AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities

Tao Wei1( )Yanyan Zhou1Cheng Sun1Xingtong Guo1Shoudong Xu3Daifen Chen1( )Yongfu Tang2( )
School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China
State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Show Author Information

Graphical Abstract

Li tends to accumulate on the top of three-dimensional (3D) frameworks with homogenous lithiophilicity and the gradient frameworks loses partial Li nucleation sites. This work firstly proposed a novel intermittent lithiophilic model for lithium deposition and electrochemical characterizations were carried out.

Abstract

Recently, three-dimensional (3D) conductive frameworks have been chosen as the host for composite lithium (Li) metal anode because of their exceptional electrical conductivity and remarkable thermal and electrochemical stability. However, Li tends to accumulate on the top of the 3D frameworks with homogenous lithiophilicity and Li dendrite still growth. This work firstly designed a bimetallic metal-organic framework (MOF) (CuMn-MOF) derived Cu2O and Mn3O4 nanoparticles decorated carbon cloth (CC) substrates (CC@Cu2O/Mn3O4) to fabricate a composite Li anode. Thanks to the synergistic effects of lithiophilic Cu2O and Mn3O4, the CC@Cu2O/Mn3O4@Li symmetrical cell can afford a prolonged cycling lifespan (1400 h) under an ultrahigh current density and areal capacity (6 mA·cm−2/6 mAh·cm−2). When coupled with the LiFePO4 (LFP) cathode, the LFP||CC@Cu2O/Mn3O4@Li full cell demonstrated a superior performance of 89.7 mAh·g−1 even at an extremely high current density (10 C). Furthermore, it can also be matched well with LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode. Importantly, to explain the excellent performances of the CC@Cu2O/Mn3O4@Li composite anode, an intermittent model was also proposed. This study offers a novel model that can enhance our comprehension of the Li deposition behavior and pave the way to attain stable and safe Li metal anodes by employing bimetallic MOF-derived materials to construct 3D frameworks.

Electronic Supplementary Material

Download File(s)
12274_2023_6187_MOESM1_ESM.pdf (674.7 KB)

References

[1]

Zhao, Y.; Ding, Y.; Li, Y. T.; Peng, L. L.; Byon, H. R.; Goodenough, J. B.; Yu, G. H. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chem. Soc. Rev. 2015, 44, 7968–7996.

[2]

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

[3]

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

[4]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[5]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[6]

Li, L.; Basu, L.; Wang, Y. P.; Chen, Z. Z.; Hundekar, P.; Wang, B. W.; Shi, J.; Shi, Y. F.; Narayanan, S.; Koratkar, J. Self-heating-induced healing of lithium dendrites. Science 2018, 359, 1513–1516.

[7]

Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.

[8]

Cao, R. G.; Xu, W.; Lv, D. P.; Xiao, J.; Zhang, J. G. Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1402273.

[9]

Chi, S. S.; Liu, Y. C.; Song, W. L.; Fan, L. Z.; Zhang, Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 2017, 27, 1700348.

[10]

Zhu, W. H.; Deng, W.; Zhao, F.; Liang, S. S.; Zhou, X. F.; Liu, Z. P. Graphene network nested Cu foam for reducing size of lithium metal towards stable metallic lithium anode. Energy Storage Mater. 2019, 21, 107–114.

[11]

Wei, T.; Zhou, Y. Y.; Sun, C.; Liu, L. S.; Wang, S. J.; Wang, M. T.; Liu, Y.; Huang, Q.; Zhuang, Q. C.; Tang, Y. F. Prestoring lithium into SnO2 coated 3D carbon fiber cloth framework as dendrite-free lithium metal anode. Particuology 2024, 84, 89–97.

[12]

Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018, 2, 764–777.

[13]

Zhao, J.; Sun, J.; Pei, A.; Zhou, G. M.; Yan, K.; Liu, Y. Y.; Lin, D. C.; Cui, Y. A general prelithiation approach for group IV elements and corresponding oxides. Energy Storage Mater. 2018, 10, 275–281.

[14]

Sun, Y. M.; Zheng, G. Y.; Seh, Z. W.; Liu, N.; Wang, S.; Sun, J.; Lee, H. R.; Cui, Y. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem. Rev. 2016, 1, 287–297.

[15]

Yun, J.; Park, B. K.; Won, E. S.; Choi, S. H.; Kang, H. C.; Kim, J. H.; Park, M. S.; Lee, J. W. Bottom-up lithium growth triggered by interfacial activity gradient on porous framework for lithium-metal anode. ACS Energy Lett. 2020, 5, 3108–3114.

[16]

Yan, X. L.; Zhang, Q. F.; Xu, W. J.; Xie, Q. S.; Liu, P. F.; Chen, Q. L.; Zheng, H. F.; Wang, L. S.; Zhu, Z.; Peng, D. L. Bottom–top channeling Li nucleation and growth by a gradient lithiophilic 3D conductive host for highly stable Li-metal anodes. J. Mater. Chem. A 2020, 8, 1678–1686.

[17]

Shang, X. N.; Li, X. W.; Yue, H. W.; Xue, S.; Liu, Z. J.; Hou, X. Y.; He, D. Y. Interconnected porous NiO@MnO2 nanosheets as anodes with excellent rate capability for lithium-ion batteries. Mater. Lett. 2015, 157, 7–10.

[18]

Zhang, C.; Lv, W.; Zhou, G. M.; Huang, Z. J.; Zhang, Y. B.; Lyu, R. Y.; Wu, H. L.; Yun, Q. B.; Kang, F. Y.; Yang, Q. H. Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv. Energy Mater. 2018, 8, 1703404.

[19]

Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888–2895.

[20]

Liu, B.; Zhang, Y.; Pan, G. X.; Ai, C. Z.; Deng, S. J.; Liu, S. F.; Liu, Q.; Wang, X. L.; Xia, X. H.; Tu, J. P. Ordered lithiophilic sites to regulate Li plating/stripping behavior for superior lithium metal anodes. J. Mater. Chem. A 2019, 7, 21794–21801.

[21]

Zhang, Q.; Wang, S. J.; Liu, Y.; Wang, M. T.; Chen, R. T.; Zhu, Z. Y.; Qiu, X. Y.; Xu, S. D.; Wei, T. UiO-66-NH2@67 core–shell metal-organic framework as fillers in solid composite electrolytes for high-performance all-solid-state lithium metal batteries. Energy Technol. 2023, 11, 2201438.

[22]

Wang, L. Y.; Zhu, X. Y.; Guan, Y. P.; Zhang, J. L.; Ai, F.; Zhang, W. F.; Xiang, Y.; Vijayan, S.; Li, G. D.; Huang, Y. Q. et al. ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes. Energy Storage Mater. 2018, 11, 191–196.

[23]

Yu, B. Z.; Tao, T.; Mateti, S.; Lu, S. G.; Chen, Y. Nanoflake arrays of lithiophilic metal oxides for the ultra-stable anodes of lithium-metal batteries. Adv. Funct. Mater. 2018, 28, 1803023.

[24]

Jiang, G. Y.; Jiang, N.; Zheng, N.; Chen, X.; Mao, J. Y.; Ding, G. Y.; Li, Y. H.; Sun, F. G.; Li, Y. S. MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes. Energy Storage Mater. 2019, 23, 181–189

[25]

Wei, T.; Lu, J. H.; Zhang, P.; Yang, G.; Sun, C.; Zhou, Y. Y.; Zhuang, Q. C.; Tang, Y. F. Metal-organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries. Chin. Chem. Lett. 2023, 34, 107947.

[26]

Wei, T.; Lu, J. H.; Wang, M. T.; Sun, C.; Zhang, Q.; Wang, S. J.; Zhou, Y. Y.; Chen, D. F.; Lan, Y. Q. MOF-derived materials enabled lithiophilic 3D hosts for lithium metal anode—A review. Chin. J. Chem. 2023, 41, 1861–1874

[27]

Hou, Y. P.; Wang, L. Y.; Chen, G. H.; Liu, Y. F.; Miao, X.; Wu, G. Q.; Cao, Z. Z.; Zhang, Y. F. Core–shell copper-manganese oxide nanoparticles synthesized from a copper-manganese metal-organic framework with pyromellitic acid as ligand for lithium-ion battery anode. Ionics 2022, 28, 3719–3729.

[28]

Li, W. F.; Peng, D. L.; Huang, W. X.; Zhang, X. S.; Hou, Z. P.; Zhang, W. L.; Lin, B. X.; Xing, Z. Y. Adjusting coherence length of expanded graphite by self-activation and its electrochemical implication in potassium ion battery. Carbon 2023, 204, 315–324.

[29]

Cheng, L.; Ma, C. H.; Lu, W. Q.; Wang, X.; Yue, H. J.; Zhang, D.; Xing, Z. Y. A graphitized hierarchical porous carbon as an advanced cathode host for alkali metal-selenium batteries. Chem. Eng. J. 2022, 433, 133527.

[30]

Xing, Z. Y.; Wang, B.; Halsted, J. K.; Subashchandrabose, R.; Stickle, W. F.; Ji, X. L. Direct fabrication of nanoporous graphene from graphene oxide by adding a gasification agent to a magnesiothermic reaction. Chem. Comm. 2015, 51, 1969–1971.

[31]

Sun, D.; Tang, Y. G.; Ye, D. L.; Yan, J.; Zhou, H. S.; Wang, H. Y. Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high performance Li ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 5254–5262.

[32]

Wei, T.; Zhang, Z. H.; Zhang, Q.; Lu, J. H.; Xiong, Q. M.; Wang, F. Y.; Zhou, X. P.; Zhao, W. J.; Qiu, X. Y. Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries. Int. J. Miner. Metall. Mater. 2021, 28, 1636–1646.

[33]

Wei, T.; Wang, Z. M.; Zhang, M.; Zhang, Q.; Lu, J. H.; Zhou, Y. Y.; Sun, C.; Yu, Z. D.; Wang, Y.; Qiao, M. et al. Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries. Mater. Today Commun. 2022, 31, 103518.

[34]

Zhang, Q.; Wei, T.; Lu, J. H.; Sun, C.; Zhou, Y. Y.; Wang, M. T.; Liu, Y.; Xiao, B. B.; Qiu, X. Y.; Xu, S. D. The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries. J. Electroanal. Chem. 2022, 926, 116935.

[35]

Lu, J. H.; Wang, Z. M.; Zhang, Q.; Sun, C.; Zhou, Y. Y.; Wang, S. J.; Qiu, X. Y.; Xu, S. D.; Chen, R. T.; Wei, T. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries. Chin. J. Chem. Eng. 2023, 60, 80–89.

[36]

Liu, X. F.; Xie, D.; Tao, F. Y.; Diao, W. Y.; Yang, J. L.; Luo, X. X.; Li, W. L.; Wu, X. L. Regulating the Li nucleation/growth behavior via Cu2O nanowire array and artificial solid electrolyte interphase toward highly stable Li metal anode. ACS Appl. Mater. Interfaces 2022, 14, 23588–23596.

[37]

Zhang, C.; Lyu, R. Y.; Lv, W.; Li, H.; Jiang, W.; Li, J.; Gu, S. C.; Zhou, G. M.; Huang, Z. J.; Zhang, Y. B. et al. A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high-density nucleation and stable deposition of lithium. Adv. Mater. 2019, 31, 1904991.

[38]

Pu, J.; Li, J. C.; Zhang, K.; Zhang, T.; Li, C. W.; Ma, H. X.; Zhu, J.; Braun, P. V.; Lu, J.; Zhang, H. G. Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. Nat. Commun. 2019, 10, 1896.

[39]

Zhao, Y. L.; Wang, L. P,; Zou, J.; Ran, Q. W.; Li, L.; Chen, P. Y.; Yu, H. L.; Gao, J.; Niu, X. B. Bottom-up lithium growth guided by Ag concentration gradient in 3D PVDF framework towards stable lithium metal anode. J. Energy Chem. 2022, 65, 666–673.

[40]

Zhang, H. M.; Liao, X. B.; Guan, Y. P.; Xiang, Y.; Li, M.; Zhang, W. F.; Zhu, X. Y.; Ming, H.; Lu, L.; Qiu, J. Y. et al. Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat. Commun. 2018, 9, 3729.

[41]

Zhou, J. H.; Wu, F.; Wei, G. L.; Hao, Y. T.; Mei, Y.; Li, L.; Xie, M.; Chen, R. J. Lithium-metal host anodes with top-to-bottom lithiophilic gradients for prolonged cycling of rechargeable lithium batteries. J. Power Sources 2021, 495, 229773.

[42]

Nan, Y.; Li, S. M.; Shi, Y. Z.; Yang, S. B.; Li, B. Gradient-distributed nucleation seeds on conductive host for a dendrite-free and high-rate lithium metal anode. Small 2019, 15, 1903520.

[43]

Zhang, Y. B.; Yu, J. K.; Ren, K. X.; Zuo, J. L.; Ding, J. X.; Chen, X. S. Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules 2019, 20, 1478–1492.

[44]

Guan, W. Q.; Hu, X. Q.; Liu, Y. H.; Sun, J. M.; He, C.; Du, Z. Z.; Bi, J. X.; Wang, K.; Ai, W. Advances in the emerging gradient designs of Li metal hosts. Research 2022, 2022, 9846537.

[45]

Liu, X. H.; Qian, X. J.; Tang, W. Q.; Luo, H.; Zhao, Y.; Tan, R.; Qiao, M.; Gao, X. L.; Hua, Y.; Wang, H. Z. et al. Designer uniform Li plating/stripping through lithium-cobalt alloying hierarchical scaffolds for scalable high-performance lithium-metal anodes. J. Energy Chem. 2021, 52, 385–392.

[46]

Qin, L. G.; Wu, Y. C.; Shen, M. Y.; Song, B. R.; Li, Y. H.; Sun, S. Q.; Zhang, H. Y.; Liu, C. F.; Chen, J. Straining copper foils to regulate the nucleation of lithium for stable lithium metal anode. Energy Storage Mater. 2022, 44, 278–284.

Nano Research
Pages 2763-2769
Cite this article:
Wei T, Zhou Y, Sun C, et al. An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities. Nano Research, 2024, 17(4): 2763-2769. https://doi.org/10.1007/s12274-023-6187-8
Topics:
Part of a topical collection:

943

Views

24

Crossref

53

Web of Science

39

Scopus

0

CSCD

Altmetrics

Received: 28 July 2023
Revised: 03 September 2023
Accepted: 11 September 2023
Published: 20 October 2023
© Tsinghua University Press 2023
Return