharsha, N.; Joseph, A.; Shinu, P.; Morsy, M. A. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy—An overview on recent advances. Pharmaceutics 2022, 14, 533.

[62]

Khames, A.; Khaleel, M. A.; El-Badawy, M. F.; El-Nezhawy, A. O. H. Natamycin solid lipid nanoparticles—Sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: Preparation and optimization. Int. J. Nanomed. 2019, 14, 2515–2531.

[63]

Wadetwar, R. N.; Agrawal, A. R.; Kanojiya, P. S. In situ gel containing Bimatoprost solid lipid nanoparticles for ocular delivery: In- vitro and ex- vivo evaluation. J. Drug Deliv. Sci. Technol. 2020, 56, 101575.

[64]
Tatke, A.; Dudhipala, N.; Janga, K. Y.; Balguri, S. P.; Avula, B.; Jablonski, M. M.; Majumdar, S. In situ gel of triamcinolone acetonide-loaded solid lipid nanoparticles for improved topical ocular delivery: Tear kinetics and ocular disposition studies. Nanomaterials (Basel) 2018 , 9, 33.
DOI
[65]

Xing, R.; Mustapha, O.; Ali, T.; Rehman, M.; Zaidi, S. S.; Baseer, A.; Batool, S.; Mukhtiar, M.; Shafique, S.; Malik, M. et al. Development, characterization, and evaluation of SLN-loaded thermoresponsive hydrogel system of topotecan as biological macromolecule for colorectal delivery. BioMed Res. Int. 2021, 2021, 9968602.

[66]

Din, F. U.; Jin, S. G.; Choi, H. G. Particle and gel characterization of irinotecan-loaded double-reverse thermosensitive hydrogel. Polymers (Basel) 2021, 13, 551.

[67]

Kumar, M.; Tiwari, A.; Asdaq, S. M. B.; Nair, A. B.; Bhatt, S.; Shinu, P.; Al Mouslem, A. K.; Jacob, S.; Alamri, A. S.; Alsanie, W. F. et al. Itraconazole loaded nano-structured lipid carrier for topical ocular delivery: Optimization and evaluation. Saudi J. Biol. Sci. 2022, 29, 1–10.

[68]

Lakhani, P.; Patil, A.; Taskar, P.; Ashour, E.; Majumdar, S. Curcumin-loaded nanostructured lipid carriers for ocular drug delivery: Design optimization and characterization. J. Drug Deliv. Sci. Technol. 2018, 47, 159–166.

[69]

Yu, Y. B.; Feng, R. X.; Yu, S. H.; Li, J. Y.; Wang, Y. Y.; Song, Y. M.; Yang, X. G.; Pan, W. S.; Li, S. M. Nanostructured lipid carrier-based pH and temperature dual-responsive hydrogel composed of carboxymethyl chitosan and poloxamer for drug delivery. Int. J. Biol. Macromol. 2018, 114, 462–469.

[70]

Mo, Z. J.; Ban, J. F.; Zhang, Y.; Du, Y. Y.; Wen, Y. F.; Huang, X.; Xie, Q. C.; Shen, L.; Zhang, S.; Deng, H. et al. Nanostructured lipid carriers-based thermosensitive eye drops for enhanced, sustained delivery of dexamethasone. Nanomedicine (Lond) 2018, 13, 1239–1253.

[71]

Jabir, N. R.; Tabrez, S.; Firoz, C. K.; Zaidi, S. K.; Baeesa, S. S.; Gan, S. H.; Shakil, S.; Kamal, M. A. A synopsis of nano-technological approaches toward anti-epilepsy therapy: Present and future research implications. Curr. Drug Metab. 2015, 16, 336–345.

[72]

El-Enin, H. A.; Al-Shanbari, A. H. Nanostructured liquid crystalline formulation as a remarkable new drug delivery system of anti-epileptic drugs for treating children patients. Saudi Pharm. J. 2018, 26, 790–800.

[73]

Tafaghodi, M.; Tabassi, S. A. S.; Jaafari, M. R.; Zakavi, S. R.; Momen-Nejad, M. Evaluation of the clearance characteristics of various microspheres in the human nose by gamma-scintigraphy. Int. J. Pharmaceut. 2004, 280, 125–135.

[74]

Rabiee, N.; Ahmadi, S.; Afshari, R.; Khalaji, S.; Rabiee, M.; Bagherzadeh, M.; Fatahi, Y.; Dinarvand, R.; Tahriri, M.; Tayebi, L. et al. Polymeric nanoparticles for nasal drug delivery to the brain: Relevance to Alzheimer’s disease. Adv. Ther. 2021, 4, 2000076.

[75]

Jani, P.; Vanza, J.; Pandya, N.; Tandel, H. Formulation of polymeric nanoparticles of antidepressant drug for intranasal delivery. Ther. Deliv. 2019, 10, 683–696.

[76]

Tong, G. F.; Qin, N.; Sun, L. W. Development and evaluation of Desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery. Saudi Pharm. J. 2017, 25, 844–851.

[77]

Nunes, R.; Araújo, F.; Barreiros, L.; Bártolo, I.; Segundo, M. A.; Taveira, N.; Sarmento, B.; das Neves, J. Noncovalent PEG coating of nanoparticle drug carriers improves the local pharmacokinetics of rectal anti-HIV microbicides. ACS Appl. Mater. Interfaces 2018, 10, 34942–34953.

[78]

Ahmad, M. Z.; Sabri, A. H. B.; Anjani, Q. K.; Dominguez-Robles, J.; Latip, N. A.; Hamid, K. A. Design and development of levodopa loaded polymeric nanoparticles for intranasal delivery. Pharmaceuticals (Basel) 2022, 15, 370.

[79]

Raj, R.; Wairkar, S.; Sridhar, V.; Gaud, R. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int. J. Biol. Macromol. 2018, 109, 27–35.

[80]

Shrestha, N.; Khan, S.; Neupane, Y. R.; Dang, S.; Md, S.; Fahmy, U. A.; Kotta, S.; Alhakamy, N. A.; Baboota, S.; Ali, J. Tailoring midazolam-loaded chitosan nanoparticulate formulation for enhanced brain delivery via intranasal route. Polymers (Basel) 2020, 12, 2589.

[81]

Chatzitaki, A. T.; Jesus, S.; Karavasili, C.; Andreadis, D.; Fatouros, D. G.; Borges, O. Chitosan-coated PLGA nanoparticles for the nasal delivery of ropinirole hydrochloride: In vitro and ex vivo evaluation of efficacy and safety. Int. J. Pharm. 2020, 589, 119776.

[82]

Chen, J. W.; Hu, L. D.; Yang, G.; Hu, Q. F. Current therapeutic strategy in the nasal delivery of insulin: Recent advances and future directions. Curr. Pharm. Biotechnol. 2018, 19, 400–415.

[83]
Kumbhare, M.; Surana, A. R.; Morankar, P. G. Nose-to-brain delivery of insulin nanoparticles for diabetes management: A review. Baghdad J. Biochem. Appl. Biol. Sci. 2023 , 4.
DOI
[84]

Tashima, T. Shortcut approaches to substance delivery into the brain based on intranasal administration using nanodelivery strategies for insulin. Molecules 2020, 25, 5188.

[85]

Wei, X. S.; Duan, X. Z.; Zhang, Y. F.; Ma, Z.; Li, C. X.; Zhang, X. G. Internalization mechanism of phenylboronic-acid-decorated nanoplatform for enhanced nasal insulin delivery. ACS Appl. Bio Mater. 2020, 3, 2132–2139.

[86]

Ban, J. F.; Zhang, Y.; Huang, X.; Deng, G. H.; Hou, D. Z.; Chen, Y. Z.; Lu, Z. F. Corneal permeation properties of a charged lipid nanoparticle carrier containing dexamethasone. Int. J. Nanomedicine. 2017, 12, 1329–1339.

[87]

Mittal, N.; Kaur, G. Leucaena leucocephala (Lam.) galactomannan nanoparticles: Optimization and characterization for ocular delivery in glaucoma treatment. Int. J. Biol. Macromol. 2019, 139, 1252–1262.

[88]

Jacinto, T. A.; Oliveira, B.; Miguel, S. P.; Ribeiro, M. P.; Coutinho, P. Ciprofloxacin-loaded zein/hyaluronic acid nanoparticles for ocular mucosa delivery. Pharmaceutics 2022, 14, 1557.

[89]

Dubashynskaya, N.; Poshina, D.; Raik, S.; Urtti, A.; Skorik, Y. A. Polysaccharides in ocular drug delivery. Pharmaceutics 2019, 12, 22.

[90]

Zhang, X. D.; Wei, D. Y.; Xu, Y.; Zhu, Q. Hyaluronic acid in ocular drug delivery. Carbohydr. Polym. 2021, 264, 118006.

[91]

Constantinides, P. P.; Han, J. H.; Davis, S. S. Advances in the use of tocols as drug delivery vehicles. Pharm. Res. 2006, 23, 243–255.

[92]

Rachmawati, H.; Pradana, A. T.; Safitri, D.; Adnyana, I. K. Multiple functions of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as curcumin nanoparticle stabilizer: In vivo kinetic profile and anti-ulcerative colitis analysis in animal model. Pharmaceutics 2017, 9, 24.

[93]

Shah, B.; Khunt, D.; Misra, M.; Padh, H. Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route. Int. J. Biol. Macromol. 2016, 89, 206–218.

[94]

Pang, L. L.; Zhu, S. Q.; Ma, J. Q.; Zhu, L.; Liu, Y. J.; Ou, G.; Li, R. T.; Wang, Y. X.; Liang, Y.; Jin, X. et al. Intranasal temperature-sensitive hydrogels of cannabidiol inclusion complex for the treatment of post-traumatic stress disorder. Acta Pharm. Sin. B. 2021, 11, 2031–2047.

[95]

Bhandwalkar, M. J.; Avachat, A. M. Thermoreversible nasal in situ gel of venlafaxine hydrochloride: Formulation, characterization, and pharmacodynamic evaluation. AAPS PharmSciTech 2013, 14, 101–110.

[96]

Shen, Y. B.; Hao, T. Y.; Ou, S. Y.; Hu, C. R.; Chen, L. Applications and perspectives of nanomaterials in novel vaccine development. MedChemComm 2018, 9, 226–238.

[97]

Bachelder, E. M.; Beaudette, T. T.; Broaders, K. E.; Paramonov, S. E.; Dashe, J.; Frechet, J. M. J. Acid-degradable polyurethane particles for protein-based vaccines: Biological evaluation and in vitro analysis of particle degradation products. Mol. Pharm. 2008, 5, 876–884.

[98]

Elmowafy, E. M.; Tiboni, M.; Soliman, M. E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Invest. 2019, 49, 347–380.

[99]

Lycke, N. Recent progress in mucosal vaccine development: Potential and limitations. Nat. Rev. Immunol. 2012, 12, 592–605.

[100]

Kumar, M.; Dogra, R.; Mandal, U. K. Nanomaterial-based delivery of vaccine through nasal route: Opportunities, challenges, advantages, and limitations. J. Drug Deliv. Sci. Technol. 2022, 74, 103533.

[101]

Alkie, T. N.; Yitbarek, A.; Taha-Abdelaziz, K.; Astill, J.; Sharif, S. Characterization of immunogenicity of avian influenza antigens encapsulated in PLGA nanoparticles following mucosal and subcutaneous delivery in chickens. PLoS One 2018, 13, e0206324.

[102]

Lebre, F.; Borchard, G.; Faneca, H.; de Lima, M. C. P.; Borges, O. Intranasal administration of novel chitosan nanoparticle/DNA complexes induces antibody response to hepatitis B surface antigen in mice. Mol. Pharm. 2016, 13, 472–482.

[103]

Pan, L.; Zhang, Z. W.; Lv, J. L.; Zhou, P.; Hu, W. F.; Fang, Y. Z.; Chen, H. T.; Liu, X. S.; Shao, J. J.; Zhao, F. R. et al. Induction of mucosal immune responses and protection of cattle against direct-contact challenge by intranasal delivery with foot-and-mouth disease virus antigen mediated by nanoparticles. Int. J. Nanomedicine 2014, 9, 5603–5618.

[104]

Liu, Q. F.; Zheng, X. Y.; Zhang, C.; Shao, X. Y.; Zhang, X.; Zhang, Q. Z.; Jiang, X. G. Conjugating influenza a (H1N1) antigen to n-trimethylaminoethylmethacrylate chitosan nanoparticles improves the immunogenicity of the antigen after nasal administration. J. Med. Virol. 2015, 87, 1807–1815.

[105]

Dhakal, S.; Renu, S.; Ghimire, S.; Lakshmanappa, Y. S.; Hogshead, B. T.; Feliciano-Ruiz, N.; Lu, F. J.; HogenEsch, H.; Krakowka, S.; Lee, C. W. et al. Mucosal immunity and protective efficacy of intranasal inactivated influenza vaccine is improved by chitosan nanoparticle delivery in pigs. Front. Immunol. 2018, 9, 934.

[106]

Bento, D.; Staats, H. F.; Gonçalves, T.; Borges, O. Development of a novel adjuvanted nasal vaccine: C48/80 associated with chitosan nanoparticles as a path to enhance mucosal immunity. Eur. J. Pharm. Biopharm. 2015, 93, 149–164.

[107]

Shim, S.; Soh, S. H.; Im, Y. B.; Park, H. E.; Cho, C. S.; Kim, S.; Yoo, H. S. Elicitation of Th1/Th2 related responses in mice by chitosan nanoparticles loaded with Brucella abortus malate dehydrogenase, outer membrane proteins 10 and 19. Int. J. Med. Microbiol. 2020, 310, 151362.

[108]

Li, Y. M.; Wang, C.; Sun, Z. J.; Xiao, J.; Yan, X. L.; Chen, Y. Q.; Yu, J.; Wu, Y. M. Simultaneous intramuscular and intranasal administration of chitosan nanoparticles-adjuvanted Chlamydia vaccine elicits elevated protective responses in the lung. Int. J. Nanomedicine 2019, 14, 8179–8193.

[109]

Khanifar, J.; Salmanian, A. H.; Hosseini, R. H.; Amani, J.; Kazemi, R. Chitosan nano-structure loaded with recombinant E. coli O157: H7 antigens as a vaccine candidate can effectively increase immunization capacity. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2593–2604.

[110]

Singh, J.; Pandit, S.; Bramwell, V. W.; Alpar, H. O. Diphtheria toxoid loaded poly-(ε-caprolactone) nanoparticles as mucosal vaccine delivery systems. Methods 2006, 38, 96–105.

[111]

Dehghan, S.; Tafaghodi, M.; Bolourieh, T.; Mazaheri, V.; Torabi, A.; Abnous, K.; Kheiri, M. T. Rabbit nasal immunization against influenza by dry-powder form of chitosan nanospheres encapsulated with influenza whole virus and adjuvants. Int. J. Pharm. 2014, 475, 1–8.

[112]

Cruz-Reséndiz, A.; Zepeda-Cervantes, J.; Sampieri, A.; Bastián-Eugenio, C.; Acero, G.; Sanchez-Betancourt, J. I.; Gevorkian, G.; Vaca, L. A self-aggregating peptide: Implications for the development of thermostable vaccine candidates. BMC Biotechnol. 2020, 20, 1.

[113]

Cruz-Resendiz, A.; Acero, G.; Sampieri, A.; Gevorkian, G.; Salvador, C.; Escobar, L.; Rosendo-Pineda, M. J.; Medeiros, M.; Vaca, L. An ambient-temperature stable nanoparticle-based vaccine for nasal application that confers long-lasting immunogenicity to carried antigens. Front. Immunol. 2022, 13, 1057499.

[114]

Tan, M. S. A.; Parekh, H. S.; Pandey, P.; Siskind, D. J.; Falconer, J. R. Nose-to-brain delivery of antipsychotics using nanotechnology: A review. Expert Opin. Drug Deliv. 2020, 17, 839–853.

[115]

Ansari, M. A.; Chung, I. M.; Rajakumar, G.; Alzohairy, M. A.; Alomary, M. N.; Thiruvengadam, M.; Pottoo, F. H.; Ahmad, N. Current nanoparticle approaches in nose to brain drug delivery and anticancer therapy—A review. Curr. Pharm. Des. 2020, 26, 1128–1137.

[116]

Wang, L. X.; Tang, S. N.; Yu, Y. W.; Lv, Y. N.; Wang, A. P.; Yan, X. J.; Li, N. N.; Sha, C. J.; Sun, K. X.; Li, Y. X. Intranasal delivery of temozolomide-conjugated gold nanoparticles functionalized with anti-EphA3 for glioblastoma targeting. Mol. Pharm. 2021, 18, 915–927.

[117]
Devi, C.; Kalita, P.; Choudhury, D.; Barthakur, M. Chapter 5—Preparation and characterization of gold nanoparticles conjugated insulin. In Smart Healthcare for Disease Diagnosis and Prevention. Paul, S.; Bhatia, D., Eds.; Academic Press: London, 2020; pp 29–32.
DOI
[118]

Joshi, H. M.; Bhumkar, D. R.; Joshi, K.; Pokharkar, V.; Sastry, M. Gold nanoparticles as carriers for efficient transmucosal insulin delivery. Langmuir 2006, 22, 300–305.

[119]

Bhumkar, D. R.; Joshi, H. M.; Sastry, M.; Pokharkar, V. B. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm. Res. 2007, 24, 1415–1426.

[120]

Hosseini, S.; Epple, M. Suppositories with bioactive calcium phosphate nanoparticles for intestinal transfection and gene silencing. Nano Select 2021, 2, 561–572.

[121]

Kulkarni, R.; Fanse, S.; Burgess, D. J. Mucoadhesive drug delivery systems: A promising noninvasive approach to bioavailability enhancement. Part II: Formulation considerations. Expert Opin. Drug Deliv. 2023, 20, 413–434.

Publication history
Copyright
Acknowledgements

Publication history

Received: 29 July 2023
Revised: 09 September 2023
Accepted: 11 September 2023
Published: 21 November 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 82100911), the Zhejiang Provincial Natural Science Foundation (No. LQ18H070004) to X. Y., the Zhejiang Provincial Natural Science Foundation (No. LY19H070002) to Y. X. S., and the National Natural Science Foundation of China (No. 32271380) to J. C. Y., the National Natural Science Foundation of China (No. 81970714), the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China under Grant No. LHDMZ23H070001, Science and technology innovation leading talent project of Zhejiang ten thousand people plan (No. 2021R52022) and Zhejiang province health innovative talents project (No. 2021-CXRC07-01) to X. H. W.

Return