AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Carbon-based functional materials for atmospheric water utilization

Wenya HeTengyu LinHuhu Cheng( )Liangti Qu( )
Laboratory of Flexible Electronics Technology, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

This review summarized the progress in the fields of atmospheric water harvester, moisture-enabled electricity generator, and moisture actuator based on the interaction between carbon based functional materials and atmospheric water.

Abstract

Atmospheric water, as one of the most abundant natural resources on Earth, has attracted huge research interest in the field of water harvesting and energy harvesting and conversion owing its environmental friendliness and easy access. The developments of new materials have seen advanced technologies that can extract water and energy out of this long-neglected resource, suggesting a promising and sustainable approach to address the water and energy crises over the world. Carbon-based functional materials have been considered to be indispensable materials for atmospheric water utilization due to their large surface area, excellent adsorption performance, and higher surface activity. In this review, first, we analyze the interaction between carbon-based functional materials and atmospheric water molecular. Then, technologies developed in recent years for atmospheric water utilization based on carbon-based functional materials are reviewed, mainly focusing on atmospheric water harvesting, moisture-enabled electricity generation, and moisture-responsive actuation. Finally, the remaining challenges and some tentative suggestions possibly guiding developments are proposed, which may pave a way for a bright future of carbon-based functional material in the utilization of atmospheric water.

References

[1]

Stephens, G. L.; Li, J.; Wild, M.; Clayson, C. A.; Loeb, N.; Kato, S.; L'Ecuyer, T.; Stackhouse, P. W.; Lebsock, M.; Andrews, T. An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 2012, 5, 691–696.

[2]

Vörösmarty, C. J.; Mcintyre, P. B.; Gessner, M. O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S. E.; Sullivan, C. A.; Liermann, C. R. et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561.

[3]

Rockström, J.; Mazzucato, M.; Andersen, L. S.; Fahrländer, S. F.; Gerten, D. Why we need a new economics of water as a common good. Nature 2023, 615, 794–797.

[4]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[5]

Rodell, M.; Famiglietti, J. S.; Wiese, D. N.; Reager, J. T.; Beaudoing, H. K.; Landerer, F. W.; Lo, M. H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659.

[6]

Cooley, S. W.; Ryan, J. C.; Smith, L. C. Human alteration of global surface water storage variability. Nature 2021, 591, 78–81.

[7]

Yin, J.; Zhou, J. X.; Fang, S. M.; Guo, W. L. Hydrovoltaic energy on the way. Joule 2020, 4, 1852–1855.

[8]

Lu, W. H.; Ong, W. L.; Ho, G. W. Advances in harvesting water and energy from ubiquitous atmospheric moisture. J. Mater. Chem. A 2023, 11, 12456–12481.

[9]

Wei, Q. M.; Ge, W. N.; Yuan, Z. C.; Wang, S. X.; Lu, C. G.; Feng, S. L.; Zhao, L.; Liu, Y. H. Moisture electricity generation: Mechanisms, structures, and applications. Nano Res. 2023, 16, 7496–7510.

[10]

Wang, K. Q.; Xu, W. H.; Zhang, W.; Wang, X.; Yang, X.; Li, J. F.; Zhang, H. L.; Li, J. J.; Wang, Z. K. Bio-inspired water-driven electricity generators: From fundamental mechanisms to practical applications. Nano Res. Energy 2023, 2, e9120042.

[11]

Han, Y. Y.; Zhang, Z. P.; Qu, L. T. Power generation from graphene–water interactions. FlatChem 2019, 14, 100090.

[12]

Bai, J. X.; Huang, Y. X.; Cheng, H. H.; Qu, L. T. Moist-electric generation. Nanoscale 2019, 11, 23083–23091.

[13]

Wang, H. Y.; Sun, Y. L.; He, T. C.; Huang, Y. X.; Cheng, H. H.; Li, C.; Xie, D.; Yang, P. F.; Zhang, Y. F.; Qu, L. T. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol. 2021, 16, 811–819.

[14]

Sun, Z. Y.; Wen, X.; Wang, L. M.; Ji, D. X.; Qin, X. H.; Yu, J. Y.; Ramakrishna, S. Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2022, 2, 32–46.

[15]

Niklewski, J.; Brischke, C.; Hansson, E. F.; Meyer-Veltrup, L. Moisture behavior of weathered wood surfaces during cyclic wetting: Measurements and modeling. Wood Sci. Technol. 2018, 52, 1431–1450.

[16]

Joffre, T.; Isaksson, P.; Dumont, P. J. J.; Du Roscoat, S. R.; Sticko, S.; Orgéas, L.; Gamstedt, E. K. A method to measure moisture induced swelling properties of a single wood cell. Exp. Mech. 2016, 56, 723–733.

[17]

Brennan, J. K.; Bandosz, T. J.; Thomson, K. T.; Gubbins, K. E. Water in porous carbons. Colloids Surf. A: Physicochem. Eng. Asp. 2001, 187–188, 539–568.

[18]

Zhang, Q.; Xu, W. L.; Wang, X. B. Carbon nanocomposites with high photothermal conversion efficiency. Sci. China Mater. 2018, 61, 905–914.

[19]

Burghaus, U. Adsorption of water on epitaxial graphene. J. Mater. Res. 2021, 36, 129–139.

[20]

Wang, C. Y.; Xing, Y. W.; Lei, Y. Z.; Xia, Y. C.; Zhang, C. H.; Zhang, R.; Wang, S. W.; Chen, P.; Zhu, S.; Li, J. H. et al. Adsorption of water on carbon materials: The formation of “water bridge” and its effect on water adsorption. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 631, 127719.

[21]

Yan, H. L.; Wu, F.; Xue, Y. F.; Bryan, K.; Ma, W. J.; Yu, P.; Mao, L. Q. Water adsorption and transport on oxidized two-dimensional carbon materials. Chem.—Eur. J. 2019, 25, 3969–3978.

[22]

Wang, X.; Kalali, E. N.; Wan, J. T.; Wang, D. Y. Carbon-family materials for flame retardant polymeric materials. Prog. Polym. Sci. 2017, 69, 22–46.

[23]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Sci. Adv. 2004, 306, 666–669.

[24]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[25]

Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924.

[26]

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

[27]

Zhang, M.; Yuan, J. Y. Graphene meta-aerogels: When sculpture aesthetic meets 1D/2D composite materials. Nano Res. Energy 2022, 1, e9120035.

[28]

Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

[29]

Dalton, A. B.; Collins, S.; Muñoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H. Super-tough carbon-nanotube fibres. Nature 2003, 423, 703.

[30]

Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; Ter Waarbeek, R. F.; De Jong, J. J.; Hoogerwerf, R. E. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013, 339, 182–186.

[31]

Qian, Q. R.; Sunohara, S.; Kato, Y.; Zaini, M. A. A.; Machida, M.; Tatsumoto, H. Water vapor adsorption onto activated carbons prepared from cattle manure compost (CMC). Appl. Surf. Sci. 2008, 254, 4868–4874.

[32]

Sun, S. N.; Yu, Q. F.; Li, M.; Zhao, H.; Wang, Y. F.; Zhang, Y. Surface modification of porous carbon nanomaterials for water vapor adsorption. ACS Appl. Nano Mater. 2023, 6, 2822–2834.

[33]
Zhang, D. Z.; Pan, W. J.; Tang, M. C.; Wang, D. Y.; Yu, S. J.; Mi, Q.; Pan, Q. N.; Hu, Y. Q. Diversiform gas sensors based on two-dimensional nanomaterials. Nano Res., in press, https://doi.org/10.1007/s12274-022-5233-2.
[34]

Liu, X.; Dai, L. M. Carbon-based metal-free catalysts. Nat. Rev. Mater. 2016, 1, 16064.

[35]

Ding, X. T.; Niu, Y. S.; Zhang, G.; Xu, Y. H.; Li, J. H. Electrochemistry in carbon-based quantum dots. Chem. Asian J. 2020, 15, 1214–1224.

[36]

Chen, S.; Chen, Q. W.; Ding, S. Y.; Tian, Y. D.; Wang, J.; Hou, S. Q.; Zhang, J. T. Rational design of carbon-based electrocatalysts for enhancing redox reactions in rechargeable metal batteries. Nano Res. 2023, 16, 4246–4276.

[37]

Lan, G. J.; Yang, J.; Ye, R. P.; Boyjoo, Y.; Liang, J.; Liu, X. Y.; Li, Y.; Liu, J.; Qian, K. Sustainable carbon materials toward emerging applications. Small Methods 2021, 5, 2001250.

[38]

Chen, Y. P.; Wei, J. T.; Duyar, M. S.; Ordomsky, V. V.; Khodakov, A. Y.; Liu, J. Carbon-based catalysts for fischer-tropsch synthesis. Chem. Soc. Rev. 2021, 50, 2337–2366.

[39]

Zhang, H. M.; Liu, W. H.; Cao, D.; Cheng, D. J. Carbon-based material-supported single-atom catalysts for energy conversion. iScience 2022, 25, 104367.

[40]

Shang, H. S.; Liu, D. Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano Res. 2023, 16, 6477–6506.

[41]

Ma, Q. L.; Yu, Y. F.; Sindoro, M.; Fane, A. G.; Wang, R.; Zhang, H. Carbon-based functional materials derived from waste for water remediation and energy storage. Adv. Mater. 2017, 29, 1605361.

[42]

Ibrahim, H.; Sazali, N.; Salleh, W. N. W.; Ngadiman, N. H. A.; Fadil, N. A.; Harun, Z. Outlook on the carbon-based materials for heavy metal removal. Biointerface Res. Appl. Chem. 2021, 12, 5303–5323.

[43]

Abbo, H. S.; Gupta, K. C.; Khaligh, N. G.; Titinchi, S. J. J. Carbon nanomaterials for wastewater treatment. ChemBioEng Rev. 2021, 8, 463–489.

[44]

Hu, Y. J.; Yao, H. Z.; Liao, Q. H.; Lin, T. Y.; Cheng, H. H.; Qu, L. T. The promising solar-powered water purification based on graphene functional architectures. EcoMat 2022, 4, e12205.

[45]

Teradal, N. L.; Jelinek, R. Carbon nanomaterials in biological studies and biomedicine. Adv. Healthc. Mater. 2017, 6, 1700574.

[46]

Wang, J.; Xin, H. L.; Wang, D. L. Recent progress on mesoporous carbon materials for advanced energy conversion and storage. Part. Part. Syst. Charact. 2014, 31, 515–539.

[47]

Zhong, X. W.; Wu, Y.; Zeng, S. F.; Yu, Y. Carbon and carbon hybrid materials as anodes for sodium-ion batteries. Chem. Asian J. 2018, 13, 1248–1265.

[48]

Zhang, L. L.; Wang, Y. J.; Niu, Z. Q.; Chen, J. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon 2019, 141, 400–416.

[49]

Zhang, Y. C.; Zhang, Q. C.; Chen, G. M. Carbon and carbon composites for thermoelectric applications. Carbon Energy 2020, 2, 408–436.

[50]

Wang, Z. T.; Zhang, M. Q.; Ma, W. T.; Zhu, J. B.; Song, W. X. Application of carbon materials in aqueous zinc ion energy storage devices. Small 2021, 17, 2100219.

[51]

Gao, X. Y.; Li, J. F.; Zuo, Z. C. Advanced electrochemical energy storage and conversion on graphdiyne interface. Nano Res. Energy 2022, 1, e9120036.

[52]

Wang, P. F.; Dai, X.; Xu, P.; Hu, S. J.; Xiong, X. Y.; Zou, K. Y.; Guo, S. W.; Sun, J. J.; Zhang, C. F.; Liu, Y. N. et al. Hierarchical and lamellar porous carbon as interconnected sulfur host and polysulfide-proof interlayer for Li-S batteries. eScience 2023, 3, 100088.

[53]

Zheng, Y. T.; Wei, J. J.; Liu, J. L.; Chen, L. X.; An, K.; Zhang, X. T.; Ye, H. T.; Ouyang, X. P.; Li, C. M. Carbon materials: The burgeoning promise in electronics. Int. J. Miner. Metall Mater. 2022, 29, 404–423.

[54]

Cai, X.; Wang, S.; Peng, L. M. Recent progress of photodetector based on carbon nanotube film and application in optoelectronic integration. Nano Res. Energy 2023, 2, e9120058.

[55]

Rodriguez-Reinoso, F.; Molina-Sabio, M.; Muñecas, M. A. Effect of microporosity and oxygen surface groups of activated carbon in the adsorption of molecules of different polarity. J. Phys. Chem. 1992, 96, 2707–2713.

[56]

Picaud, S.; Collignon, B.; Hoang, P. N. M.; Rayez, J. C. Adsorption of water molecules on partially oxidized graphite surfaces: A molecular dynamics study of the competition between OH and COOH sites. Phys. Chem. Chem. Phys. 2008, 10, 6998–7009.

[57]

Miura, K.; Morimoto, T. Adsorption sites for water on graphite. 6. Effect of ozone treatment of sample. Langmuir 1994, 10, 807–811.

[58]

Fletcher, A. J.; Uygur, Y.; Thomas, K. M. Role of surface functional groups in the adsorption kinetics of water vapor on microporous activated carbons. J. Phys. Chem. C 2007, 111, 8349–8359.

[59]

Nguyen, V. T.; Horikawa, T.; Do, D. D.; Nicholson, D. Water as a potential molecular probe for functional groups on carbon surfaces. Carbon 2014, 67, 72–78.

[60]

Klomkliang, N.; Kaewmanee, R.; Saimoey, S.; Intarayothya, S.; Do, D. D.; Nicholson, D. Adsorption of water and methanol on highly graphitized thermal carbon black: The effects of functional group and temperature on the isosteric heat at low loadings. Carbon 2016, 99, 361–369.

[61]

Zeng, Y. H.; Prasetyo, L.; Nguyen, V. T.; Horikawa, T.; Do, D. D.; Nicholson, D. Characterization of oxygen functional groups on carbon surfaces with water and methanol adsorption. Carbon 2015, 81, 447–457.

[62]

Liu, L. M.; Tan, S. J.; Horikawa, T.; Do, D. D.; Nicholson, D.; Liu, J. J. Water adsorption on carbon—A review. Adv. Colloid Interface Sci. 2017, 250, 64–78.

[63]

Ohta, N.; Nishi, Y.; Morishita, T.; Ieko, Y.; Ito, A.; Inagaki, M. Preparation of microporous carbon foams for adsorption/desorption of water vapor in ambient air. New Carbon Mater. 2008, 23, 216–220.

[64]

Striolo, A.; Chialvo, A. A.; Cummings, P. T.; Gubbins, K. E. Water adsorption in carbon-slit nanopores. Langmuir 2003, 19, 8583–8591.

[65]

Horikawa, T.; Muguruma, T.; Do, D. D.; Sotowa, K. I.; Alcántara-Avila, J. R. Scanning curves of water adsorption on graphitized thermal carbon black and ordered mesoporous carbon. Carbon 2015, 95, 137–143.

[66]

Liu, L. M.; Zeng, Y. H.; Tan, S. J.; Xu, H.; Do, D. D.; Nicholson, D.; Liu, J. J. On the mechanism of water adsorption in carbon micropores—A molecular simulation study. Chem. Eng. J. 2019, 357, 358–366.

[67]

LaPotin, A.; Kim, H.; Rao, S. R.; Wang, E. N. Adsorption-based atmospheric water harvesting: Impact of material and component properties on system-level performance. Acc. Chem. Res. 2019, 52, 1588–1597.

[68]

Zhou, X. Y.; Lu, H. Y.; Zhao, F.; Yu, G. H. Atmospheric water harvesting: A review of material and structural designs. ACS Mater. Lett. 2020, 2, 671–684.

[69]

Lu, H. Y.; Shi, W.; Guo, Y. H.; Guan, W. X.; Lei, C. X.; Yu, G. H. Materials engineering for atmospheric water harvesting: Progress and perspectives. Adv. Mater. 2022, 34, 2110079.

[70]

Shi, W.; Guan, W. X.; Lei, C. X.; Yu, G. H. Sorbents for atmospheric water harvesting: From design principles to applications. Angew. Chem., Int. Ed. 2022, 61, e202211267.

[71]

Lian, B.; De Luca, S.; You, Y.; Alwarappan, S.; Yoshimura, M.; Sahajwalla, V.; Smith, S. C.; Leslie, G.; Joshi, R. K. Extraordinary water adsorption characteristics of graphene oxide. Chem. Sci. 2018, 9, 5106–5111.

[72]

Yang, K. J.; Pan, T. T.; Pinnau, I.; Shi, Z.; Han, Y. Simultaneous generation of atmospheric water and electricity using a hygroscopic aerogel with fast sorption kinetics. Nano Energy 2020, 78, 105326.

[73]

Anjali, C.; Renuka, N. K. Atmospheric water harvesting: Prospectus on graphene-based materials. J. Mater. Res. 2022, 37, 2227–2240.

[74]

Huang, Y. W.; Yu, Q. F.; Li, M.; Jin, S. X.; Fan, J.; Zhao, L.; Yao, Z. H. Surface modification of activated carbon fiber by low-temperature oxygen plasma: Textural property, surface chemistry, and the effect of water vapor adsorption. Chem. Eng. J. 2021, 418, 129474.

[75]

Xiao, J.; Liu, Z. L.; Kim, K.; Chen, Y. S.; Yan, J.; Li, Z.; Wang, W. L. S/O-functionalities on modified carbon materials governing adsorption of water vapor. J. Phys. Chem. C 2013, 117, 23057–23065.

[76]

Li, R. Y.; Shi, Y.; Alsaedi, M.; Wu, M. C.; Shi, L.; Wang, P. Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator. Environ. Sci. Technol. 2018, 52, 11367–11377.

[77]

Li, R. Y.; Shi, Y.; Shi, L.; Alsaedi, M.; Wang, P. Harvesting water from air: Using anhydrous salt with sunlight. Environ. Sci. Technol. 2018, 52, 5398–5406.

[78]

Chen, B.; Zhao, X.; Yang, Y. Superelastic graphene nanocomposite for high cycle-stability water capture-release under sunlight. ACS Appl. Mater. Interfaces 2019, 11, 15616–15622.

[79]

Wang, X. Y.; Li, X. Q.; Liu, G. L.; Li, J. L.; Hu, X. Z.; Xu, N.; Zhao, W.; Zhu, B.; Zhu, J. An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angew. Chem., Int. Ed. 2019, 58, 12054–12058.

[80]

Hou, Y. L.; Sheng, Z. Z.; Fu, C.; Kong, J.; Zhang, X. T. Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 2022, 13, 1227.

[81]

Hu, Y.; Fang, Z.; Wan, X. Y.; Ma, X.; Wang, S. L.; Fan, S. K.; Dong, M. Y.; Ye, Z. Z.; Peng, X. S. Carbon nanotubes decorated hollow metal-organic frameworks for efficient solar-driven atmospheric water harvesting. Chem. Eng. J. 2022, 430, 133086.

[82]

Song, Y.; Xu, N.; Liu, G. L.; Qi, H. S.; Zhao, W.; Zhu, B.; Zhou, L.; Zhu, J. High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels. Nat. Nanotechnol. 2022, 17, 857–863.

[83]

Ishii, A.; Machiya, H.; Kato, Y. K. High efficiency dark-to-bright exciton conversion in carbon nanotubes. Phys. Rev. X 2019, 9, 041048.

[84]

Liu, H. C.; Huang, G. C.; Wang, R.; Huang, L.; Wang, H. Z.; Hu, Y. Z.; Cong, G. T.; Bao, F.; Xu, M.; Zhu, C. Z. et al. Carbon nanotubes grown on the carbon fibers to enhance the photothermal conversion toward solar-driven applications. ACS Appl. Mater. Interfaces 2022, 14, 32404–32411.

[85]

Yao, H. Z.; Zhang, P. P.; Huang, Y. X.; Cheng, H. H.; Li, C.; Qu, L. T. Highly efficient clean water production from contaminated air with a wide humidity range. Adv. Mater. 2020, 32, 1905875.

[86]

Xu, J. X.; Li, T. X.; Yan, T. S.; Wu, S.; Wu, M. Q.; Chao, J. W.; Huo, X. Y.; Wang, P. F.; Wang, R. Z. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent. Energy Environ. Sci. 2021, 14, 5979–5994.

[87]

Zhang, Y. X.; Nandakumar, D. K.; Tan, S. C. Digestion of ambient humidity for energy generation. Joule 2020, 4, 2532–2536.

[88]

Guan, P. Y.; Zhu, R. B.; Hu, G. Y.; Patterson, R.; Chen, F. D.; Liu, C.; Zhang, S.; Feng, Z. H.; Jiang, Y.; Wan, T. et al. Recent development of moisture-enabled-electric nanogenerators. Small 2022, 18, 2204603.

[89]

Wang, P. F.; Xu, J. X.; Wang, R. Z.; Li, T. X. Pathways for continuous electricity generation from ambient moisture. Matter 2023, 6, 19–22.

[90]

Li, M. J.; Zong, L.; Yang, W. Q.; Li, X. K.; You, J.; Wu, X. C.; Li, Z. H.; Li, C. X. Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 2019, 29, 1901798.

[91]

Shen, D. Z.; Xiao, M.; Zou, G. S.; Liu, L.; Duley, W. W.; Zhou, Y. N. Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 2018, 30, 1705925.

[92]

Tan, J.; Fang, S. M.; Zhang, Z. H.; Yin, J.; Li, L. X.; Wang, X.; Guo, W. L. Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat. Commun. 2022, 13, 3643.

[93]

Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357.

[94]

Huang, Y. X.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. Highly efficient moisture-triggered nanogenerator based on graphene quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 38170–38175.

[95]

Li, Q. J.; Zhou, M.; Yang, Q. F.; Yang, M. Y.; Wu, Q.; Zhang, Z. X.; Yu, J. W. Flexible carbon dots composite paper for electricity generation from water vapor absorption. J. Mater. Chem. A 2018, 6, 10639–10643.

[96]

Liang, Y.; Zhao, F.; Cheng, Z. H.; Zhou, Q. H.; Shao, H. B.; Jiang, L.; Qu, L. T. Self-powered wearable graphene fiber for information expression. Nano Energy 2017, 32, 329–335.

[97]

Zhao, F.; Wang, L. X.; Zhao, Y.; Qu, L. T.; Dai, L. M. Graphene oxide nanoribbon assembly toward moisture-powered information storage. Adv. Mater. 2017, 29, 1604972.

[98]

Shao, C. X.; Gao, J.; Xu, T.; Ji, B. X.; Xiao, Y. K.; Gao, C.; Zhao, Y.; Qu, L. T. Wearable fiberform hygroelectric generator. Nano Energy 2018, 53, 698–705.

[99]

Sun, Z. Y.; Feng, L. L.; Xiong, C. D.; He, X. Y.; Wang, L. M.; Qin, X. H.; Yu, J. Y. Electrospun nanofiber fabric: An efficient, breathable and wearable moist-electric generator. J. Mater. Chem. A 2021, 9, 7085–7093.

[100]

He, W. Y.; Wang, H. Y.; Huang, Y. X.; He, T. C.; Chi, F. Y.; Cheng, H. H.; Liu, D.; Dai, L. M.; Qu, L. T. Textile-based moisture power generator with dual asymmetric structure and high flexibility for wearable applications. Nano Energy 2022, 95, 107017.

[101]

Hu, K. S.; Xiong, R.; Guo, H. Y.; Ma, R. L.; Zhang, S. D.; Wang, Z. L.; Tsukruk, V. V. Self-powered electronic skin with biotactile selectivity. Adv. Mater. 2016, 28, 3549–3556.

[102]

Liu, K.; Yang, P. H.; Li, S.; Li, J.; Ding, T. P.; Xue, G. B.; Chen, Q.; Feng, G.; Zhou, J. Induced potential in porous carbon films through water vapor absorption. Angew. Chem., Int. Ed. 2016, 55, 8003–8007.

[103]

Cheng, H. H.; Huang, Y. X.; Qu, L. T.; Cheng, Q. L.; Shi, G. Q.; Jiang, L. Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy 2018, 45, 37–43.

[104]

Xu, T.; Ding, X. T.; Shao, C. X.; Song, L.; Lin, T. Y.; Gao, X.; Xue, J. L.; Zhang, Z. P.; Qu, L. T. Electric power generation through the direct interaction of pristine graphene-oxide with water molecules. Small 2018, 14, 1704473.

[105]

Lee, S.; Jang, H.; Lee, H.; Yoon, D.; Jeon, S. Direct fabrication of a moisture-driven power generator by laser-induced graphitization with a gradual defocusing method. ACS Appl. Mater. Interfaces 2019, 11, 26970–26975.

[106]

Liang, Y.; Zhao, F.; Cheng, Z. H.; Deng, Y. X.; Xiao, Y. K.; Cheng, H. H.; Zhang, P. P.; Huang, Y. X.; Shao, H. B.; Qu, L. T. Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energ. Environ. Sci. 2018, 11, 1730–1735.

[107]

Luo, Z. L.; Liu, C. H.; Fan, S. S. A moisture induced self-charging device for energy harvesting and storage. Nano Energy 2019, 60, 371–376.

[108]

Yang, C.; Huang, Y. X.; Cheng, H. H.; Jiang, L.; Qu, L. T. Rollable, stretchable, and reconfigurable graphene hygroelectric generators. Adv. Mater. 2019, 31, 1805705.

[109]

Zhang, B. X.; Wang, K. X.; Ji, X.; Wang, S. Y.; Ma, Z.; Qiu, Y. F. A self-powered moisture detector using graphene oxide film constructed by asymmetric metal electrodes. J. Alloys Compd. 2019, 810, 151880.

[110]

Li, Z. X.; Wang, J.; Dai, L.; Sun, X. H.; An, M.; Duan, C.; Li, J.; Ni, Y. H. Asymmetrically patterned cellulose nanofibers/graphene oxide composite film for humidity sensing and moist-induced electricity generation. ACS Appl. Mater. Interfaces 2020, 12, 55205–55214.

[111]

Chen, S.; Xia, H.; Ni, Q. Q. A wearable sustainable moisture-induced electricity generator based on rGO/GO/rGO sandwich-like structural film. Adv. Electron. Mater. 2021, 7, 2100222.

[112]

Lei, D. D.; Zhang, Q. X.; Liu, N. S.; Su, T. Y.; Wang, L. X.; Ren, Z. Q.; Zhang, Z.; Su, J.; Gao, Y. H. Self-powered graphene oxide humidity sensor based on potentiometric humidity transduction mechanism. Adv. Funct. Mater. 2022, 32, 2107330.

[113]

Chen, S.; Xia, H.; Ni, Q. Q. A sustainable, continuously expandable, wearable breath moisture-induced electricity generator. Carbon 2022, 194, 104–113.

[114]

Faramarzi, P.; Kim, B.; You, J. B.; Jeong, S. H. CNT-functionalized electrospun fiber mat for a stretchable moisture-driven power generator. J. Mater. Chem. C 2023, 11, 2206–2216.

[115]

Zhao, F.; Liang, Y.; Cheng, H. H.; Jiang, L.; Qu, L. T. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 2016, 9, 912–916.

[116]

Cheng, H. H.; Huang, Y. X.; Zhao, F.; Yang, C.; Zhang, P. P.; Jiang, L.; Shi, G. Q.; Qu, L. T. Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy Environ. Sci. 2018, 11, 2839–2845.

[117]

Huang, Y. X.; Cheng, H. H.; Yang, C.; Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Shi, G. Q.; Qu, L. T. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 2018, 9, 4166.

[118]

Huang, Y. X.; Cheng, H. H.; Yang, C.; Yao, H. Z.; Li, C.; Qu, L. T. All-region-applicable, continuous power supply of graphene oxide composite. Energ. Environ. Sci. 2019, 12, 1848–1856.

[119]

Fan, K.; Liu, X. K.; Liu, Y.; Li, Y.; Liu, X. Y.; Feng, W.; Wang, X. Spontaneous power generation from broad-humidity atmospheres through heterostructured F/O-bonded graphene monoliths. Nano Energy 2022, 91, 106605.

[120]

Yang, C.; Wang, H. Y.; Bai, J. X.; He, T. C.; Cheng, H. H.; Guang, T. L.; Yao, H. Z.; Qu, L. T. Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels. Nat. Commun. 2022, 13, 6819.

[121]

Han, B.; Zhang, Y. L.; Chen, Q. D.; Sun, H. B. Carbon-based photothermal actuators. Adv. Funct. Mater. 2018, 28, 1802235.

[122]

Zheng, Q. C.; Xu, C. X.; Jiang, Z. L.; Zhu, M.; Chen, C.; Fu, F. F. Smart actuators based on external stimulus response. Front. Chem. 2021, 9, 650358.

[123]

Chi, Y. D.; Li, Y. B.; Zhao, Y.; Hong, Y. Y.; Tang, Y. C.; Yin, J. Bistable and multistable actuators for soft robots: Structures, materials, and functionalities. Adv. Mater. 2022, 34, 2110384.

[124]

Li, M.; Pal, A.; Aghakhani, A.; Pena-Francesch, A.; Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 2022, 7, 235–249.

[125]

Wang, M. T.; Li, Q. C.; Shi, J. X.; Cao, X. Y.; Min, L. Z.; Li, X. F.; Zhu, L. L.; Lv, Y. H.; Qin, Z.; Chen, X. Y. et al. Bio-inspired high sensitivity of moisture-mechanical go films with period-gradient structures. ACS Appl. Mater. Interfaces 2020, 12, 33104–33112.

[126]

Van Opdenbosch, D.; Fritz-Popovski, G.; Wagermaier, W.; Paris, O.; Zollfrank, C. Moisture-driven ceramic bilayer actuators from a biotemplating approach. Adv. Mater. 2016, 28, 5235–5240.

[127]

Mao, J. W.; Chen, Z. D.; Han, D. D.; Ma, J. N.; Zhang, Y. L.; Sun, H. B. Nacre-inspired moisture-responsive graphene actuators with robustness and self-healing properties. Nanoscale 2019, 11, 20614–20619.

[128]

Liu, Y. Q.; Chen, Z. D.; Han, D. D.; Mao, J. W.; Ma, J. N.; Zhang, Y. L.; Sun, H. B. Bioinspired soft robots based on the moisture-responsive graphene oxide. Adv. Sci. (Weinh. ) 2021, 8, 2002464.

[129]

Yang, L. Y.; Cui, J.; Zhang, L.; Xu, X. R.; Chen, X.; Sun, D. P. A moisture-driven actuator based on polydopamine-modified MXene/bacterial cellulose nanofiber composite film. Adv. Funct. Mater. 2021, 31, 2101378.

[130]
Li, J. J.; Zhang, G. H.; Cui, Z. P.; Bao, L. L.; Xia, Z. G.; Liu, Z. F.; Zhou, X. High performance and multifunction moisture-driven yin–yang-interface actuators derived from polyacrylamide hydrogel. Small, in press, https://doi.org/10.1002/SMLL.202303228.
[131]

Cheng, H. H.; Liu, J.; Zhao, Y.; Hu, C. G.; Zhang, Z. P.; Chen, N.; Jiang, L.; Qu, L. T. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew. Chem., Int. Ed. 2013, 52, 10482–10486.

[132]

Cheng, H. H.; Hu, Y.; Zhao, F.; Dong, Z. L.; Wang, Y. H.; Chen, N.; Zhang, Z. P.; Qu, L. T. Moisture-activated torsional graphene-fiber motor. Adv. Mater. 2014, 26, 2909–2913.

[133]

He, S. S.; Chen, P. N.; Qiu, L. B.; Wang, B. J.; Sun, X. M.; Xu, Y. F.; Peng, H. S. A mechanically actuating carbon-nanotube fiber in response to water and moisture. Angew. Chem., Int. Ed. 2015, 54, 14880–14884.

[134]

Gu, X. G.; Fan, Q. X.; Yang, F.; Cai, L.; Zhang, N.; Zhou, W. B.; Zhou, W. Y.; Xie, S. S. Hydro-actuation of hybrid carbon nanotube yarn muscles. Nanoscale 2016, 8, 17881–17886.

[135]

Kim, S. H.; Kwon, C. H.; Park, K.; Mun, T. J.; Lepró, X.; Baughman, R. H.; Spinks, G. M.; Kim, S. J. Bio-inspired, moisture-powered hybrid carbon nanotube yarn muscles. Sci. Rep. 2016, 6, 23016.

[136]

Park, S.; An, J.; Suk, J. W.; Ruoff, R. S. Graphene-based actuators. Small 2010, 6, 210–212.

[137]

Cheng, H. H.; Zhao, F.; Xue, J. L.; Shi, G. Q.; Jiang, L.; Qu, L. T. One single graphene oxide film for responsive actuation. ACS Nano 2016, 10, 9529–9535.

[138]

Ge, Y. H.; Cao, R.; Ye, S. J.; Chen, Z.; Zhu, Z. F.; Tu, Y. F.; Ge, D. T.; Yang, X. M. A bio-inspired homogeneous graphene oxide actuator driven by moisture gradients. Chem. Commun. 2018, 54, 3126–3129.

[139]

Ma, J. N.; Mao, J. W.; Han, D. D.; Fu, X. Y.; Wang, Y. X.; Zhang, Y. L. Laser programmable patterning of rGO/GO janus paper for multiresponsive actuators. Adv. Mater. Technol, 2019, 4, 1900554.

[140]

Zhang, Y. L.; Liu, Y. Q.; Han, D. D.; Ma, J. N.; Wang, D.; Li, X. B.; Sun, H. B. Quantum-confined-superfluidics-enabled moisture actuation based on unilaterally structured graphene oxide papers. Adv. Mater. 2019, 31, 1901585.

[141]

Xiang, C. X.; Wang, W.; Zhu, Q.; Xue, D.; Zhao, X.; Li, M. F.; Wang, D. Flexible and super-sensitive moisture-responsive actuators by dispersing graphene oxide into three-dimensional structures of nanofibers and silver nanowires. ACS Appl. Mater. Interfaces 2020, 12, 3245–3253.

[142]

Wang, W.; Wang, S.; Xiang, C. X.; Liu, S. Y.; Li, M. F.; Wang, D. Graphene oxide/nanofiber-based actuation films with moisture and photothermal stimulation response for remote intelligent control applications. ACS Appl. Mater. Interfaces 2021, 13, 48179–48188.

[143]

Lv, Y. H.; Li, Q. C.; Shi, J. X.; Qin, Z.; Lei, Q. J.; Zhao, B.; Zhu, L. L.; Pan, K. Graphene-based moisture actuator with oriented microstructures prepared by one-step laser reduction for accurately controllable responsive direction and position. ACS Appl. Mater. Interfaces 2022, 14, 12434–12441.

Nano Research
Pages 12491-12505
Cite this article:
He W, Lin T, Cheng H, et al. Carbon-based functional materials for atmospheric water utilization. Nano Research, 2023, 16(11): 12491-12505. https://doi.org/10.1007/s12274-023-6169-x
Topics:

888

Views

2

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 04 August 2023
Revised: 05 September 2023
Accepted: 06 September 2023
Published: 17 October 2023
© Tsinghua University Press 2023
Return