Journal Home > Volume 17 , Issue 4

The low electrical conductivity of sulfur, strong volume expansion, shuttle effect, and sluggish redox reactions in Li-S batteries limit their practical application. MoP nanoparticles encapsulated in nitrogen-doped carbon nanotubes (MoP/NC NTs) were synthesized using MoO3 nanorods as templates via a polypyrrole coating, heat-carbonization, MoO3 partial reduction, ammonia washing, and phosphorization. The MoP/NC NTs had a hollow nanostructure with a high specific surface area, which can alleviate the volume expansion of the cathode and the shuttle effect of polysulfides. The encapsulated MoP nanoparticles can anchor the polysulfides and enhance the redox reaction kinetics. Thus, the MoP/NC NTs combined with sulfur (MoP/S/NC NTs) exhibited 440.8 mAh·g−1 over 500 cycles at 1.0 A·g−1 with a decay rate of 0.06% per cycle. The density functional theory calculations and X-ray photoelectron spectroscopy results confirmed that MoP/NC NTs could anchor polysulfides and alleviate the shuttle effect by chemical interactions. This study supplies a novel route to prepare nanoparticle-embedded in N-doped carbon nanotubes for advanced Li-S battery.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

MoP nanoparticles encapsulated in N-doped carbon nanotubes as sulfur host for advanced lithium-sulfur batteries

Show Author's information Guozhi Wu1,2,§Shanqing Li2,§Zheng Chen1( )Ajiao Sun1Jie Yang1Sang Woo Joo3( )Jiarui Huang1( )
Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
Anhui Engineering Research Center of Highly Reactive Micro-Nano Powders, School of Materials and Environmental engineering, Chizhou University, Chizhou 247000, China
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea

§ Guozhi Wu and Shanqing Li contributed equally to this work.

Abstract

The low electrical conductivity of sulfur, strong volume expansion, shuttle effect, and sluggish redox reactions in Li-S batteries limit their practical application. MoP nanoparticles encapsulated in nitrogen-doped carbon nanotubes (MoP/NC NTs) were synthesized using MoO3 nanorods as templates via a polypyrrole coating, heat-carbonization, MoO3 partial reduction, ammonia washing, and phosphorization. The MoP/NC NTs had a hollow nanostructure with a high specific surface area, which can alleviate the volume expansion of the cathode and the shuttle effect of polysulfides. The encapsulated MoP nanoparticles can anchor the polysulfides and enhance the redox reaction kinetics. Thus, the MoP/NC NTs combined with sulfur (MoP/S/NC NTs) exhibited 440.8 mAh·g−1 over 500 cycles at 1.0 A·g−1 with a decay rate of 0.06% per cycle. The density functional theory calculations and X-ray photoelectron spectroscopy results confirmed that MoP/NC NTs could anchor polysulfides and alleviate the shuttle effect by chemical interactions. This study supplies a novel route to prepare nanoparticle-embedded in N-doped carbon nanotubes for advanced Li-S battery.

Keywords: lithium-sulfur battery, nanotube, N-doped carbon, cathode, MoP

References(62)

[1]

Zeng, P.; Su, B.; Wang, X. L.; Li, X. Q.; Yuan, C.; Liu, G. L.; Dai, K. H.; Mao, J.; Chao, D. L.; Wang, Q. Y. et al. In situ reconstruction of electrocatalysts for lithium-sulfur batteries: Progress and prospects. Adv. Funct. Mater. 2023, 33, 2301743.

[2]

Jetybayeva, A.; Umirzakov, A.; Uzakbaiuly, B.; Bakenov, Z.; Mukanova, A. Towards Li-S microbatteries: A perspective review. J. Power Sources 2023, 573, 233158.

[3]

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2022, 13, 1856–1866.

[4]

Deng, R. Y.; Wang, M.; Yu, H. Y.; Luo, S. R.; Li, J. H.; Chu, F. L.; Liu, B.; Wu, F. X. Recent advances and applications toward emerging lithium-sulfur batteries: Working principles and opportunities. Energy Environ. Mater. 2022, 5, 777–799.

[5]

He, M. X.; Ozoemena, K. I.; Aurbach, D.; Pang, Q. Q. Developing highly solvating electrolyte solutions for lithium-sulfur batteries. Curr. Opin. Electrochem. 2023, 39, 101285.

[6]

Yu, X. M.; Wang, N.; Sun, Z. P.; Shao, L. Y.; Shi, X. Y.; Cai, J. J. Separator modified by a caterpillar-like composite with interconnected N-doped carbon nanotubes decorated Co-MnO heterointerface enabling robust polysulfide adsorption and catalytic conversion for Li-S batteries. Electrochim. Acta 2023, 457, 142497.

[7]

Liu, M. L.; Chen, P.; Pan, X. C.; Pan, S. C.; Zhang, X.; Zhou, Y.; Bi, M.; Sun, J. W.; Yang, S. L.; Vasiliev, A. L. et al. Synergism of flame-retardant, self-healing, high-conductive and polar to a multi-functional binder for lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2205031.

[8]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[9]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[10]

Wang, S. Y.; Wang, Z. W.; Chen, F. Z.; Peng, B.; Xu, J.; Li, J. Z.; Lv, Y. H.; Kang, Q.; Xia, A. L.; Ma, L. B. Electrocatalysts in lithium-sulfur batteries. Nano Res. 2023, 16, 4438–4467.

[11]
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res., in press, https://doi.org/10.1007/s12274-023-5700-4.
[12]

Zhao, F. L.; Xue, J. H.; Shao, W.; Yu, H.; Huang, W.; Xiao, J. Toward high-sulfur-content, high-performance lithium-sulfur batteries: Review of materials and technologies. J. Energy Chem. 2023, 80, 625–657.

[13]

Hu, Y.; Chen, W.; Lei, T. Y.; Zhou, B.; Jiao, Y.; Yan, Y. C.; Du, X. C.; Huang, J. W.; Wu, C. Y.; Wang, X. P. et al. Carbon quantum dots-modified interfacial interactions and ion conductivity for enhanced high current density performance in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1802955.

[14]

Yang, S. F.; Luo, S. P.; Dong, X. J.; Tian, L.; Shen, P. K.; Zhu, J. L. Rational synthesis of chitin-derived nitrogen-doped porous carbon nanofibers for efficient polysulfide confinement. Nano Res. 2023, 16, 8478–8487.

[15]

Yahalom, N.; Snarski, L.; Maity, A.; Bendikov, T.; Leskes, M.; Weissman, H.; Rybtchinski, B. Durable lithium-sulfur batteries based on a composite carbon nanotube cathode. ACS Appl. Energy Mater. 2023, 6, 4511–4519.

[16]

Li, D.; Wang, W. Y.; Liu, J.; He, M. S. Hierarchical lamellar single-walled carbon nanotube aerogel interlayers for stable lithium-sulfur batteries with high-sulfur-loading. Chem. Eng. J. 2023, 461, 142031.

[17]

Cho, Y.; Jang, M.; Lee, K. S.; Lee, E.; Park, S. Y.; Piao, Y. Z. The quinone-based conjugated microporous polymer as an effective electrode additive for activated graphene host material in lithium-sulfur batteries. Chem. Eng. J. 2023, 463, 142422.

[18]
Duan, T. F.; Wang, L.; Ma, Z. Y.; Pei, Y. Theoretical insights into single-atom catalysts supported on N-doped defective graphene for fast reaction redox kinetics in lithium-sulfur batteries. Small, in press, https://doi.org/10.1002/smll.202303760.
[19]

Kong, Z. K.; Lin, Y. H.; Hu, J. W.; Wang, Y. L.; Zhan, L. Phosphorus doped hierarchical porous carbon nanosheet array as an electrocatalyst to enhance polysulfides anchoring and conversion. Chem. Eng. J. 2022, 436, 132719.

[20]

Hu, J. L.; Chen, Q. Q.; Xia, Q.; Zhang, L. Z. Texturing in-situ: N/F dual-doped hollow porous carbon nanospheres for advanced Li-S batteries. Appl. Surf. Sci. 2022, 599, 153951.

[21]

Jin, S. Y.; Xu, H. Y.; Xie, Y. H.; Luo, Y. P.; Li, J.; Xu, H.; Jin, H.; Cai, W. W. Synergistic effect of selectively etched CoFe and N-doped hollow carbon spheres for high performance lithium-sulfur batteries. Appl. Surf. Sci. 2023, 630, 157459.

[22]

Wang, S. E.; Kim, M. J.; Park, J. S.; Lee, J. W.; Yoon, D. W.; Kim, Y.; Kim, J. H.; Kang, Y. C.; Jung, D. S. Silicon oxycarbide-derived hierarchical porous carbon nanoparticles with tunable pore structure for lithium-sulfur batteries. Chem. Eng. J. 2023, 465, 143035.

[23]

Zhao, Z. Q.; Su, Z.; Chen, H. L.; Yi, S.; Zhang, W. Y.; Niu, B.; Zhang, Y. Y.; Long, D. H. Renewable biomass-derived carbon-based hosts for lithium-sulfur batteries. Sustainable Energy Fuels 2022, 6, 5211–5242.

[24]

Xu, H. F.; Jiang, Q. B.; Zhang, B. K.; Chen, C.; Lin, Z. Integrating conductivity, immobility, and catalytic ability into high-N carbon/graphene sheets as an effective sulfur host. Adv. Mater. 2020, 32, 1906357.

[25]

Lei, D. Y.; Li, J. K.; Xiang, M. W.; Zhao, Z. R.; Yang, S. X.; Hu, Z.; Yuan, M. W.; Guo, J. M.; Xia, Y.; Bai, W. Synergistic constraint and conversion of lithium polysulfide using a 3D hollow carbon interlayer in ultrahigh sulfur content Li-S batteries. Appl. Surf. Sci. 2023, 623, 157080.

[26]

Wang, B.; Ren, Y. L.; Zhu, Y. L.; Chen, S. W.; Chang, S. Z.; Zhou, X. Y.; Wang, P.; Sun, H.; Meng, X. K.; Tang, S. C. Construction of Co3O4/ZnO heterojunctions in hollow N-doped carbon nanocages as microreactors for lithium-sulfur full batteries. Adv. Sci. 2023, 10, 2300860.

[27]

Lu, J. X.; Zhang, S. Y.; Miao, Z. M.; Yin, Y.; Ma, C.; Liu, X. J.; Wang, J. T.; Qiao, W. M.; Ling, L. C. Functional interlayer with highly dispersed Co1−xS embedded in N-doped carbon spheres as trapping-catalyst nanoreactors for advanced lithium-sulfur batteries. ACS Appl. Energy Mater. 2023, 6, 4724–4733.

[28]

Ma, F.; Chen, Z.; Srinivas, K.; Liu, D. W.; Zhang, Z. H.; Wu, Y.; Zhu, M. Q.; Wu, Q.; Chen, Y. F. VN quantum dots anchored N-doped carbon nanosheets as bifunctional interlayer for high-performance lithium-metal and lithium-sulfur batteries. Chem. Eng. J. 2023, 459, 141526.

[29]

Zhou, C.; Hong, M.; Hu, N. T.; Yang, J. H.; Zhu, W. H.; Kong, L. W.; Li, M. Bi-metallic coupling-induced electronic-state modulation of metal phosphides for kinetics-enhanced and dendrite-free Li-S batteries. Adv. Funct. Mater. 2023, 33, 2213310.

[30]

Zhang, X.; Li, X. Y.; Zhang, Y. Z.; Li, X.; Guan, Q. H.; Wang, J.; Zhuang, Z. C.; Zhuang, Q.; Cheng, X. M.; Liu, H. T. et al. Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-cop porous nanosheets. Adv. Funct. Mater. 2023, 33, 2302624.

[31]

Jamil, S.; Wang, H.; Fasehullah, M.; Aslam, M. K.; Jabar, B.; Din, M. A. U.; Zhang, Y.; Sun, W.; Bao, S. J.; Xu, M. W. N doped FeP nanospheres decorated carbon matrix as an efficient electrocatalyst for durable lithium-sulfur batteries. J. Colloid Interface Sci. 2023, 630, 70–80.

[32]

Zhang, H.; An, Y. F.; Li, S. W.; Li, Z. L.; Geng, D. X.; Sha, D. W.; Pan, L.; Qiu, G. L.; Yan, C. Honeycomb porous N-doped carbon synergized with ultrafine Ni2P electrocatalyst for boosting polysulfide conversion in lithium-sulfur batteries. Electrochim. Acta 2023, 445, 142047.

[33]

Mi, Y. Y.; Liu, W.; Li, X. L.; Zhuang, J. L.; Zhou, H. H.; Wang, H. L. High-performance Li-S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Res. 2017, 10, 3698–3705.

[34]

Wang, X. X.; Deng, N. P.; Liu, Y. R.; Wei, L. Y.; Wang, H.; Li, Y. N.; Cheng, B. W.; Kang, W. M. Porous and heterostructured molybdenum-based phosphide and oxide nanobelts assisted by the structural engineering to enhance polysulfide anchoring and conversion for lithium-sulfur batteries. Chem. Eng. J. 2022, 450, 138191.

[35]

Yang, Y. X.; Zhong, Y. R.; Shi, Q. W.; Wang, Z. H.; Sun, K. N.; Wang, H. L. Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions. Angew. Chem., Int. Ed. 2018, 57, 15549–15552.

[36]

Tian, M. M.; Zhao, J.; Liu, H. M.; Li, Y.; Wan, Z. W.; Li, Z. H.; Wu, G.; Wang, K.; Zhou, T. G.; Tan, Y. Z. et al. MoP@NC/S cathode with multiple synergistic effect contributes to Li-S battery. Sep. Purif. Technol. 2022, 300, 121684.

[37]

Wang, J.; Liu, W.; Luo, G.; Li, Z. J.; Zhao, C.; Zhang, H. R.; Zhu, M. H.; Xu, Q.; Wang, X. Q.; Zhao, C. M. et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 3375–3379.

[38]

Yu, B.; Ma, F.; Chen, D. J.; Srinivas, K.; Zhang, X. J.; Wang, X. Q.; Wang, B.; Zhang, W. L.; Wang, Z. G.; He, W. D. et al. MoP QDs@graphene as highly efficient electrocatalyst for polysulfide conversion in Li-S batteries. J. Mater. Sci. Technol. 2021, 90, 37–44.

[39]

Sun, Z. H.; Wu, X. L.; Peng, Z. Q.; Wang, J. W.; Gan, S. Y.; Zhang, Y. W.; Han, D. X.; Li, N. Lithium-sulfur batteries: Compactly coupled nitrogen-doped carbon nanosheets/molybdenum phosphide nanocrystal hollow nanospheres as polysulfide reservoirs for high-performance lithium-sulfur chemistry. Small 2019, 15, 1970216.

[40]

Norouzi, N.; Averianov, T.; Kuang, J.; Bock, D. C.; Yan, S.; Wang, L.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C.; Pomerantseva, E. Hierarchically structured MoO2/dopamine-derived carbon spheres as intercalation electrodes for lithium-ion batteries. Mater. Today Chem. 2022, 24, 100783.

[41]

Xu, D. H.; Luo, G. E.; Yu, J. F.; Chen, W. Y.; Zhang, C. C.; Yang, D. O.; Fang, Y. P.; Yu, X. Y. Quadrangular-CNT-Fe3O4-C composite based on quadrilateral carbon nanotubes as anode materials for high performance lithium-ion batteries. J. Alloys Compd. 2017, 702, 499–508.

[42]

Niu, S. Z.; Zhang, S. W.; Shi, R.; Wang, J. W.; Wang, W. J.; Chen, X. M.; Zhang, Z. Q.; Miao, J.; Amini, A.; Zhao, Y. S. et al. Freestanding agaric-like molybdenum carbide/graphene/N-doped carbon foam as effective polysulfide anchor and catalyst for high performance lithium sulfur batteries. Energy Storage Mater. 2021, 33, 73–81.

[43]

Zheng, Z. M.; Wu, H. H.; Liu, H. D.; Zhang, Q. B.; He, X.; Yu, S. C.; Petrova, V.; Feng, J.; Kostecki, R.; Liu, P. et al. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano 2020, 14, 9545–9561.

[44]

Yang, J.; Guo, D. H.; Zhao, S. L.; Lin, Y.; Yang, R.; Xu, D. D.; Shi, N. E.; Zhang, X. S.; Lu, L. Z.; Lan, Y. Q. et al. Cobalt phosphides nanocrystals encapsulated by P-doped carbon and married with P-doped graphene for overall water splitting. Small 2019, 15, 1804546.

[45]

Ni, L. B.; Wu, Z.; Zhao, G. J.; Sun, C. Y.; Zhou, C. Q.; Gong, X. X.; Diao, G. W. Core–shell structure and interaction mechanism of γ-MnO2 coated sulfur for improved lithium-sulfur batteries. Small 2017, 13, 1603466.

[46]

Yu, B.; Chen, D. J.; Wang, Z. G.; Qi, F.; Zhang, X. J.; Wang, X. Q.; Hu, Y.; Wang, B.; Zhang, W. L.; Chen, Y. F. et al. Mo2C quantum dots@graphene functionalized separator toward high-current-density lithium metal anodes for ultrastable Li-S batteries. Chem. Eng. J. 2020, 399, 125837.

[47]

Long, X.; Luo, Z. H.; Zhou, W. H.; Zhu, S. K.; Song, Y.; Li, H.; Geng, C. N.; Shi, B.; Han, Z. Y.; Zhou, G. M. et al. Two-dimensional montmorillonite-based heterostructure for high-rate and long-life lithium-sulfur batteries. Energy Storage Mater. 2022, 52, 120–129.

[48]

Wen, G. Y.; Zhang, X. P.; Sui, Y. L.; Rao, K. X.; Liu, J. Q.; Zhong, S. K.; Wu, L. PPy-encapsulated hydrangea-type 1T MoS2 microspheres as catalytic sulfur hosts for long-life and high-rate lithium-sulfur batteries. Chem. Eng. J. 2022, 430, 133041.

[49]

Pan, H.; Cheng, Z. B.; Xiao, Z. B.; Li, X. J.; Wang, R. H. The fusion of imidazolium-based ionic polymer and carbon nanotubes: One type of new heteroatom-doped carbon precursors for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1703936.

[50]

Deng, S. G.; Li, Q. H.; Chen, Y. H.; Wang, C.; Zhao, H. B.; Xu, J. Q.; Wu, J. H.; Yao, X. Y. Dipolar and catalytic effects of an Fe3O4 based nitrogen-doped hollow carbon sphere framework for high performance lithium sulfur batteries. Inorg. Chem. Front. 2021, 8, 1771–1778.

[51]

Wang, X. X.; Deng, N. P.; Ju, J. G.; Wang, G.; Wei, L. Y.; Gao, H. J.; Cheng, B. W.; Kang, W. M. Flower-like heterostructured MoP-MoS2 hierarchical nanoreactor enabling effective anchoring for LiPS and enhanced kinetics for high performance Li-S batteries. J. Membr. Sci. 2022, 642, 120003.

[52]

Wang, L.; Li, X. F.; Zhang, Y. X.; Mao, W. J.; Li, Y. Y.; Chu, P. K.; Kızılaslan, A.; Zheng, Z. J.; Huo, K. F. Subnanometer MoP clusters confined in mesoporous carbon (CMK-3) as superior electrocatalytic sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 2022, 446, 137050.

[53]

Liu, Y. J.; Xu, J.; Cao, Y. J.; Chen, M. Q.; Wang, N.; Long, D. H.; Wang, Y. G.; Xia, Y. Y. Promoting polysulfide redox kinetics by tuning the non-metallic p-band of Mo-based compounds. J. Mater. Chem. A 2022, 10, 11477–11487.

[54]

Hai, C. X.; Peng, G. P.; Zhou, Y.; Shen, Y.; Li, X.; Sun, Y. X.; Zhang, G. T.; Zeng, J. B.; Dong. S. D. Gradually anchoring sulfur into in-situ doped carbon substrate as cathode for Li-S batteries with excellent wide-temperature performance. Ceram. Int. 2022, 48, 1622–1632.

[55]

Zhang, T.; Zhang, L.; Zhao, L. N.; Huang, X. X.; Hou, Y. L. Catalytic effects in the cathode of Li-S batteries: Accelerating polysulfides redox conversion. EnergyChem 2020, 2, 100036.

[56]

Yan, B.; Li, Y.; Gao, L.; Tao, H. C.; Zhang, L. L.; Zhong, S. K.; Li, X, F.; Yang, X. L. Confining ZnS/SnS2 ultrathin heterostructured nanosheets in hollow N-doped carbon nanocubes as novel sulfur host for advanced Li-S batteries. Small 2022, 18, 2107727.

[57]

Yao, W. Q.; Zheng, W. Z.; Xu, J.; Tian, C. X.; Han, K.; Sun, W. Z.; Xiao, S. X. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries. ACS Nano 2021, 15, 7114–7130.

[58]

Hou, T. Y.; Liu, B. R.; Sun, X. H.; Fan, A. R.; Xu, Z. K.; Cai, S.; Zheng, C. M.; Yu, G. H.; Tricoli, A. Covalent coupling-stabilized transition-metal sulfide/carbon nanotube composites for lithium/sodium-ion batteries. ACS Nano 2021, 15, 6735–6746.

[59]

Cheng, P.; Shi, L. L.; Li, W. Q.; Fang, X. R.; Cao, D. L.; Zhao, Y. G.; Cao, P.; Liu, D. Q.; He, D. Y. Efficient regulation of polysulfides by MoS2/MoO3 heterostructures for high-performance Li-S batteries. Small 2023, 19, 2206083.

[60]

Lei, D.; Shang, W. Z.; Zhang, X.; Li, Y. P.; Qiao, S. M.; Zhong, Y. P.; Deng, X. Y.; Shi, X. S.; Zhang, Q.; Hao, C. et al. Facile synthesis of heterostructured MoS2-MoO3 nanosheets with active electrocatalytic sites for high-performance Lithium-Sulfur batteries. ACS Nano 2021, 15, 20478–20488.

[61]

Tian, J. W.; Cui, Y.; Zhang, L. L.; Peng, C.; He, X. F.; Chen, L.; Bai, Y. L.; Guo, C. L.; Pan, Y. D.; Li, G. et al. MoP nanoparticles dispersed on P, N co-doped graphite nanosheets as separator-modified material in high-loading lithium-sulfur batteries. Appl. Surf. Sci. 2023, 623, 157050.

[62]

Zhang, F. C.; Tang, Z. H.; Zheng, L. R.; Zhang, T. F.; Xu, M. Y.; Xiao, H.; Zhuang, H. F.; Han, P. Y.; Gao, Q. M. Edge-distributed iron single-atom moiety with efficient “trapping-conversion” for polysulfides driving high-performance of Li-S battery. Appl. Catal. B: Environ. 2023, 334, 122876.

File
12274_2023_6178_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 July 2023
Revised: 04 September 2023
Accepted: 09 September 2023
Published: 25 October 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This study was funded by grant NRF-2019R1A5A8080290 of the National Research Foundation of Korea, Excellent Scientific Research and Innovation Team of Anhui Colleges (No. 2022AH010098), and The University Synergy Innovation Program of Anhui Province (Nos. GXXT-2020-073 and GXXT-2020-074).

Return