Journal Home > Volume 17 , Issue 4

It remains full of challenge for extending short-wave infrared (SWIR) spectral response and weak-light detection in the context of broad spectral responses for phototransistor. In this work, a novel poly(2,5-bis(4-hexyldodecyl)-2,5-dihydro-3,6-di-2-thienyl-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-thiophene) (PDPPT3-HDO):COTIC-4F organic bulk-heterojunction is prepared as active layer for bulk heterojunction phototransistors. PDPPT3-HDO serves as a hole transport material, while COTIC-4F enhances the absorption of SWIR light to 1020 nm. As a result, smooth and connected PDPPT3-HDO film is fabricated by blade coating method and exhibits high hole mobility up to 2.34 cm2·V−1·s−1 with a current on/off ratio of 4.72 × 105 in organic thin film transistors. PDPPT3-HDO:COTIC-4F heterojunction phototransistors exhibit high responsivity of 2680 A·W−1 to 900 nm and 815 A·W−1 to 1020 nm, with fast response time (rise time ~ 20 ms and fall time ~ 100 ms). The photosensitivity of the heterojunction phototransistor improves as the mass ratio of non-fullerene acceptors increases, resulting in an approximately two orders of magnitude enhancement compared to the bare polymer phototransistor. Importantly, the phototransistor exhibits decent responsivity even under ultra-weak light power of 43 μW·cm−2 to 1020 nm. This work represents a highly effective and general strategy for fabricating efficient and sensitive SWIR light photodetectors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polymer: Non-fullerene acceptor heterojunction-based phototransistor for short-wave infrared photodetection

Show Author's information Jing Li1Weigang Zhu1( )Yang Han2Yanhou Geng2Wenping Hu1( )
Key Laboratory of Organic Integrated Circuits of Ministry of Education & Key Laboratory of Molecular Optoelectronic Sciences, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
Key Laboratory of Organic Integrated Circuits of Ministry of Education & Key Laboratory of Molecular Optoelectronic Sciences, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

Abstract

It remains full of challenge for extending short-wave infrared (SWIR) spectral response and weak-light detection in the context of broad spectral responses for phototransistor. In this work, a novel poly(2,5-bis(4-hexyldodecyl)-2,5-dihydro-3,6-di-2-thienyl-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-thiophene) (PDPPT3-HDO):COTIC-4F organic bulk-heterojunction is prepared as active layer for bulk heterojunction phototransistors. PDPPT3-HDO serves as a hole transport material, while COTIC-4F enhances the absorption of SWIR light to 1020 nm. As a result, smooth and connected PDPPT3-HDO film is fabricated by blade coating method and exhibits high hole mobility up to 2.34 cm2·V−1·s−1 with a current on/off ratio of 4.72 × 105 in organic thin film transistors. PDPPT3-HDO:COTIC-4F heterojunction phototransistors exhibit high responsivity of 2680 A·W−1 to 900 nm and 815 A·W−1 to 1020 nm, with fast response time (rise time ~ 20 ms and fall time ~ 100 ms). The photosensitivity of the heterojunction phototransistor improves as the mass ratio of non-fullerene acceptors increases, resulting in an approximately two orders of magnitude enhancement compared to the bare polymer phototransistor. Importantly, the phototransistor exhibits decent responsivity even under ultra-weak light power of 43 μW·cm−2 to 1020 nm. This work represents a highly effective and general strategy for fabricating efficient and sensitive SWIR light photodetectors.

Keywords: heterojunction, phototransistor, organic semiconductor, photodetection, non-fullerene acceptor

References(65)

[1]

Gong, X.; Tong, M. H.; Xia, Y. J.; Cai, W. Z.; Moon, J. S.; Cao, Y.; Yu, G.; Shieh, C. L.; Nilsson, B.; Heeger, A. J. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 2009, 325, 1665–1667.

[2]

Li, N.; Lan, Z. J.; Cai, L. F.; Zhu, F. R. Advances in solution-processable near-infrared phototransistors. J. Mater. Chem. C 2019, 7, 3711–3729.

[3]

Baeg, K. J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y. Y. Organic light detectors: Photodiodes and phototransistors. Adv. Mater. 2013, 25, 4267–4295.

[4]

Guo, H. T.; Qi, W. H. New materials and designs for 2D-based infrared photodetectors. Nano Res. 2023, 16, 3074–3103.

[5]

Zhang, J.; Itzler, M. A.; Zbinden, H.; Pan, J. W. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Sci. Appl. 2015, 4, e286.

[6]

Rong, X.; Wang, X. Q.; Chen, G.; Zheng, X. T.; Wang, P.; Xu, F. J.; Qin, Z. X.; Tang, N.; Chen, Y. H.; Sang, L. W. et al. Mid-infrared photoconductive response in AlGaN/GaN step quantum wells. Sci. Rep. 2015, 5, 14386.

[7]

Yoo, T. J.; Kim, S. Y.; Kwon, M. G.; Kim, C.; Chang, K. E.; Hwang, H. J.; Lee, B. H. A facile method for improving detectivity of graphene/p-type silicon heterojunction photodetector. Laser Photonics Rev. 2021, 15, 2000557.

[8]

Khan, J.; Ahmad, R. T. M.; Tan, J. Y.; Zhang, R. J.; Khan, U.; Liu, B. L. Recent advances in 2D organic-inorganic heterostructures for electronics and optoelectronics. SmartMat 2023, 4, e1156.

[9]

Cong, X. N.; Zheng, Y.; Huang, F.; You, Q.; Tang, J.; Fang, F. E.; Jiang, K.; Han, C.; Shi, Y. M. Efficiently band-tailored type-III van der Waals heterostructure for tunnel diodes and optoelectronic devices. Nano Res. 2022, 15, 8442–8450.

[10]

Xu, Z. H.; He, M.; Wu, Q. K.; Wu, C. C.; Li, X. B.; Liu, B. L.; Tang, M. C.; Yao, J.; Wei, G. D. Ultrafast charge transfer 2D MoS2/organic heterojunction for sensitive photodetector. Adv. Sci. 2023, 10, 2207743.

[11]

Li, N.; Lei, Y. L.; Miao, Y. Q.; Zhu, F. R. Improved electrical ideality and photoresponse in near-infrared phototransistors realized by bulk heterojunction channels. iScience 2022, 25, 103711.

[12]

Lin, Y. C.; Yang, W. C.; Chiang, Y. C.; Chen, W. C. Recent advances in organic phototransistors: Nonvolatile memory, artificial synapses, and photodetectors. Small Sci. 2022, 2, 2100109.

[13]

Miao, J. L.; Du, M. D.; Fang, Y.; Zhang, X. L.; Zhang, F. J. Photomultiplication type all-polymer photodetectors with single carrier transport property. Sci. China Chem. 2019, 62, 1619–1624.

[14]

Wu, H. N.; Sun, Y. J.; Sun, L. J.; Wang, L. W.; Zhang, X. T.; Hu, W. P. Deep insight into the charge transfer interactions in 1,2,4,5-tetracyanobenzene-phenazine cocrystal. Chin. Chem. Lett. 2021, 32, 3007–3010.

[15]

Tian, X. Z.; Yao, J. R.; Zhang, L. J.; Han, B.; Shi, J. W.; Su, J. W.; Liu, J.; Li, C. L.; Liu, X. F.; Zhai, T. Y. et al. Few-layered organic single-crystalline heterojunctions for high-performance phototransistors. Nano Res. 2022, 15, 2667–2673.

[16]

Ren, H.; Chen, J. D.; Li, Y. Q.; Tang, J. X. Recent progress in organic photodetectors and their applications. Adv. Sci. 2021, 8, 2002418.

[17]

Ji, S. B.; Wan, C. J.; Wang, T.; Li, Q. S.; Chen, G.; Wang, J. W.; Liu, Z. Y.; Yang, H.; Liu, X. J.; Chen, X. D. Water-resistant conformal hybrid electrodes for aquatic endurable electrocardiographic monitoring. Adv. Mater. 2020, 32, 2001496.

[18]

Wang, Z. L.; Song, X. N.; Jiang, Y.; Zhang, J. D.; Yu, X.; Deng, Y. F.; Han, Y.; Hu, W. P.; Geng, Y. H. A simple structure conjugated polymer for high mobility organic thin film transistors processed from nonchlorinated solvent. Adv. Sci. 2019, 6, 1902412.

[19]

Lee, J.; Ko, S. J.; Seifrid, M.; Lee, H.; Luginbuhl, B. R.; Karki, A.; Ford, M.; Rosenthal, K.; Cho, K.; Nguyen, T. Q. et al. Bandgap narrowing in non-fullerene acceptors: Single atom substitution leads to high optoelectronic response beyond 1000 nm. Adv. Energy Mater. 2018, 8, 1801212.

[20]

Vollbrecht, J.; Lee, J.; Ko, S. J.; Brus, V. V.; Karki, A.; Le, W.; Seifrid, M.; Ford, M. J.; Cho, K.; Bazan, G. C. et al. Design of narrow bandgap non-fullerene acceptors for photovoltaic applications and investigation of non-geminate recombination dynamics. J. Mater. Chem. C 2020, 8, 15175–15182.

[21]

Zhu, Q. H.; Chen, Y. X.; Chen, T. Y.; Zuo, L. J.; Sun, Y. J.; Wang, R.; Xu, M. S. High performance IEICO-4F/WSe2 heterojunction photodetector based on photoluminescence quenching behavior. Nano Res. 2022, 15, 8595–8602.

[22]

Lee, J.; Ko, S. J.; Lee, H.; Huang, J. F.; Zhu, Z. Y.; Seifrid, M.; Vollbrecht, J.; Brus, V. V.; Karki, A.; Wang, H. B. et al. Side-chain engineering of nonfullerene acceptors for near-infrared organic photodetectors and photovoltaics. ACS Energy Lett. 2019, 4, 1401–1409.

[23]

Bredas, J. L. Mind the gap! Mater. Horiz. 2014, 1, 17–19.

[24]

Du, X. Y.; Zhang, Q.; He, Z. Y.; Lin, H.; Yang, G.; Chen, Z. H.; Zheng, C. J.; Tao, S. L. Performance enhancement in organic solar cells and photodetectors enabled by donor phase optimization at the surface of hole transport layer. Chin. Chem. Lett. 2023, 34, 107641.

[25]

Wei, Z. X.; Zhao, Y. H.; Jiang, J.; Yan, W. B.; Feng, Y. Z.; Ma, J. M. Research progress on hybrid organic-inorganic perovskites for photo-applications. Chin. Chem. Lett. 2020, 31, 3055–3064.

[26]

Wang, S. Y.; Chen, C. S.; Yu, Z. H.; He, Y. L.; Chen, X. Y.; Wan, Q.; Shi, Y.; Zhang, D. W.; Zhou, H.; Wang, X. R. et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 2019, 31, 1806227.

[27]

He, Z. Y.; Han, J. Y.; Du, X. Y.; Cao, L. Y.; Wang, J.; Zheng, C. J.; Lin, H.; Tao, S. L. Photomemory and pulse monitoring featured solution-processed near-infrared graphene/organic phototransistor with detectivity of 2.4 × 1013 jones. Adv. Funct. Mater. 2021, 31, 2103988.

[28]

Li, D. W.; Du, J. Q.; Tang, Y. J.; Liang, K.; Wang, Y.; Ren, H. H.; Wang, R.; Meng, L.; Zhu, B. W.; Li, Y. F. Flexible and air-stable near-infrared sensors based on solution-processed inorganic–organic hybrid phototransistors. Adv. Funct. Mater. 2021, 31, 2105887.

[29]

Lin, R. X.; Wang, Y. R.; Lu, Q. W.; Tang, B. B.; Li, J. Y.; Gao, H.; Gao, Y.; Li, H. J.; Ding, C. Z.; Wen, J. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 2023, 620, 994–1000.

[30]

Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

[31]

Chen, J. H.; Das, S.; Shao, M.; Li, G. L.; Lian, H. D.; Qin, J.; Browning, J. F.; Keum, J. K.; Uhrig, D.; Gu, G. et al. Phase segregation mechanisms of small molecule-polymer blends unraveled by varying polymer chain architecture. SmartMat 2021, 2, 367–377.

[32]

Yang, B.; Wang, Y.; Li, L.; Zhang, J. Y.; Wang, J. L.; Jiao, H. X.; Hao, D. D.; Guo, P.; Zeng, S.; Hua, Z. K. et al. High performance ternary organic phototransistors with photoresponse up to 2600 nm at room temperature. Adv. Funct. Mater. 2021, 31, 2103787.

[33]

Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.

[34]

Xi, J. B.; Xiao, J. W.; Xiao, F.; Jin, Y. X.; Dong, Y.; Jing, F.; Wang, S. Mussel-inspired functionalization of cotton for nano-catalyst support and its application in a fixed-bed system with high performance. Sci. Rep. 2016, 6, 21904.

[35]

Song, L. F.; Yang, L. P.; Wang, Z.; Liu, D.; Luo, L. Q.; Zhu, X. X.; Xi, Y.; Yang, Z. X.; Han, N.; Wang, F. Y. et al. One-step electrospun SnO2/MOx heterostructured nanomaterials for highly selective gas sensor array integration. Sens. Actuat. B: Chem. 2019, 283, 793–801.

[36]

Yurash, B.; Cao, D. X.; Brus, V. V.; Leifert, D.; Wang, M.; Dixon, A.; Seifrid, M.; Mansour, A. E.; Lungwitz, D.; Liu, T. et al. Towards understanding the doping mechanism of organic semiconductors by Lewis acids. Nat. Mater. 2019, 18, 1327–1334.

[37]

Nguyen, L. H.; Hoppe, H.; Erb, T.; Günes, S.; Gobsch, G.; Sariciftci, N. S. Effects of annealing on the nanomorphology and performance of poly(alkylthiophene): Fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 2007, 17, 1071–1078.

[38]

Han, T.; Wang, Z. J.; Shen, N.; Zhou, Z. W.; Hou, X. H.; Ding, S. F.; Jiang, C. Z.; Huang, X. Y.; Zhang, X. F.; Liu, L. L. Diffusion interface layer controlling the acceptor phase of bilayer near-infrared polymer phototransistors with ultrahigh photosensitivity. Nat. Commun. 2022, 13, 1332.

[39]

Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z. N. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 2011, 480, 504–508.

[40]

Xue, G. B.; Zhao, X. K.; Qu, G.; Xu, T. B.; Gumyusenge, A.; Zhang, Z. R.; Zhao, Y.; Diao, Y.; Li, H. Y.; Mei, J. G. Symmetry breaking in side chains leading to mixed orientations and improved charge transport in isoindigo-alt-bithiophene based polymer thin films. ACS Appl. Mater. Interfaces 2017, 9, 25426–25433.

[41]

Zhao, X. K.; Xue, G. B.; Qu, G.; Singhania, V.; Zhao, Y.; Butrouna, K.; Gumyusenge, A.; Diao, Y.; Graham, K. R.; Li, H. Y. et al. Complementary semiconducting polymer blends: Influence of side chains of matrix polymers. Macromolecules 2017, 50, 6202–6209.

[42]

Iqbal, M. A.; Liaqat, A.; Hussain, S.; Wang, X. S.; Tahir, M.; Urooj, Z.; Xie, L. M. Ultralow-transition-energy organic complex on graphene for high-performance shortwave infrared photodetection. Adv. Mater. 2020, 32, 2002628.

[43]

Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718.

[44]

Shidachi, R.; Jinno, H.; Lee, S.; Yokota, T.; Someya, T. Suppressing dark current in organic phototransistors through modulating electron injection via a deep work function electrode. ACS Appl. Electron. Mater. 2019, 1, 1054–1058.

[45]

Jang, W.; Kim, B. G.; Seo, S.; Shawky, A.; Kim, M. S.; Kim, K.; Mikladal, B.; Kauppinen, E. I.; Maruyama, S.; Jeon, I. et al. Strong dark current suppression in flexible organic photodetectors by carbon nanotube transparent electrodes. Nano Today 2021, 37, 101081.

[46]

Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324–1338.

[47]

Guo, Y. L.; Du, C. Y.; Di, C. A.; Zheng, J.; Sun, X. N.; Wen, Y. G.; Zhang, L.; Wu, W. P.; Yu, G.; Liu, Y. Q. Field dependent and high light sensitive organic phototransistors based on linear asymmetric organic semiconductor. Appl. Phys. Lett. 2009, 94, 143303.

[48]

Chow, P. C. Y.; Matsuhisa, N.; Zalar, P.; Koizumi, M.; Yokota, T.; Someya, T. Dual-gate organic phototransistor with high-gain and linear photoresponse. Nat. Commun. 2018, 9, 4546.

[49]

Zhao, Z. J.; Li, C. L.; Shen, L.; Zhang, X. L.; Zhang, F. J. Photomultiplication type organic photodetectors based on electron tunneling injection. Nanoscale 2020, 12, 1091–1099.

[50]

Du, B. C.; Yi, J. C.; Yan, H.; Wang, T. Temperature induced aggregation of organic semiconductors. Chem.—Eur. J. 2021, 27, 2908–2919.

[51]

Maturová, K.; van Bavel, S. S.; Wienk, M. M.; Janssen, R. A. J.; Kemerink, M. Description of the morphology dependent charge transport and performance of polymer: Fullerene bulk heterojunction solar cells. Adv. Funct. Mater. 2011, 21, 261–269.

[52]

Cho, M. Y.; Kim, S. J.; Han, Y. D.; Park, D. H.; Kim, K. H.; Choi, D. H.; Joo, J. Highly sensitive, photocontrolled, organic thin-film transistors using soluble star-shaped conjugated molecules. Adv. Funct. Mater. 2008, 18, 2905–2912.

[53]

Chen, H. L.; Cheng, N. Y.; Ma, W.; Li, M. L.; Hu, S. X.; Gu, L.; Meng, S.; Guo, X. F. Design of a photoactive hybrid bilayer dielectric for flexible nonvolatile organic memory transistors. ACS Nano 2016, 10, 436–445.

[54]

Snyder, P. J.; Kirste, R.; Collazo, R.; Ivanisevic, A. Persistent photoconductivity, nanoscale topography, and chemical functionalization can collectively influence the behavior of PC12 cells on wide bandgap semiconductor surfaces. Small 2017, 13, 1700481.

[55]

Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. General observation of n-type field-effect behaviour in organic semiconductors. Nature 2005, 434, 194–199.

[56]

Nam, S.; Han, H.; Seo, J.; Song, M.; Kim, H.; Anthopoulos, T. D.; McCulloch, I.; Bradley, D. D. C.; Kim, Y. Ambipolar organic phototransistors with p-type/n-type conjugated polymer bulk heterojunction light-sensing layers. Adv. Electron. Mater. 2016, 2, 1600264.

[57]

Zhu, W. G.; Yi, Y. P.; Zhen, Y. G.; Hu, W. P. Precisely tailoring the stoichiometric stacking of perylene-TCNQ co-crystals towards different nano and microstructures with varied optoelectronic performances. Small 2015, 11, 2150–2156.

[58]

Ito, Y.; Virkar, A. A.; Mannsfeld, S.; Oh, J. H.; Toney, M.; Locklin, J.; Bao, Z. N. Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J. Am. Chem. Soc. 2009, 131, 9396–9404.

[59]

Zhu, W. G.; Sun, Y. J.; Liu, J.; Bai, S. M.; Zhang, Z. C.; Shi, Q.; Hu, W. P.; Fu, H. B. Exciton transport in molecular semiconductor crystals for spin-optoelectronics paradigm. Chem.—Eur. J. 2021, 27, 222–227.

[60]

Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Brédas, J. L.; Ewbank, P. C.; Mann, K. R. Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater. 2004, 16, 4436–4451.

[61]

Kafourou, P.; Nugraha, M. I.; Nikitaras, A.; Tan, L. X.; Firdaus, Y.; Aniés, F.; Eisner, F.; Ding, B. W.; Wenzel, J.; Holicky, M. et al. Near-IR absorbing molecular semiconductors incorporating cyanated benzothiadiazole acceptors for high-performance semitransparent n-type organic field-effect transistors. ACS Mater. Lett. 2022, 4, 165–174.

[62]

Fu, B. B.; Sun, L. J.; Liu, L.; Ji, D. Y.; Zhang, X. T.; Yang, F. X.; Hu, W. P. Low-power high-mobility organic single-crystal field-effect transistor. Sci. China Mater. 2022, 65, 2779–2785.

[63]

Nam, S.; Seo, J.; Han, H.; Kim, H.; Bradley, D. D. C.; Kim, Y. Efficient deep red light-sensing all-polymer phototransistors with p-type/n-type conjugated polymer bulk heterojunction layers. ACS Appl. Mater. Interfaces 2017, 9, 14983–14989.

[64]

Kim, S.; Lee, D.; Lee, J.; Cho, Y.; Kang, S. H.; Choi, W.; Oh, J. H.; Yang, C. Diazapentalene-containing ultralow-band-gap copolymers for high-performance near-infrared organic phototransistors. Chem. Mater. 2021, 33, 7499–7508.

[65]

Han, J. Y.; Wang, J.; Yang, M.; Kong, X.; Chen, X. Q.; Huang, Z. H.; Guo, H.; Gou, J.; Tao, S. L.; Liu, Z. J. et al. Graphene/organic semiconductor heterojunction phototransistors with broadband and Bi-directional photoresponse. Adv. Mater. 2018, 30, 1804020.

File
12274_2023_6175_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 August 2023
Revised: 07 September 2023
Accepted: 07 September 2023
Published: 26 October 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of China (Nos. 2017YFA0204503 and 2018YFA0703200), the National Natural Science Foundation of China (Nos. 52121002, 51733004, 51725304, 21875158, and U21A6002), Tianjin Natural Science Foundation (No. 20JCJQJC00300) and the Discretionary Fund of Tianjin University (No. 2104).

Return