Journal Home > Volume 17 , Issue 4

As a very promising epitaxy technology, the remote epitaxy has attracted extensive attention in recent years, in which graphene is the most used interlayer material. As an isomorphic of graphene, two-dimensional (2D) hexagonal boron nitride (h-BN), is another promising interlayer for the remote epitaxy. However, there is a current debate on the feasibility of using h-BN as interlayer in the remote epitaxy. Herein, we demonstrate that the potential field of sapphire can completely penetrate monolayer h-BN, and hence the remote epitaxy of ZrS2 layers can be realized on sapphire substrates through monolayer h-BN. The field of sapphire can only partially penetrate the bilayer h-BN and result in the mixing of remote epitaxy and van der Waals (vdWs) epitaxy. Due to the weak interfacial scattering and high crystalline quality of ZrS2 epilayer, the ZrS2 photodetector with monolayer h-BN shows the best performance, with an on/off ratio of more than 2 × 105 and a responsivity up to 379 mA·W−1. This work provides an efficient approach to prepare single-crystal transition metal dichalcogenides and their heterojunctions with h-BN, which have great potential in developing large-area 2D electronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Remote heteroepitaxy of transition metal dichalcogenides through monolayer hexagonal boron nitride

Show Author's information Jidong Huang1,2Jingren Chen1,2Junhua Meng3Siyu Zhang1,2Ji Jiang1,2Jingzhen Li1,2Libin Zeng1,2Zhigang Yin1,2Jinliang Wu1Xingwang Zhang1,2( )
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Faculty of Science, Beijing University of Technology, Beijing 100124, China

Abstract

As a very promising epitaxy technology, the remote epitaxy has attracted extensive attention in recent years, in which graphene is the most used interlayer material. As an isomorphic of graphene, two-dimensional (2D) hexagonal boron nitride (h-BN), is another promising interlayer for the remote epitaxy. However, there is a current debate on the feasibility of using h-BN as interlayer in the remote epitaxy. Herein, we demonstrate that the potential field of sapphire can completely penetrate monolayer h-BN, and hence the remote epitaxy of ZrS2 layers can be realized on sapphire substrates through monolayer h-BN. The field of sapphire can only partially penetrate the bilayer h-BN and result in the mixing of remote epitaxy and van der Waals (vdWs) epitaxy. Due to the weak interfacial scattering and high crystalline quality of ZrS2 epilayer, the ZrS2 photodetector with monolayer h-BN shows the best performance, with an on/off ratio of more than 2 × 105 and a responsivity up to 379 mA·W−1. This work provides an efficient approach to prepare single-crystal transition metal dichalcogenides and their heterojunctions with h-BN, which have great potential in developing large-area 2D electronic devices.

Keywords: chemical vapor deposition, transition metal dichalcogenides, hexagonal boron nitride, photodetectors, remote epitaxy

References(45)

[1]

Li, H. N.; Li, Y.; Aljarb, A.; Shi, Y. M.; Li, L. J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem. Rev. 2018, 118, 6134–6150.

[2]

Wang, X. S.; Song, Z. G.; Wen, W.; Liu, H. N.; Wu, J. X.; Dang, C. H.; Hossain, M.; Iqbal, M. A.; Xie, L. M. Potential 2D materials with phase transitions: Structure, synthesis, and device applications. Adv. Mater. 2019, 31, 1804682.

[3]

Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

[4]

Wu, M.; Xiao, Y. H.; Zeng, Y.; Zhou, Y. L.; Zeng, X. B.; Zhang, L. N.; Liao, W. G. Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat 2021, 3, 362–396.

[5]

Smithe, K. K. H.; Suryavanshi, S. V.; Rojo, M. M.; Tedjarati, A. D.; Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 2017, 11, 8456–8463.

[6]

Yan, C. Y.; Gong, C. H.; Wangyang, P. H.; Chu, J. W.; Hu, K.; Li, C. B.; Wang, X. P.; Du, X. C.; Zhai, T. Y.; Li, Y. R. et al. 2D group IVB transition metal dichalcogenides. Adv. Funct. Mater. 2018, 28, 1803305.

[7]

Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

[8]

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotech. 2014, 9, 768–779.

[9]

Tian, Y.; Cheng, Y.; Huang, J. D.; Zhang, S. Y.; Dong, H.; Wang, G. K.; Chen, J. R.; Wu, J. L.; Yin, Z. G.; Zhang, X. W. Epitaxial growth of large area ZrS2 2D semiconductor films on sapphire for optoelectronics. Nano Res. 2022, 15, 6628–6635.

[10]

Tian, Y.; Zheng, M. Y.; Cheng, Y.; Yin, Z. G.; Jiang, J.; Wang, G. K.; Chen, J. R.; Li, X. X.; Qi, J.; Zhang, X. W. Epitaxial growth of ZrSe2 nanosheets on sapphire via chemical vapor deposition for optoelectronic application. J. Mater. Chem. C 2021, 9, 13954–13962.

[11]

Kim, Y.; Cruz, S. S.; Lee, K.; Alawode, B. O.; Choi, C.; Song, Y.; Johnson, J. M.; Heidelberger, C.; Kong, W.; Choi, S. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 2017, 544, 340–343.

[12]

Kong, W.; Li, H. S.; Qiao, K.; Kim, Y.; Lee, K.; Nie, Y. F.; Lee, D.; Osadchy, T.; Molnar, R. J.; Gaskill, D. K. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 2018, 17, 999–1004.

[13]

Ji, J.; Kwak, H. M.; Yu, J.; Park, S.; Park, J. H.; Kim, H.; Kim, S.; Kim, S.; Lee, D. S.; Kum, H. S. Understanding the 2D-material and substrate interaction during epitaxial growth towards successful remote epitaxy: A review. Nano Converg. 2023, 10, 19.

[14]

Kim, H.; Chang, C. S.; Lee, S.; Jiang, J.; Jeong, J.; Park, M.; Meng, Y.; Ji, J.; Kwon, Y.; Sun, X. C. et al. Remote epitaxy. Nat. Rev. Methods Primers 2022, 2, 40.

[15]

Roh, I.; Goh, S. H.; Meng, Y.; Kim, J. S.; Han, S.; Xu, Z. H.; Lee, H. E.; Kim, Y.; Bae, S. H. Applications of remote epitaxy and van der Waals epitaxy. Nano Converg. 2023, 10, 20.

[16]

Kim, H.; Kim, J. C.; Jeong, Y.; Yu, J.; Lu, K. Y.; Lee, D.; Kim, N.; Jeong, H. Y.; Kim, J.; Kim, S. Role of transferred graphene on atomic interaction of GaAs for remote epitaxy. J. Appl. Phys. 2021, 130, 174901.

[17]

Han, X.; Yu, J. D.; Li, Z. H.; Wang, X.; Hao, Z. B.; Luo, Y.; Sun, C. Z.; Han, Y. J.; Xiong, B.; Wang, J. et al. Remote epitaxy and exfoliation of GaN via graphene. ACS Appl. Electron. Mater. 2022, 4, 5326–5332.

[18]

Jeong, J.; Wang, Q. X.; Cha, J.; Jin, D. K.; Shin, D. H.; Kwon, S.; Kang, B. K.; Jang, J. H.; Yang, W. S.; Choi, Y. S. et al. Remote heteroepitaxy of GaN microrod heterostructures for deformable light-emitting diodes and wafer recycle. Sci. Adv. 2020, 6, eaaz5180.

[19]

Qu, Y. P.; Xu, Y.; Cao, B.; Wang, Y. N.; Wang, J. F.; Shi, L.; Xu, K. Long-range orbital hybridization in remote epitaxy: The nucleation mechanism of GaN on different substrates via single-layer graphene. ACS Appl. Mater. Interfaces 2022, 14, 2263–2274.

[20]

Qi, Y.; Wang, Y. Y.; Pang, Z. Q.; Dou, Z. P.; Wei, T. B.; Gao, P.; Zhang, S. S.; Xu, X. Z.; Chang, Z. H.; Deng, B. et al. Fast growth of strain-free AlN on graphene-buffered sapphire. J. Am. Chem. Soc. 2018, 140, 11935–11941.

[21]

Wang, Y. N.; Qu, Y. P.; Xu, Y.; Li, D. D.; Lu, Z. Q.; Li, J. J.; Su, X. J.; Wang, G. B.; Shi, L.; Zeng, X. H. et al. Modulation of remote epitaxial heterointerface by graphene-assisted attenuative charge transfer. ACS Nano 2023, 17, 4023–4033.

[22]

Kim, Y.; Watt, J.; Ma, X. D.; Ahmed, T.; Kim, S.; Kang, K.; Luk, T. S.; Hong, Y. J.; Yoo, J. Fabrication of a microcavity prepared by remote epitaxy over monolayer molybdenum disulfide. ACS Nano 2022, 16, 2399–2406.

[23]

Jeong, J.; Min, K. A.; Kang, B. K.; Shin, D. H.; Yoo, J.; Yang, W. S.; Lee, S. W.; Hong, S.; Hong, Y. J. Remote heteroepitaxy across graphene: Hydrothermal growth of vertical ZnO microrods on graphene-coated GaN substrate. Appl. Phys. Lett. 2018, 113, 233103.

[24]

Yoon, H.; Truttmann, T. K.; Liu, F. D.; Matthews, B. E.; Choo, S.; Su, Q.; Saraswat, V.; Manzo, S.; Arnold, M. S.; Bowden, M. E. et al. Freestanding epitaxial SrTiO3 nanomembranes via remote epitaxy using hybrid molecular beam epitaxy. Sci. Adv. 2022, 8, eadd5328.

[25]

Jiang, J.; Sun, X.; Chen, X. C.; Wang, B. W.; Chen, Z. Z.; Hu, Y.; Guo, Y. W.; Zhang, L. F.; Ma, Y.; Gao, L. et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat. Commun. 2019, 10, 4145.

[26]

Guo, Y. W.; Sun, X.; Jiang, J.; Wang, B. W.; Chen, X. C.; Yin, X.; Qi, W.; Gao, L.; Zhang, L. F.; Lu, Z. H. et al. A reconfigurable remotely epitaxial VO2 electrical heterostructure. Nano Lett. 2020, 20, 33–42.

[27]

Lu, Z. H.; Sun, X.; Xie, W. Y.; Littlejohn, A.; Wang, G. C.; Zhang, S. B.; Washington, M. A.; Lu, T. M. Remote epitaxy of copper on sapphire through monolayer graphene buffer. Nanotechnology 2018, 29, 445702.

[28]

Zhang, J.; Tan, B. Y.; Zhang, X.; Gao, F.; Hu, Y. X.; Wang, L. F.; Duan, X. M.; Yang, Z. H.; Hu, P. A. Atomically thin hexagonal boron nitride and its heterostructures. Adv. Mater. 2021, 33, 2000769.

[29]

Li, L. H.; Chen, Y. Atomically thin boron nitride: Unique properties and applications. Adv. Funct. Mater. 2016, 26, 2594–2608.

[30]

Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Mayorov, A. S.; Peres, N. M. R. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012, 12, 1707–1710.

[31]

Wang, J. L.; Yao, Q.; Huang, C. W.; Zou, X. M.; Liao, L.; Chen, S. S.; Fan, Z. Y.; Zhang, K.; Wu, W.; Xiao, X. H. et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302–8308.

[32]

Fu, D. Y.; Zhao, X. X.; Zhang, Y. Y.; Li, L. J.; Xu, H.; Jang, A. R.; Yoon, S. I.; Song, P.; Poh, S. M.; Ren, T. H. et al. Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J. Am. Chem. Soc. 2017, 139, 9392–9400.

[33]

Kim, S. M.; Hsu, A.; Park, M. H.; Chae, S. H.; Yun, S. J.; Lee, J. S.; Cho, D. H.; Fang, W. J.; Lee, C.; Palacios, T. et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 2015, 6, 8662.

[34]

Kim, H.; Liu, Y. P.; Lu, K. Y.; Chang, C. S.; Sung, D.; Akl, M.; Qiao, K.; Kim, K. S.; Park, B. I.; Zhu, M. L. et al. High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process. Nat. Nanotechnol. 2023, 18, 464–470.

[35]

Li, Q.; Wang, M. D.; Bai, Y. H.; Zhang, Q. F.; Zhang, H. R.; Tian, Z. H.; Guo, Y. N.; Zhu, J. P.; Liu, Y. H.; Yun, F. et al. Two-inch wafer-scale exfoliation of hexagonal boron nitride films fabricated by RF-sputtering. Adv. Funct. Mater. 2022, 32, 2206094.

[36]

Mattinen, M.; Popov, G.; Vehkamäki, M.; King, P. J.; Mizohata, K.; Jalkanen, P.; Räisänen, J.; Leskelä, M.; Ritala, M. Atomic layer deposition of emerging 2D semiconductors, HfS2 and ZrS2, for optoelectronics. Chem. Mater. 2019, 31, 5713–5724.

[37]

Jang, A. R.; Hong, S.; Hyun, C.; Yoon, S. I.; Kim, G.; Jeong, H. Y.; Shin, T. J.; Park, S. O.; Wong, K.; Kwak, S. K. et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett. 2016, 16, 3360–3366.

[38]

Wang, G. K.; Huang, J. D.; Zhang, S. Y.; Meng, J. H.; Chen, J. R.; Shi, Y. M.; Jiang, J.; Li, J. Z.; Cheng, Y.; Zeng, L. B. et al. Wafer-scale single crystal hexagonal boron nitride layers grown by submicron-spacing vapor deposition. Small 2023, 19, 2301086.

[39]

Yan, C. Y.; Gan, L.; Zhou, X.; Guo, J.; Huang, W. J.; Huang, J. W.; Jin, B.; Xiong, J.; Zhai, T. Y.; Li, Y. R. Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater. 2017, 27, 1702918.

[40]

Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

[41]

Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.

[42]

Moustafa, M.; Zandt, T.; Janowitz, C.; Manzke, R. Growth and band gap determination of the ZrSxSe2−x single crystal series. Phys. Rev. B 2009, 80, 035206.

[43]

Abdulsalam, M.; Joubert, D. P. Optical spectrum and excitons in bulk and monolayer MX2 (M = Zr, Hf; X = S, Se). Phys. Status Solidi B 2016, 253, 705–711.

[44]

Ahmad, S.; D’Souza, R.; Mukherjee, S. Band gap modulation of ZrX2 (X = S, Se, Te) mono-layers under biaxial strain and transverse electric field and its lattice dynamic properties: A first principles study. Mater. Res. Express 2019, 6, 036308.

[45]

Li, L.; Fang, X. S.; Zhai, T. Y.; Liao, M. Y.; Gautam, U. K.; Wu, X. C.; Koide, Y.; Bando, Y.; Golberg, D. Electrical transport and high-performance photoconductivity in individual ZrS2 nanobelts. Adv. Mater. 2010, 22, 4151–4156.

File
12274_2023_6171_MOESM1_ESM.pdf (500.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 August 2023
Revised: 29 August 2023
Accepted: 07 September 2023
Published: 02 October 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 62274151 and 61874106), the Natural Science Foundation of Beijing Municipality (No. 4212045), and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB43000000).

Return