Journal Home > Volume 16 , Issue 11

Rate-controlled growth of carbon nanotubes (CNTs) and catalyst design are considered efficient ways for the preparation of CNTs with specific structures and properties. However, due to the difficulties in capturing the growth process of the CNTs with tiny size under a complex growth environment, the growth kinetics of CNTs and their correlation with the catalyst seed have been seldom revealed. Here, we investigated the growth process of CNTs from Ni nanoparticles (NPs) in real-time under atmospheric pressure using transmission electron microscopy equipped with a closed gas cell. It was found that the growth rates of CNTs fluctuated, and a phase transition from Ni3C to Ni, and a reshaping of the catalyst NPs occurred during the growth process. We demonstrated that CNTs dynamically interacted with the connected catalyst NPs and the fluctuated growth rates of CNTs were correlated with the structure change of catalyst NPs. The origin of the growth rate fluctuation is attributed to the change of carbon concentration gradient in catalyst NPs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Correlating the fluctuated growth of carbon nanotubes with catalyst evolution by atmospheric-pressure environmental transmission electron microscopy

Show Author's information Rui-Hong Xie1,2Lili Zhang1,2( )Ruixue Ma1,2Xin-Yu Jiao1,2Dai-Ming Tang3Chang Liu1,2( )Hui-Ming Cheng1,4
Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, Shenyang 110016, China
School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
School of Materials Science and Engineering, Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract

Rate-controlled growth of carbon nanotubes (CNTs) and catalyst design are considered efficient ways for the preparation of CNTs with specific structures and properties. However, due to the difficulties in capturing the growth process of the CNTs with tiny size under a complex growth environment, the growth kinetics of CNTs and their correlation with the catalyst seed have been seldom revealed. Here, we investigated the growth process of CNTs from Ni nanoparticles (NPs) in real-time under atmospheric pressure using transmission electron microscopy equipped with a closed gas cell. It was found that the growth rates of CNTs fluctuated, and a phase transition from Ni3C to Ni, and a reshaping of the catalyst NPs occurred during the growth process. We demonstrated that CNTs dynamically interacted with the connected catalyst NPs and the fluctuated growth rates of CNTs were correlated with the structure change of catalyst NPs. The origin of the growth rate fluctuation is attributed to the change of carbon concentration gradient in catalyst NPs.

Keywords: carbon nanotube, in situ transmission electron microscopy, growth rate, nickel catalyst

References(56)

[1]

Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.

[2]

Berber, S.; Kwon, Y. K.; Tománek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616.

[3]

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

[4]

Seo, K.; Park, K. A.; Kim, C.; Han, S.; Kim, B.; Lee, Y. H. Chirality- and diameter-dependent reactivity of NO2 on carbon nanotube walls. J. Am. Chem. Soc. 2005, 127, 15724–15729.

[5]

Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Carbon nanotubes-the route toward applications. Science 2002, 297, 787–792.

[6]

De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

[7]

Tang, D. M.; Erohin, S. V.; Kvashnin, D. G.; Demin, V. A.; Cretu, O.; Jiang, S.; Zhang, L. L.; Hou, P. X.; Chen, G. H.; Futaba, D. N. et al. Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration. Science 2021, 374, 1616–1620.

[8]

Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234–238.

[9]

Yang, F.; Wang, X.; Si, J.; Zhao, X. L.; Qi, K.; Jin, C. H.; Zhang, Z. Y.; Li, M. H.; Zhang, D. Q.; Yang, J. et al. Water-assisted preparation of high-purity semiconducting (14, 4) carbon nanotubes. ACS Nano 2017, 11, 186–193.

[10]

Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. Q.; Xu, Z.; Peng, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.

[11]

Otsuka, K.; Ishimaru, R.; Kobayashi, A.; Inoue, T.; Xiang, R.; Chiashi, S.; Kato, Y. K.; Maruyama, S. Universal map of gas-dependent kinetic selectivity in carbon nanotube growth. ACS Nano 2022, 16, 5627–5635.

[12]

Zhang, S. C.; Wang, X.; Yao, F. R.; He, M. S.; Lin, D. W.; Ma, H.; Sun, Y. Y.; Zhao, Q. C.; Liu, K. H.; Ding, F. et al. Controllable growth of (n, n−1) family of semiconducting carbon nanotubes. Chem 2019, 5, 1182–1193.

[13]

Wang, Y.; Qiu, L.; Zhang, L. L.; Tang, D. M.; Ma, R. X.; Ren, C. L.; Ding, F.; Liu, C.; Cheng, H. M. Growth mechanism of carbon nanotubes from Co-W-C alloy catalyst revealed by atmospheric environmental transmission electron microscopy. Sci. Adv. 2022, 8, eabo5686.

[14]

Ma, R. X.; Qiu, L.; Zhang, L. L.; Tang, D. M.; Wang, Y.; Zhang, B. S.; Ding, F.; Liu, C.; Cheng, H. M. Nucleation of single-wall carbon nanotubes from faceted Pt catalyst particles revealed by in situ transmission electron microscopy. ACS Nano 2022, 16, 16574–16583.

[15]

Bahri, M.; Dembélé, K.; Sassoye, C.; Debecker, D. P.; Moldovan, S.; Gay, A. S.; Hirlimann, C.; Sanchez, C.; Ersen, O. In situ insight into the unconventional ruthenium catalyzed growth of carbon nanostructures. Nanoscale 2018, 10, 14957–14965.

[16]

He, M. S.; Wang, X.; Zhang, S. C.; Jiang, H.; Cavalca, F.; Cui, H. Z.; Wagner, J. B.; Hansen, T. W.; Kauppinen, E.; Zhang, J. et al. Growth kinetics of single-walled carbon nanotubes with a (2n, n) chirality selection. Sci. Adv. 2019, 5, eaav9668.

[17]

He, M. S.; Jiang, H.; Kauppinen, E. I.; Lehtonen, J. Diameter and chiral angle distribution dependencies on the carbon precursors in surface-grown single-walled carbon nanotubes. Nanoscale 2012, 4, 7394–7398.

[18]

Zhang, L. L.; He, M. S.; Hansen, T. W.; Kling, J.; Jiang, H.; Kauppinen, E. I.; Loiseau, A.; Wagner, J. B. Growth termination and multiple nucleation of single-wall carbon nanotubes evidenced by in situ transmission electron microscopy. ACS Nano 2017, 11, 4483–4493.

[19]

Zhang, F.; Sun, J.; Zheng, Y. G.; Hou, P. X.; Liu, C.; Cheng, M.; Li, X.; Cheng, H. M.; Chen, Z. The importance of H2 in the controlled growth of semiconducting single-wall carbon nanotubes. J. Mater. Sci. Technol. 2020, 54, 105–111.

[20]
Zhao, H. F.; Zhu, Y. C.; Ye, H. Y.; He, Y.; Li, H.; Sun, Y. F.; Yang, F.; Wang, R. M. Atomic-scale structure dynamics of nanocrystals revealed by in situ and environmental transmission electron microscopy. Adv. Mater., in press, DOI: 10.1002/adma.202206911.
DOI
[21]

Jiang, Y.; Zhang, Z. F.; Yuan, W. T.; Zhang, X.; Wang, Y.; Zhang, Z. Recent advances in gas-involved in situ studies via transmission electron microscopy. Nano Res. 2018, 11, 42–67.

[22]

Takeda, S.; Kuwauchi, Y.; Yoshida, H. Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector. Ultramicroscopy 2015, 151, 178–190.

[23]

Picher, M.; Lin, P. A.; Gomez-Ballesteros, J. L.; Balbuena, P. B.; Sharma, R. Nucleation of graphene and its conversion to single-walled carbon nanotubes. Nano Lett. 2014, 14, 6104–6108.

[24]

Zhu, H. W.; Suenaga, K.; Hashimoto, A.; Urita, K.; Hata, K.; Iijima, S. Atomic-resolution imaging of the nucleation points of single-walled carbon nanotubes. Small 2005, 1, 1180–1183.

[25]

Zakharov, D.; Zemlyanov, D.; Mane, A.; Elam, J.; Ribeiro, F.; Stach, E. Real time ETEM studies of the nucleation and growth of carbon nanotubes utilizing Fe/Pt catalyst on a spherical Al2O3 support. Microsc. Microanal. 2011, 17, 1526–1527.

[26]

Yang, F.; Zhao, H. F.; Wang, W.; Liu, Q. D.; Liu, X.; Hu, Y. C.; Zhang, X. R.; Zhu, S.; He, D. S.; Xu, Y. Y. et al. Carbon-involved near-surface evolution of cobalt nanocatalysts: An in situ study. CCS Chem. 2021, 3, 154–167.

[27]

Silvearv, F.; Larsson, P.; Jones, S. L. T.; Ahuja, R.; Larsson, J. A. Establishing the most favorable metal-carbon bond strength for carbon nanotube catalysts. J. Mater. Chem. C 2015, 3, 3422–3427.

[28]

Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y. L. Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett. 2007, 7, 2234–2238.

[29]

Helveg, S.; López-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen, F.; Nørskov, J. K. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427, 426–429.

[30]

Hofmann, S.; Blume, R.; Wirth, C. T.; Cantoro, M.; Sharma, R.; Ducati, C.; Hävecker, M.; Zafeiratos, S.; Schnoerch, P.; Oestereich, A. et al. State of transition metal catalysts during carbon nanotube growth. J. Phys. Chem. C 2009, 113, 1648–1656.

[31]

Lyu, Y. Q.; Wang, P.; Liu, D. D.; Zhang, F.; Senftle, T. P.; Zhang, G. H.; Zhang, Z. Y.; Wang, J. M.; Liu, W. Tracing the active phase and dynamics for carbon nanofiber growth on nickel catalyst using environmental transmission electron microscopy. Small Methods 2022, 6, 2200235.

[32]

Sharma, R.; Chee, S. W.; Herzing, A.; Miranda, R.; Rez, P. Evaluation of the role of Au in improving catalytic activity of Ni nanoparticles for the formation of one-dimensional carbon nanostructures. Nano Lett. 2011, 11, 2464–2471.

[33]

Wang, Y.; Qiu, L.; Zhang, L. L.; Tang, D. M.; Ma, R. X.; Wang, Y. Z.; Zhang, B. S.; Ding, F.; Liu, C.; Cheng, H. M. Precise identification of the active phase of cobalt catalyst for carbon nanotube growth by in situ transmission electron microscopy. ACS Nano 2020, 14, 16823–16831.

[34]

Mazzucco, S.; Wang, Y.; Tanase, M.; Picher, M.; Li, K.; Wu, Z. J.; Irle, S.; Sharma, R. Direct evidence of active and inactive phases of Fe catalyst nanoparticles for carbon nanotube formation. J. Catal. 2014, 319, 54–60.

[35]

Rao, R.; Sharma, R.; Abild-Pedersen, F.; Nørskov, J. K.; Harutyunyan, A. R. Insights into carbon nanotube nucleation: Cap formation governed by catalyst interfacial step flow. Sci. Rep. 2014, 4, 6510.

[36]
Sharma, R.; Rez, P.; Treacy, M. M. J.; Stuart, S. J. In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions. Microscopy 2005, 54, 231–237.
DOI
[37]

Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y. L. Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett. 2006, 6, 449–452.

[38]

Sharma, R.; Rez, P.; Brown, M.; Du, G. H.; Treacy, M. M. J. Dynamic observations of the effect of pressure and temperature conditions on the selective synthesis of carbon nanotubes. Nanotechnology 2007, 18, 125602.

[39]

Ding, F.; Bolton, K. The importance of supersaturated carbon concentration and its distribution in catalytic particles for single-walled carbon nanotube nucleation. Nanotechnology 2006, 17, 543–548.

[40]

Kohigashi, Y.; Yoshida, H.; Homma, Y.; Takeda, S. Structurally inhomogeneous nanoparticulate catalysts in cobalt-catalyzed carbon nanotube growth. Appl. Phys. Lett. 2014, 105, 073108.

[41]

Yoshida, H.; Takeda, S.; Uchiyama, T.; Kohno, H.; Homma, Y. Atomic-scale in situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 2008, 8, 2082–2086.

[42]

Schaper, A. K.; Hou, H. Q.; Greiner, A.; Phillipp, F. The role of iron carbide in multiwalled carbon nanotube growth. J. Catal. 2004, 222, 250–254.

[43]
Hofmann, S.; Sharma, R.; Ducati, C.; Du, G. H.; Mattevi, C.; Cepek, C.; Cantoro, M.; Pisana, S.; Parvez, A.; Cervantes-Sodi, F. et al. In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett. 2007, 7, 602–608.
DOI
[44]

Anton, R. In situ transmission electron microscopy study of the growth of Ni nanoparticles on amorphous carbon and of the graphitization of the support in the presence of hydrogen. J. Mater. Res. 2005, 20, 1837–1843.

[45]

Leng, Y. H.; Xie, L.; Liao, F. H.; Zheng, J.; Li, X. G. Kinetic and thermodynamics studies on the decompositions of Ni3C in different atmospheres. Thermochim. Acta 2008, 473, 14–18.

[46]

Itoh, T.; Sinclair, R. Nickel mediated transformation of amorphous carbon to graphite. MRS Online Proc. Lib. 1994, 349, 31–36.

[47]

Lin, P. A.; Gomez-Ballesteros, J. L.; Burgos, J. C.; Balbuena, P. B.; Natarajan, B.; Sharma, R. Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles. J. Catal. 2017, 349, 149–155.

[48]

Huang, X.; Farra, R.; Schlögl, R.; Willinger, M. G. Growth and termination dynamics of multiwalled carbon nanotubes at near ambient pressure: An in situ transmission electron microscopy study. Nano Lett. 2019, 19, 5380–5387.

[49]

Gamalski, A.; Moore, E. S.; Treacy, M. M. J.; Sharma, R.; Rez, P. Diffusion-gradient-induced length instabilities in the catalytic growth of carbon nanotubes. Appl. Phys. Lett. 2009, 95, 233109.

[50]

Tang, X.; Xie, Z. Y.; Yin, T.; Wang, J. W.; Yang, P. P.; Huang, Q. Z. Classical molecular dynamics simulations of carbon nanofiber nucleation: The effect of carbon concentration in Ni carbide. Phys. Chem. Chem. Phys. 2013, 15, 16314–16320.

[51]

He, Z. B.; Maurice, J. L.; Lee, C. S.; Cojocaru, C. S.; Pribat, D. Nickel catalyst faceting in plasma-enhanced direct current chemical vapor deposition of carbon nanofibers. Arabian J. Sci. Eng. Sec. C 2010, 35, 1120–1928.

[52]

Jourdain, V.; Bichara, C. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon 2013, 58, 2–39.

[53]

Pigos, E.; Penev, E. S.; Ribas, M. A.; Sharma, R.; Yakobson, B. I.; Harutyunyan, A. R. Carbon nanotube nucleation driven by catalyst morphology dynamics. ACS Nano 2011, 5, 10096–10101.

[54]

Baker, R. T. K.; Barber, M. A.; Harris, P. S.; Feates, F. S.; Waite, R. J. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 1972, 26, 51–62.

[55]

Goldberg, D.; Belton, G. R. The diffusion of carbon in iron-carbon alloys at 1560 °C. Metall. Trans. 1974, 5, 1643–1648.

[56]

Zhu, Y. A.; Dai, Y. C.; Chen, D.; Yuan, W. K. First-principles study of carbon diffusion in bulk nickel during the growth of fishbone-type carbon nanofibers. Carbon 2007, 45, 21–27.

Video
12274_2023_6174_MOESM1_ESM.avi
12274_2023_6174_MOESM2_ESM.mov
12274_2023_6174_MOESM3_ESM.mov
File
12274_2023_6174_MOESM4_ESM.pdf (10.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 July 2023
Revised: 07 September 2023
Accepted: 07 September 2023
Published: 28 October 2023
Issue date: November 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51802316, 51927803, 52130209, 51972311, and 52188101), Basic Research Project of Natural Science Foundation of Shandong Province, China (No. ZR2019ZD49), the Natural Science Foundation of Liaoning Province, China (No. 2020-MS-009), Chinese Academy of Sciences, and the Shenyang National Laboratory for Materials Science.

Return