Journal Home > Volume 17 , Issue 4

There are more challenges for alkaline hydrogen evolution reaction (HER) via simultaneously expediting the electron-coupled water dissociation process (Volmer step) and the following electrochemical H2 desorption (Heyrovsky step). Hybrid amorphous electrocatalysts are highly desirable for efficient hydrogen evolution from water-alkali electrolyzers due to the bifunctionality for the different elementary steps of HER and optimal interactions with water molecules and the reactive hydrogen intermediates (Had). Herein, the synthesis of amorphous hybrid ultrathin (tungsten oxide/nickel hydroxide) hydrate (a-[WO3/Ni(OH)2]·0.2H2O) nanosheets on nickel foam (NF) for efficient alkaline HER is described. The structural and composition features of a-[WO3/Ni(OH)2]·0.2H2O are characterized in detailed. The resulting a-[WO3/Ni(OH)2]·0.2H2O/NF electrocatalyst with the synergistic effect of both hybrid components for the HER elementary steps shows greatly improved the activity and durability for the HER with a low overpotential of −41 and −163 mV at −10 and −500 mA·cm−2, respectively, a Tafel slope as low as −72.9 mV·dec−1, and long-term stability of continuous electrolysis for at least 150 h accompanying by inappreciable overpotential change in 1 M KOH. In the hybrid a-[WO3/Ni(OH)2]·0.2H2O, Ni(OH)2 and WO3 moieties are separately responsible for accelerating dissociative adsorption of water and weakening Had adsorption strength, which is beneficial to the improvement of the alkaline HER activity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Amorphous hybrid tungsten oxide–nickel hydroxide nanosheets used as a highly efficient electrocatalyst for hydrogen evolution reaction

Show Author's information Chao LyuChenghai DaiYiwei Tan( )
State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

There are more challenges for alkaline hydrogen evolution reaction (HER) via simultaneously expediting the electron-coupled water dissociation process (Volmer step) and the following electrochemical H2 desorption (Heyrovsky step). Hybrid amorphous electrocatalysts are highly desirable for efficient hydrogen evolution from water-alkali electrolyzers due to the bifunctionality for the different elementary steps of HER and optimal interactions with water molecules and the reactive hydrogen intermediates (Had). Herein, the synthesis of amorphous hybrid ultrathin (tungsten oxide/nickel hydroxide) hydrate (a-[WO3/Ni(OH)2]·0.2H2O) nanosheets on nickel foam (NF) for efficient alkaline HER is described. The structural and composition features of a-[WO3/Ni(OH)2]·0.2H2O are characterized in detailed. The resulting a-[WO3/Ni(OH)2]·0.2H2O/NF electrocatalyst with the synergistic effect of both hybrid components for the HER elementary steps shows greatly improved the activity and durability for the HER with a low overpotential of −41 and −163 mV at −10 and −500 mA·cm−2, respectively, a Tafel slope as low as −72.9 mV·dec−1, and long-term stability of continuous electrolysis for at least 150 h accompanying by inappreciable overpotential change in 1 M KOH. In the hybrid a-[WO3/Ni(OH)2]·0.2H2O, Ni(OH)2 and WO3 moieties are separately responsible for accelerating dissociative adsorption of water and weakening Had adsorption strength, which is beneficial to the improvement of the alkaline HER activity.

Keywords: hydrogen evolution reaction, ultrathin nanosheet, tungsten oxide, amorphous nanomaterial, bimetallic electrocatalyst

References(61)

[1]

Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem 2010, 2, 724–761.

[2]

Santra, S.; Streibel, V.; Sharp, I. D. Emerging noble metal-free Mo-based bifunctional catalysts for electrochemical energy conversion. Nano Res. 2022, 15, 10234–10267.

[3]

Li, X. M.; Hao, X. G.; Abudula, A.; Guan, G. Q. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. J. Mater. Chem. A 2016, 4, 11973–12000.

[4]

Yan, Y.; Xia, B. Y.; Zhao, B.; Wang, X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 2016, 4, 17587–17603.

[5]

Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157.

[6]

Zhao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291.

[7]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[8]

Bagotzky, V. S.; Osetrova, N. V. Investigations of hydrogen ionization on platinum with the help of micro-electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1973, 43, 233–249.

[9]

Sheng, W. C.; Gasteiger, H. A.; Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J. Electrochem. Soc. 2010, 157, B1529–B1536.

[10]

Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 2011, 334, 1256–1260.

[11]

Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem., Int. Ed. 2012, 51, 12495–12498.

[12]

Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

[13]

Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

[14]

Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts. ACS Energy Lett. 2017, 2, 1937–1938.

[15]

Li, Y. H.; Liu, P. F.; Pan, L. F.; Wang, H. F.; Yang, Z. Z.; Zheng, L. R.; Hu, P.; Zhao, H. J.; Gu, L.; Yang, H. G. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat. Commun. 2015, 6, 8064.

[16]

Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Nørskov, J. K.; Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 2009, 140, 219–231.

[17]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

[18]

Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.

[19]

Yin, J.; Zhou, P. P.; An, L.; Huang, L.; Shao, C. W.; Wang, J.; Liu, H. Y.; Xi, P. X. Self-supported nanoporous NiCo2O4 nanowires with cobalt-nickel layered oxide nanosheets for overall water splitting. Nanoscale 2016, 8, 1390–1400.

[20]

Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661–4672.

[21]

Zhang, B. W.; Lui, Y. H.; Ni, H. W.; Hu, S. Bimetallic (Fe x Ni1− x )2P nanoarrays as exceptionally efficient electrocatalysts for oxygen evolution in alkaline and neutral media. Nano Energy 2017, 38, 553–560.

[22]

Marco, J. F.; Gancedo, J. R.; Gracia, M.; Gautier, J. L.; Ríos, E. I.; Palmer, H. M.; Greaves, C.; Berry, F. J. Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4. J. Mater. Chem. 2001, 11, 3087–3093.

[23]

Chen, J.; Zheng, F.; Zhang, S.-J.; Fisher, A.; Zhou, Y.; Wang, Z.; Li, Y.; Xu, B.-B.; Li, J.-T.; Sun, S.-G. Interfacial interaction between FeOOH and Ni−Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342–11351

[24]

Ge, J. J.; Zheng, J. Y.; Zhang, J. W.; Jiang, S. Y.; Zhang, L. L.; Wan, H.; Wang, L. M.; Ma, W.; Zhou, Z.; Ma, R. Z. Controllable atomic defect engineering in layered Ni x Fe1− x (OH)2 nanosheets for electrochemical overall water splitting. J. Mater. Chem. A 2021, 9, 14432–14443.

[25]

Song, J. J.; Huang, Z. F.; Pan, L.; Zou, J. J.; Zhang, X. W.; Wang, L. Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst. ACS Catal. 2015, 5, 6594–6599.

[26]

Corby, S.; Francàs, L.; Selim, S.; Sachs, M.; Blackman, C.; Kafizas, A.; Durrant, J. R. Water oxidation and electron extraction kinetics in nanostructured tungsten trioxide photoanodes. J. Am. Chem. Soc. 2018, 140, 16168–16177.

[27]

O’Grady, W. E.; Pandya, K. I.; Swider, K. E.; Corrigan, D. A. In situ X-ray absorption near-edge structure evidence for quadrivalent nickel in nickel battery electrodes. J. Electrochem. Soc. 1996, 143, 1613–1616.

[28]

Crespin, M.; Levitz, P.; Gatineau, L. Reduced forms of LaNiO3 perovskite. Part 1.—Evidence for new phases: La2Ni2O5 and LaNiO2. J. Chem. Soc. Faraday Trans. 2 1983, 79, 1181–1194.

[29]

Biesinger, M. C.; Payne, B. P.; Lau, L. W. M.; Gerson, A.; Smart, R. S. C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324–332

[30]

Wang, J.; Zhang, M. K.; Yang, G. L.; Song, W. W.; Zhong, W. T.; Wang, X. Y.; Wang, M. M.; Sun, T. M.; Tang, Y. F. Heterogeneous bimetallic Mo-NiP x /NiS y as a highly efficient electrocatalyst for robust overall water splitting. Adv. Funct. Mater. 2021, 31, 2101532.

[31]

Zhang, L. Y.; Zheng, Y. J.; Wang, J. C.; Geng, Y.; Zhang, B.; He, J. J.; Xue, J. M.; Frauenheim, T.; Li, M. Ni/Mo bimetallic-oxide-derived heterointerface-rich sulfide nanosheets with Co-doping for efficient alkaline hydrogen evolution by boosting Volmer reaction. Small 2021, 17, 2006730.

[32]

Wu, Y. S.; Liu, X. J.; Han, D. D.; Song, X. Y.; Shi, L.; Song, Y.; Niu, S. W.; Xie, Y. F.; Cai, J. Y.; Wu, S. Y. et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 2018, 9, 1425.

[33]

Zhang, R.; Wang, X. X.; Yu, S. J.; Wen, T.; Zhu, X. W.; Yang, F. X.; Sun, X. N.; Wang, X. K.; Hu, W. P. Ternary NiCo2P x nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1605502.

[34]

Yang, Y. Q.; Zhang, K.; Lin, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017, 7, 2357–2366.

[35]

Xin, Y. M.; Kan, X.; Gan, L. Y.; Zhang, Z. H. Heterogeneous bimetallic phosphide/sulfide nanocomposite for efficient solar-energy-driven overall water splitting. ACS Nano 2017, 11, 10303–10312.

[36]

Zhou, H. Q.; Yu, F.; Huang, Y. F.; Sun, J. Y.; Zhu, Z.; Nielsen, R. J.; He, R.; Bao, J. M.; Goddard III, W. A.; Chen, S. et al. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nat. Commun. 2016, 7, 12765.

[37]

Cao, B.; Cheng, Y.; Hu, M. H.; Jing, P.; Ma, Z. X.; Liu, B. C.; Gao, R.; Zhang, J. Efficient and durable 3D self-supported nitrogen-doped carbon-coupled nickel/cobalt phosphide electrodes: Stoichiometric ratio regulated phase- and morphology-dependent overall water splitting performance. Adv. Funct. Mater. 2019, 29, 1906316.

[38]

Zhang, D. D.; Li, H. B.; Riaz, A.; Sharma, A.; Liang, W. S.; Wang, Y.; Chen, H. J.; Vora, K.; Yan, D.; Su, Z. et al. Unconventional direct synthesis of Ni3N/Ni with N-vacancies for efficient and stable hydrogen evolution. Energy Environ. Sci. 2022, 15, 185–195.

[39]

Shen, S. J.; Wang, Z. P.; Lin, Z. P.; Song, K.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2110631.

[40]

Qin, F.; Zhao, Z. H.; Alam, M. K.; Ni, Y. Z.; Robles-Hernandez, F.; Yu, L.; Chen, S.; Ren, Z. F.; Wang, Z. M.; Bao, J. M. Trimetallic NiFeMo for overall electrochemical water splitting with a low cell voltage. ACS Energy Lett. 2018, 3, 546–554.

[41]

Zhang, H.; Xi, B. J.; Gu, Y.; Chen, W. H.; Xiong, S. L. Interface engineering and heterometal doping Mo-NiS/Ni(OH)2 for overall water splitting. Nano Res. 2021, 14, 3466–3473.

[42]

Zhou, X. F.; Yang, X. L.; Li, H. N.; Hedhili, M. N.; Huang, K. W.; Li, L. J.; Zhang, W. J. Symmetric synergy of hybrid CoS2-WS2 electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 15552–15558.

[43]

Zhou, H. Q.; Yu, F.; Sun, J. Y.; Zhu, H. T.; Mishra, I. K.; Chen, S.; Ren, Z. F. Highly efficient hydrogen evolution from edge-oriented WS2(1− x )Se2 x particles on three-dimensional porous NiSe2 foam. Nano Lett. 2016, 16, 7604–7609.

[44]

Wang, X. Y.; Le, J. B.; Fei, Y.; Gao, R. Q.; Jing, M. X.; Yuan, W. Y.; Li, C. M. Self-assembled ultrasmall mixed Co-W phosphide nanoparticles on pristine graphene with remarkable synergistic effects as highly efficient electrocatalysts for hydrogen evolution. J. Mater. Chem. A 2022, 10, 7694–7704.

[45]

Wang, X. D.; Xu, Y. F.; Rao, H. S.; Xu, W. J.; Chen, H. Y.; Zhang, W. X.; Kuang, D. B.; Su, C. Y. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy Environ. Sci. 2016, 9, 1468–1475.

[46]

Wang, X. Q.; Chen, Y. F.; Yu, B.; Wang, Z. G.; Wang, H. Q.; Sun, B. C.; Li, W. X.; Yang, D. X.; Zhang, W. L. Hierarchically porous W-doped CoP nanoflake arrays as highly efficient and stable electrocatalyst for pH-universal hydrogen evolution. Small 2019, 15, 1902613.

[47]

Hu, Y.; Yu, B.; Ramadoss, M.; Li, W. X.; Yang, D. X.; Wang, B.; Chen, Y. F. Scalable synthesis of heterogeneous W-W2C nanoparticle-embedded CNT networks for boosted hydrogen evolution reaction in both acidic and alkaline media. ACS Sustainable Chem. Eng. 2019, 7, 10016–10024.

[48]

Lukowski, M. A.; Daniel, A. S.; English, C. R.; Meng, F.; Forticaux, A.; Hamers, R. J.; Jin, S. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 2014, 7, 2608–2613.

[49]

Wang, F.; Niu, S. W.; Liang, X. Q.; Wang, G. M.; Chen, M. H. Phosphorus incorporation activates the basal plane of tungsten disulfide for efficient hydrogen evolution catalysis. Nano Res. 2022, 15, 2855–2861.

[50]

Ling, M.; Li, N.; Jiang, B. B.; Tu, R. Y.; Wu, T.; Guan, P. L.; Ye, Y.; Max Cheong, W. C.; Sun, K. A.; Liu, S. J. et al. Rationally engineered Co and N co-doped WS2 as bifunctional catalysts for pH-universal hydrogen evolution and oxidative dehydrogenation reactions. Nano Res. 2022, 15, 1993–2002.

[51]

Wang, J. S.; Zhang, Z. F.; Song, H. R.; Zhang, B.; Liu, J.; Shai, X.; Miao, L. Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2021, 31, 2008578.

[52]

Wang, Z. Y.; Chen, J. Y.; Song, E. H.; Wang, N.; Dong, J. C.; Zhang, X.; Ajayan, P. M.; Yao, W.; Wang, C. F.; Liu, J. J. et al. Manipulation on active electronic states of metastable phase β-NiMoO4 for large current density hydrogen evolution. Nat. Commun. 2021, 12, 5960.

[53]

Sun, H. M.; Tian, C. Y.; Fan, G. L.; Qi, J. N.; Liu, Z. T.; Yan, Z. H.; Cheng, F. Y.; Chen, J.; Li, C. P.; Du, M. Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Adv. Funct. Mater. 2020, 30, 1910596.

[54]

Yu, M. Z.; Wang, Z. Y.; Liu, J. S.; Sun, F.; Yang, P. J.; Qiu, J. S. A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy, 2019, 63, 103880.

[55]

Liu, Y.; Feng, Q. G.; Liu, W.; Li, Q.; Wang, Y. C.; Liu, B.; Zheng, L. R.; Wang, W.; Huang, L.; Chen, L. M. et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy 2021, 81, 105641.

[56]

Kumar, A.; Bui, V. Q.; Lee, J.; Jadhav, A. R.; Hwang, Y.; Kim, M. G.; Kawazoe, Y.; Lee, H. Modulating interfacial charge density of NiP2-FeP2 via coupling with metallic Cu for accelerating alkaline hydrogen evolution. ACS Energy Lett. 2021, 6, 354–363.

[57]
Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: New York, 2001; pp 103.
[58]
Lasia, A. Hydrogen evolution reaction. In Handbook of Fuel Cells. John Wiley & Sons, Ltd.: Chichester, 2010; pp 359–440.
DOI
[59]

Huang, J. Z.; Han, J. C.; Wu, T.; Feng, K.; Yao, T.; Wang, X. J.; Liu, S. W.; Zhong, J.; Zhang, Z. H.; Zhang, Y. M. et al. Boosting hydrogen transfer during Volmer reaction at oxides/metal nanocomposites for efficient alkaline hydrogen evolution. ACS Energy Lett. 2019, 4, 3002–3010.

[60]

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

[61]

Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3− x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.

File
12274_2023_6185_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 July 2023
Revised: 31 August 2023
Accepted: 11 September 2023
Published: 03 November 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the Six Talent Peaks Project in Jiangsu Province (No. JNHB-043) and the Research Fund of State Key Laboratory of Materials-Oriented Chemical Engineering (No. ZK201713).

Return